Zbiór zadańMoje klasyWyniki klasStrona główna

Zaloguj mnie...

Załóż konto...

Równania i nierówności

Zadania z matur CKE dla liceum ogólnokształcącego - poziom podstawowy

Uczeń:

 

Zadanie 1.  (1 pkt)  (Numer zadania: pp-11761) [ Rozwiąż
Podpunkt 1.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności -2(x-3)\leqslant\frac{8-x}{3} jest przedział postaci:
Odpowiedzi:
A. [a,+\infty) B. (-\infty, a]
C. (a,+\infty) D. [-\infty, a)
Podpunkt 1.2 (0.8 pkt)
 Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt)  (Numer zadania: pp-11762) [ Rozwiąż
Podpunkt 2.1 (0.4 pkt)
 Jednym z rozwiązań równania \sqrt{5}\cdot (x^2-8)(x+2)=0 jest liczba:
Odpowiedzi:
A. 8 B. 2
C. -64 D. -8
E. 2\sqrt{2} F. 64
Podpunkt 2.2 (0.6 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt)  (Numer zadania: pp-11763) [ Rozwiąż
Podpunkt 3.1 (1 pkt)
 Równanie \frac{(x+4)(x+2)^2}{(x-2)(x+4)^2}=0:
Odpowiedzi:
A. ma dwa rozwiązania równe -4 oraz 2 B. ma dokładnie jedno rozwiązanie równe 4
C. ma dokładnie jedno rozwiązanie równe -2 D. nie ma rozwiązania
Zadanie 4.  (1 pkt)  (Numer zadania: pp-11784) [ Rozwiąż
Podpunkt 4.1 (1 pkt)
 Równanie \frac{(x^2-x)(x-3)}{x^2-9}=0 w zbiorze liczb rzeczywistych ma dokładnie:
Odpowiedzi:
A. dwa rozwiązania B. trzy rozwiązania
C. jedno rozwiązanie D. cztery rozwiązania
Zadanie 5.  (1 pkt)  (Numer zadania: pp-11809) [ Rozwiąż
Podpunkt 5.1 (1 pkt)
 Równanie \frac{(x^2-2x)(x^2+1)}{x^2-4}=0 w zbiorze liczb rzeczywistych ma dokładnie:
Odpowiedzi:
A. trzy rozwiązania B. cztery rozwiązania
C. jedno rozwiązanie D. dwa rozwiązania
Zadanie 6.  (1 pkt)  (Numer zadania: pp-11855) [ Rozwiąż
Podpunkt 6.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{6}{5}-\frac{x}{2}>\frac{x}{5}, jest przedział postaci:
Odpowiedzi:
A. (-\infty,a) B. (-\infty,a]
C. [a,+\infty) D. (a,+\infty)
Podpunkt 6.2 (0.8 pkt)
 Podaj liczbę a:
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  (1 pkt)  (Numer zadania: pp-11856) [ Rozwiąż
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania 5x(x^2-9)(x-1)=0 jest równa:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  (1 pkt)  (Numer zadania: pp-11885) [ Rozwiąż
Podpunkt 8.1 (1 pkt)
 Równanie (x^2-16)(x^2+4)=0 ma dokładnie
Odpowiedzi:
A. trzy rozwiązania B. jedno rozwiązanie
C. dwa rozwiązania D. cztery rozwiązania
Zadanie 9.  (1 pkt)  (Numer zadania: pp-11909) [ Rozwiąż
Podpunkt 9.1 (1 pkt)
 Jednym z rozwiązań równania 5(x-4)-x^2(x-4)=0 jest liczba:
Odpowiedzi:
A. -1 B. 6
C. 7 D. 4
E. 0 F. 5
Zadanie 10.  (1 pkt)  (Numer zadania: pp-11912) [ Rozwiąż
Podpunkt 10.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{5x-3}{6}>x jest przedział postaci:
Odpowiedzi:
A. \left[a,+\infty\right) B. \left(-\infty,a]
C. \left(a,+\infty\right) D. \left(-\infty,a)
Podpunkt 10.2 (0.8 pkt)
 Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 11.  (1 pkt)  (Numer zadania: pp-11913) [ Rozwiąż
Podpunkt 11.1 (1 pkt)
 Suma wszystkich rozwiązań równania (3x+1)(3x+3)(x-2)=0 jest równa:
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 12.  (1 pkt)  (Numer zadania: pp-11934) [ Rozwiąż
Podpunkt 12.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2-6m+6)x^3-m^2+7m-11 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  (1 pkt)  (Numer zadania: pp-11941) [ Rozwiąż
Podpunkt 13.1 (1 pkt)
 Równanie \frac{(x^2+3x)(x-1)(x-3)}{x^2-9}=0 ma w zbiorze liczb rzeczywistych dokładnie:
Odpowiedzi:
A. jedno rozwiązanie: x=1 B. dwa rozwiązania: x=1, x=0
C. trzy rozwiązania: x=1, x=-3, x=3 D. dwa rozwiązania: x=1, x=-3
Zadanie 14.  (1 pkt)  (Numer zadania: pp-11962) [ Rozwiąż
Podpunkt 14.1 (1 pkt)
 Dana jest nierówność kwadratowa (-3x+12)(x-k)\lessdot 0 z niewiadomą x i parametrem k\in\mathbb{R}. Rozwiązaniem tej nierówności jest przedział (2,4).

