Zbiór zadańKlasyWynikiRankingStrona główna

  Zaloguj mnie...

Załóż konto...

Wyrażenia algebraiczne

Zadania z matur CKE dla liceum ogólnokształcącego - poziom podstawowy

Uczeń:

 

Zadanie 1.  (1 pkt)  (Numer zadania: pp-11760) [ Rozwiąż
Podpunkt 1.1 (1 pkt)
 Dla każdej liczby rzeczywistej a wyrażenie (3a-6)^2-(3a+6)^2 jest równe:
Odpowiedzi:
A. 18a^2+72a B. -72a
C. 36a D. 18a^2-72a
E. -27 F. -36a
G. 36a H. 0
Zadanie 2.  (1 pkt)  (Numer zadania: pp-11782) [ Rozwiąż
Podpunkt 2.1 (1 pkt)
 Liczba (1+\sqrt{11})^2-(1-\sqrt{11})^2 jest równa:
Odpowiedź:
a+b\sqrt{c}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  (1 pkt)  (Numer zadania: pp-11783) [ Rozwiąż
Podpunkt 3.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od 0 i -6 wyrażenie \frac{x^2+6x}{(x-6)^2}\cdot\frac{x-6}{x} jest równe:
Odpowiedzi:
A. \frac{x^2+6}{x-6} B. \frac{x+6}{x-6}
C. \frac{x+6}{2} D. \frac{x^2+6}{(x-6)^2}
E. \frac{x^2}{(x-6)^2} F. \frac{x}{(x-6)^2}
Zadanie 4.  (1 pkt)  (Numer zadania: pp-11807) [ Rozwiąż
Podpunkt 4.1 (1 pkt)
 Wartość wyrażenia \left(6-\sqrt{5}\right)^2-\left(\sqrt{5}-6\right)^2 jest równa:
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  (1 pkt)  (Numer zadania: pp-11811) [ Rozwiąż
Podpunkt 5.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od 0 wartość wyrażenia \frac{5}{4x}-x jest równa:
Odpowiedzi:
A. -\frac{5}{4x} B. \frac{5-4x}{4x}
C. \frac{5-4x^2}{4x} D. \frac{5+4x}{4x}
E. \frac{5}{x} F. \frac{5-x}{4x}
Zadanie 6.  (1 pkt)  (Numer zadania: pp-11833) [ Rozwiąż
Podpunkt 6.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od 6 i -5 wartość wyrażenia \frac{x-6}{x^2+10x+25}\cdot \frac{x^2+5x}{2x-12} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{x}{4} B. \frac{1}{2x-10}
C. \frac{x}{2} D. \frac{x}{2x+10}
E. \frac{x}{x+5} F. \frac{x+10}{x}
Zadanie 7.  (1 pkt)  (Numer zadania: pp-11831) [ Rozwiąż
Podpunkt 7.1 (1 pkt)
 Dany jest wielomian W(x)=3x^3-3x^2+kx-5 gdzie k jest pewną liczbą rzeczywistą. Wiadomo, że wielomian W można zapisać w postaci W(x)=(x+1)\cdot Q(x), dla pewnego wielomianu Q.

Liczba k jest równa:

