Zbiór zadańMoje klasyWyniki klasStrona główna

Zaloguj mnie...

Załóż konto...

Funkcje

Zadania z matur CKE dla liceum ogólnokształcącego - poziom podstawowy

Uczeń:

 

Zadanie 1.  (4 pkt)  (Numer zadania: pp-30406) [ Rozwiąż
Podpunkt 1.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y)przedstawiono fragment wykresu funkcji kwadratowej f(zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f, oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.
Zbiorem wartości funkcji g określonej wzorem g(x)=f(x-4) jest przedział:
Odpowiedzi:
A. [2, +\infty) B. (-\infty, -2]
C. [-6, +\infty) D. [-2, +\infty)
Podpunkt 1.2 (1 pkt)
 Zapisz w postaci przedziału zbiór rozwiązań nierówności g(x)\lessdot 0. Podaj lewy i prawy koniec tego przedziału.
Odpowiedzi:
x_l= (wpisz liczbę całkowitą)
x_p= (wpisz liczbę całkowitą)
Podpunkt 1.3 (1 pkt)
 Oceń, które z podanych wzorów poprawnie opisują funkcję f pokazaną na rysunku.
Odpowiedzi:
T/N : f(x)=\frac{1}{2}(x-2)(x-6) T/N : f(x)=2(x+2)(x+6)
T/N : f(x)=\frac{1}{2}(x-4)^2-2  
Podpunkt 1.4 (1 pkt)
 Funkcja kwadratowa h jest określona za pomocą funkcji f następująco: h(x)=f(x)-1. Na jednym z rysunków A–D przedstawiono, w kartezjańskim układzie współrzędnych (x,y), fragment wykresu funkcji y=h(x).

Fragment wykresu funkcji y=h(x) przedstawiono na rysunku:

Odpowiedzi:
A. B B. D
C. C D. A
Zadanie 2.  (5 pkt)  (Numer zadania: pp-30407) [ Rozwiąż
Podpunkt 2.1 (2 pkt)
 Wykres funkcji kwadratowej f określonej wzorem f(x)=ax^2+bx+c ma z prostą o równaniu y=4 dokładnie jeden punkt wspólny. Punkty A=(0,0) i B=(4,0) należą do wykresu funkcji f.

Wyznacz współrzędne wierzchołka paraboli będącego wykresem funkcji f.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Podpunkt 2.2 (3 pkt)
 Wyznacz współczynniki a, b i c.
Odpowiedzi:
a= (wpisz dwie liczby całkowite)

b= (wpisz dwie liczby całkowite)

c= (wpisz dwie liczby całkowite)
Zadanie 3.  (5 pkt)  (Numer zadania: pp-30412) [ Rozwiąż
Podpunkt 3.1 (1 pkt)
 Parabola w kartezjańskim układzie współrzędnych (x, y), która jest wykresem funkcji kwadratowej y=f(x) przechodzi przez punkt (2,0) i ma wierzchołek w punkcie (5,4).

Zbiorem wszystkich rozwiązań nierówności f(x)\geqslant 0 jest przedział [x_1,x_2]. Wówczas:

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=-(x-p)^2+q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 3.3 (1 pkt)
 Dla funkcji f prawdziwa jest równość f(0)=f(m).

Podaj brakującą liczbę m różną od 0:

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 3.4 (2 pkt)
 Funkcje kwadratowe g i h są określone za pomocą funkcji f następująco: g(x)=f(x-1) oraz h(x)=f(-x).

Oceń poprawność poniższych zdań:

Odpowiedzi:
T/N : wykres funkcji h jest symetryczny do wykresu funkcji f względem osi Oy T/N : wykres funkcji g jest przesunięty w stosunku do wykresu funkcji f o 1 jednostek w prawo
Zadanie 4.  (4 pkt)  (Numer zadania: pp-30425) [ Rozwiąż
Podpunkt 4.1 (2 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1=-2 i x_2=-4. Wykres funkcji f przechodzi przez punkt A=(2,18).

Oblicz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (2 pkt)
 Wyznacz najmniejszą wartość funkcji f.
Odpowiedź:
f_{MIN}(x)=
(wpisz dwie liczby całkowite)

Masz pytania? Napisz: k42195@poczta.fm