Liczba k jest równa:

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 15.  (1 pkt)  (Numer zadania: pp-11966) [ Rozwiąż
Podpunkt 15.1 (1 pkt)
 Wyznacz najmniejsze i największe rozwiązanie równania \frac{(4-x)(-3x-1)}{(x+1)(1+3x)}=0.
Odpowiedzi:
x_{min}= (wpisz dwie liczby całkowite)

x_{max}= (wpisz dwie liczby całkowite)
Zadanie 16.  (1 pkt)  (Numer zadania: pp-11967) [ Rozwiąż
Podpunkt 16.1 (1 pkt)
 Dana jest nierówność 2-\frac{x}{2}\geqslant \frac{x}{3}+1.

Największą liczbą całkowitą, która spełnia tę nierówność jest:

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 17.  (1 pkt)  (Numer zadania: pp-11984) [ Rozwiąż
Podpunkt 17.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności -4-\frac{3}{2}x\lessdot \frac{2}{3}-x jest przedział postaci:
Odpowiedzi:
A. (-\infty, a) B. (-\infty, a\rangle
C. \langle a, +\infty) D. (a, +\infty)
Podpunkt 17.2 (0.8 pkt)
 Liczba a jest równa:
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 18.  (1 pkt)  (Numer zadania: pp-11985) [ Rozwiąż
Podpunkt 18.1 (1 pkt)
 Równanie \frac{x-4}{(x-1)(x-4)}=0 ma w zbiorze liczb rzeczywistych dokładnie:
Odpowiedzi:
A. dwa rozwiązania B. trzy rozwiązania
C. zero rozwiązań D. jedno rozwiązanie
Zadanie 19.  (1 pkt)  (Numer zadania: pp-12006) [ Rozwiąż
Podpunkt 19.1 (1 pkt)
 Liczba wszystkich całkowitych dodatnich rozwiązań nierówności \frac{3x-29}{12}\lessdot \frac{1}{3} jest równa:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  (1 pkt)  (Numer zadania: pp-12029) [ Rozwiąż
Podpunkt 20.1 (1 pkt)
 Iloczyn wszystkich rozwiązań równania 2(x-5)(x^2-16)=0 jest równy:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 21.  (1 pkt)  (Numer zadania: pp-12030) [ Rozwiąż
Podpunkt 21.1 (0.2 pkt)
 Zbiorem rozwiązań nierówności \frac{\frac{19}{2}-5x}{2}\lessdot 3\left(\frac{3}{4}-\frac{1}{2}x\right)+7x+\frac{7}{2} jest przedział postaci:
Odpowiedzi:
A. [a,+\infty) B. (-\infty, a)
C. (-\infty, a] D. (a, +\infty)
Podpunkt 21.2 (0.8 pkt)
 Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 22.  (1 pkt)  (Numer zadania: pp-12057) [ Rozwiąż
Podpunkt 22.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{7-x}{2}-7x\geqslant 1 jest przedział postaci:
Odpowiedzi:
A. [a,+\infty) B. (-\infty,a)
C. (a,+\infty) D. (-\infty,a]
Podpunkt 22.2 (0.8 pkt)
 Podaj liczbe a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 23.  (1 pkt)  (Numer zadania: pp-12085) [ Rozwiąż
Podpunkt 23.1 (1 pkt)
 Wskaż rysunek, na którym przedstawiony jest zbiór wszystkich liczb rzeczywistych x, spełniających alternatywę nierówności 0 > 7-3x lub 7-3x\geqslant 5x-3:
Odpowiedzi:
A. C B. D
C. B D. A
Zadanie 24.  (1 pkt)  (Numer zadania: pp-12086) [ Rozwiąż
Podpunkt 24.1 (1 pkt)