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 8.  (1 pkt)  (Numer zadania: pp-11849) [ Rozwiąż
Podpunkt 8.1 (1 pkt)
 Liczba (3\sqrt{45}-2\sqrt{5})^2 jest równa:
Odpowiedź:
a\sqrt{b}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  (1 pkt)  (Numer zadania: pp-11850) [ Rozwiąż
Podpunkt 9.1 (1 pkt)
 Dodatnie liczby x i y spełniają warunek 3x=5y. Wynika stąd, że wartość wyrażenia \frac{x^2+y^2}{x\cdot y} jest równa:
Odpowiedź:
\frac{x^2+y^2}{x\cdot y}=
(wpisz dwie liczby całkowite)
Zadanie 10.  (1 pkt)  (Numer zadania: pp-11882) [ Rozwiąż
Podpunkt 10.1 (1 pkt)
 Dla każdej liczby rzeczywistej a wyrażenie -6-(7+2a)(7-2a) jest równe:
Odpowiedzi:
A. 4a^2+43 B. 2a^2-55
C. 2a^2+43 D. 4a^2-55
E. 4a^2-43 F. 4a^2+85
Zadanie 11.  (1 pkt)  (Numer zadania: pp-11883) [ Rozwiąż
Podpunkt 11.1 (1 pkt)
 Jedną z liczb spełniających nierówność x^4-3x^3-7\lessdot 0 jest:
Odpowiedzi:
A. -4 B. 0
C. -3 D. 5
E. 4 F. -6
Zadanie 12.  (1 pkt)  (Numer zadania: pp-11910) [ Rozwiąż
Podpunkt 12.1 (1 pkt)
 Liczbę \left(3+3\sqrt{7}\right)^2 można zapisać w postaci a+b\sqrt{7}, gdzie a,b\in\mathbb{Z}.

Podaj tę postać tej liczby.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 13.  (1 pkt)  (Numer zadania: pp-11939) [ Rozwiąż
Podpunkt 13.1 (1 pkt)
 Dla każdej liczby rzeczywistej x\neq 1 wyrażenie \frac{7}{x-1}-6 jest równe:
Odpowiedzi:
A. \frac{-5x+15}{x-1} B. \frac{-8x+13}{x-1}
C. \frac{-6x+12}{x-1} D. \frac{-6x+14}{x-1}
E. \frac{-6x+13}{x-1} F. \frac{-7x+13}{x-1}
Zadanie 14.  (2 pkt)  (Numer zadania: pp-11940) [ Rozwiąż
Podpunkt 14.1 (2 pkt)
 Dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y wyrażenie 49-(x^2+2xy+y^2) jest równe:
Odpowiedzi:
T/N : \left[7-(x+y)\right]\cdot\left[7+(x-y)\right] T/N : \left[7-(x+y)\right]\cdot\left[7+(x+y)\right]
T/N : \left[7-(x+2y)\right]^2 T/N : -\left[(x+y)-7\right]\cdot\left[(x+y)+7\right]
T/N : \left[7-(x+2y)\right]\cdot\left[7+(x-2y)\right] T/N : \left[7+(x+2y)\right]^2
Zadanie 15.  (1 pkt)  (Numer zadania: pp-11959) [ Rozwiąż
Podpunkt 15.1 (1 pkt)
 Liczby rzeczywiste x i y są dodatnie oraz x\neq y.

Wyrażenie \frac{7}{x-y}+\frac{5}{x+y} można przekształcić do postaci:

Odpowiedzi:
A. \frac{12x+2}{x-y} B. \frac{12}{x^2-y^2}
C. \frac{7x-2y}{x^2-y^2} D. \frac{2y}{x^2-y^2}
E. \frac{12x+2y}{x^2-y^2} F. \frac{12x}{x^2-y^2}
Zadanie 16.  (1 pkt)  (Numer zadania: pp-11983) [ Rozwiąż
Podpunkt 16.1 (1 pkt)
 Dla każdej liczby rzeczywistej a i dla każdej liczby rzeczywistej b wartość wyrażenia (7a+b)^2-(7a-b)^2 jest równa wartości wyrażenia:
Odpowiedzi:
A. 7b^2 B. 28a^2
C. -28ab D. 28ab
Zadanie 17.  (1 pkt)  (Numer zadania: pp-12004) [ Rozwiąż
Podpunkt 17.1 (1 pkt)
 Liczba (7\sqrt{14}+\sqrt{2})^2 jest równa:
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 18.  (1 pkt)  (Numer zadania: pp-12009) [ Rozwiąż
Podpunkt 18.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od: -6, 0 i 6 wartość wyrażenia \frac{7x^3}{x^2-36}\cdot \frac{x+6}{x^{2}} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{7x}{x^2-6} B. \frac{7x^3+1}{x^2-36}
C. \frac{7x}{x+6} D. \frac{7x}{x-6}
E. \frac{7}{x(x-6)} F. 7x+1
Zadanie 19.  (1 pkt)  (Numer zadania: pp-12084) [ Rozwiąż
Podpunkt 19.1 (1 pkt)
 Dla każdej liczby rzeczywistej x wyrażenie (x-6)^2-(7+x)^2 jest równe ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 20.  (1 pkt)  (Numer zadania: pp-12110) [ Rozwiąż
Podpunkt 20.1 (1 pkt)
 Dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y wyrażenie (2x+6y)^2 jest równe ax^2+bxy+cy^2.

Podaj współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 21.  (1 pkt)  (Numer zadania: pp-12135) [ Rozwiąż
Podpunkt 21.1 (1 pkt)
 Liczba (\sqrt{5}+3\sqrt{3})^2 jest równa a+b\sqrt{c}, gdzie a,b,c\in\mathbb{N} i c jest najmniejsze możliwe.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 22.  (1 pkt)  (Numer zadania: pp-12140) [ Rozwiąż
Podpunkt 22.1 (1 pkt)
 Liczba 1-\left(2^{22}-1\right)^2 jest równa 2^m-2^n.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 23.  (1 pkt)  (Numer zadania: pp-12143) [ Rozwiąż
Podpunkt 23.1 (1 pkt)
 Wartośc wyrażenia w=x^2+18x+81 dla x=5\sqrt{2}-9 jest równa:
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 24.  (1 pkt)  (Numer zadania: pp-12150) [ Rozwiąż
Podpunkt 24.1 (1 pkt)
 Liczba x=\left(4\sqrt{5}-1\right)^2\cdot \left(4\sqrt{5}+1\right)^2 jest równa:
Odpowiedź:
x= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 25.  (1 pkt)  (Numer zadania: pp-12152) [ Rozwiąż
Podpunkt 25.1 (1 pkt)
 Kwadrat liczby 9+8\sqrt{3} jest równy:
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 26.  (1 pkt)  (Numer zadania: pp-12157) [ Rozwiąż
Podpunkt 26.1 (1 pkt)
 Równość \frac{1}{5}+\frac{1}{6}+\frac{1}{a}=2 jest prawdziwa dla:
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 27.  (1 pkt)  (Numer zadania: pp-12368) [ Rozwiąż
Podpunkt 27.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od -6, 0 oraz 6 wartość wyrażenia \frac{9x}{x^2-36}:\frac{3x^2}{x+6} jest równa wartości wyrażenia \frac{m}{x^2+bx}.

Podaj liczbę m:

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 28.  (1 pkt)  (Numer zadania: pp-12382) [ Rozwiąż
Podpunkt 28.1 (1 pkt)
 Liczba \left(\sqrt{80}-\sqrt{5}\right)^2 jest równa:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 29.  (1 pkt)  (Numer zadania: pp-12385) [ Rozwiąż
Podpunkt 29.1 (1 pkt)
 Dla każdej liczby rzeczywistej x wartość wyrażenia (x+5)^2-(5x-1)^2 jest równa wartości wyrażenia ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 30.  (1 pkt)  (Numer zadania: pp-12388) [ Rozwiąż
Podpunkt 30.1 (1 pkt)
 Dla każdej liczby rzeczywistej różnej od -6 oraz różnej od 0 wartość wyrażenia \frac{x^2+5x}{x^2+12x+36}\cdot\frac{x+6}{x} jest równa wartości wyrażenia \frac{a+x}{b+x}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 31.  (1 pkt)  (Numer zadania: pp-12405) [ Rozwiąż
Podpunkt 31.1 (1 pkt)
 Zapisz liczbę \left(\sqrt{5}+3\right)^2-\sqrt{20} w postaci m+n\sqrt{k}, gdzie p jest liczbą pierwszą i m,n\in\mathbb{Z}:
Odpowiedź:
m+n\sqrt{k}= + \cdot
(wpisz trzy liczby całkowite)

Masz pytania? Napisz: k42195@poczta.fm