 Wyznacz rozwiązanie równania x\sqrt{3}-2=-2x-4:
Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 25.  (1 pkt)  (Numer zadania: pp-12087) [ Rozwiąż
Podpunkt 25.1 (1 pkt)
 Podaj najmniejsze i największe rozwiązanie równania \frac{x^2-4x}{x^2-16}=0.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 26.  (1 pkt)  (Numer zadania: pp-12111) [ Rozwiąż
Podpunkt 26.1 (1 pkt)
 Liczba -3 jest rozwiązaniem równania:
Odpowiedzi:
A. x^2(x+3)+2x(x+3)=0 B. \frac{x-3}{x^2-9}=0
C. \frac{x+1}{x-3}=0 D. \frac{x-3}{x}=1
Zadanie 27.  (1 pkt)  (Numer zadania: pp-12112) [ Rozwiąż
Podpunkt 27.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności 5-\frac{2-4x}{4}\geqslant -x+1 jest zbiór postaci:
Odpowiedzi:
A. [a, +\infty) B. (-\infty, a]
C. (-\infty, a) D. (-\infty, a]\cup[b, +\infty)
Podpunkt 27.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 28.  (1 pkt)  (Numer zadania: pp-12185) [ Rozwiąż
Podpunkt 28.1 (1 pkt)
 Iloczyn wszystkich rozwiązań równania 3(x-5)(x^2-1)=0 jest równy:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 29.  (1 pkt)  (Numer zadania: pp-12186) [ Rozwiąż
Podpunkt 29.1 (1 pkt)
 Rozwiązanie nierówności \frac{37-5x}{2}\lessdot 3\left(\frac{7}{2}-\frac{1}{2}x\right)+7x-35 zapisz w postaci przedziału.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 30.  (1 pkt)  (Numer zadania: pp-12187) [ Rozwiąż
Podpunkt 30.1 (1 pkt)
 Podaj najmniejsze rozwiązanie równania \frac{x^2-3x}{x^2-x}=0:
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 31.  (1 pkt)  (Numer zadania: pp-12188) [ Rozwiąż
Podpunkt 31.1 (1 pkt)
 Podaj sumę i iloczyn wszystkich rozwiązań równania x(x-4)(x-1)=0:
Odpowiedzi:
suma= (wpisz liczbę całkowitą)
iloczyn= (wpisz liczbę całkowitą)
Zadanie 32.  (1 pkt)  (Numer zadania: pp-12189) [ Rozwiąż
Podpunkt 32.1 (1 pkt)
 Liczba rozwiązań równania x(x-5)=(x-5)^2 jest równa:
Odpowiedzi:
A. 1 B. 2
C. 3 D. 0
Zadanie 33.  (1 pkt)  (Numer zadania: pp-12190) [ Rozwiąż
Podpunkt 33.1 (1 pkt)
 Rozwiązaniem równania \frac{x+2}{x+3}=5 jest liczba:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 34.  (1 pkt)  (Numer zadania: pp-12191) [ Rozwiąż
Podpunkt 34.1 (1 pkt)
 Linę o długości 120 metrów rozcięto na trzy części, których długości pozostają w stosunku 3:4:5. Z tego wynika, że najdłuższa z tych części ma długość:
Odpowiedź:
d\ [m]=
(wpisz dwie liczby całkowite)
Zadanie 35.  (1 pkt)  (Numer zadania: pp-12198) [ Rozwiąż
Podpunkt 35.1 (1 pkt)
 Równania (x^2+6x+5)(x^2-9)=0 nie spełnia liczba:
Odpowiedzi:
A. -1 B. 2
C. -3 D. 3
Zadanie 36.  (1 pkt)  (Numer zadania: pp-12199) [ Rozwiąż
Podpunkt 36.1 (1 pkt)
 Nierówność (x-3)(x+4)^2(x-6)(x-5)>0 spełnia liczba:
Odpowiedzi:
A. -1 B. 0
C. 9 D. -9

Masz pytania? Napisz: k42195@poczta.fm