Zbiór zadańKlasyWynikiRankingStrona główna

  Zaloguj mnie...

Załóż konto...

Ciągi liczbowe

Zadania z matur CKE dla liceum ogólnokształcącego - poziom podstawowy

Uczeń:

 

Zadanie 1.  (1 pkt)  (Numer zadania: pp-11767) [ Rozwiąż
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+4), dla każdej dodatniej liczby naturalnej n.

Wyraz a_4 jest równy:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt)  (Numer zadania: pp-11768) [ Rozwiąż
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+4) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt)  (Numer zadania: pp-11788) [ Rozwiąż
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-9}{2}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 24 jest równa:

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt)  (Numer zadania: pp-11789) [ Rozwiąż
Podpunkt 4.1 (1 pkt)
 Trzywyrazowy ciąg (3,6,a+3) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt)  (Numer zadania: pp-11790) [ Rozwiąż
Podpunkt 5.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=1.75 oraz a_2=-10.50.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedź:
a_1+a_2+a_3=
(wpisz dwie liczby całkowite)
Zadanie 6.  (1 pkt)  (Numer zadania: pp-11815) [ Rozwiąż
Podpunkt 6.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+9}{2}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Zadanie 7.  (1 pkt)  (Numer zadania: pp-11816) [ Rozwiąż
Podpunkt 7.1 (1 pkt)
 Dany jest ciąg geometryczny \left(a_n\right) określony dla każdej liczby naturalnej n\geqslant 1. Pierwszy wyraz tego ciągu jest równy 4, natomiast iloraz tego ciągu jest równy -\frac{1}{4}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : różnica a_3-a_2 jest równa \frac{5}{4} T/N : wyraz a_{2076} jest ujemny
Zadanie 8.  (1 pkt)  (Numer zadania: pp-11836) [ Rozwiąż
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=11.

6-ty wyraz tego ciągu a_{6} jest równy:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  (1 pkt)  (Numer zadania: pp-11837) [ Rozwiąż
Podpunkt 9.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=2\cdot(5^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : iloczyn a_1\cdot a_2 jest równy 320 T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 8
Zadanie 10.  (1 pkt)  (Numer zadania: pp-11838) [ Rozwiąż
Podpunkt 10.1 (1 pkt)
 Trzywyrazowy ciąg (9-2a, 12, 48) jest geometryczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 11.  (1 pkt)  (Numer zadania: pp-11860) [ Rozwiąż
Podpunkt 11.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{2n^2+10n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedź:
a_7= (wpisz liczbę całkowitą)
Zadanie 12.  (1 pkt)  (Numer zadania: pp-11861) [ Rozwiąż
Podpunkt 12.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=2 oraz a_{10}=22. Różnica tego ciągu jest równa:
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 13.  (1 pkt)  (Numer zadania: pp-11862) [ Rozwiąż
Podpunkt 13.1 (1 pkt)
 Wszystkie wyrazy nieskończonego ciągu geometrycznego \left(a_n\right), określonego dla każdej liczby naturalnej n\geqslant 1, są dodatnie i 64a_5=9a_3.

Wtedy iloraz tego ciągu jest równy:

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 14.  (1 pkt)  (Numer zadania: pp-11904) [ Rozwiąż
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n+2}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedź:
a_5=
(wpisz dwie liczby całkowite)
Zadanie 15.  (1 pkt)  (Numer zadania: pp-11891) [ Rozwiąż
Podpunkt 15.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -3 oraz a_8=-16.

Czwarty wyraz tego ciągu jest równy:

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 16.  (1 pkt)  (Numer zadania: pp-11918) [ Rozwiąż
Podpunkt 16.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 45:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 17.  (1 pkt)  (Numer zadania: pp-11919) [ Rozwiąż
Podpunkt 17.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedź:
S= (wpisz liczbę całkowitą)
Zadanie 18.  (1 pkt)  (Numer zadania: pp-11968) [ Rozwiąż
Podpunkt 18.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n^2+3n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : wyraz a_{5} jest równy 65:
Zadanie 19.  (1 pkt)  (Numer zadania: pp-11969) [ Rozwiąż
Podpunkt 19.1 (1 pkt)
 Pięciowyrazowy ciąg (5,\frac{5}{2},x,y,-5) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
x= (wpisz dwie liczby całkowite)

y= (wpisz dwie liczby całkowite)
Zadanie 20.  (1 pkt)  (Numer zadania: pp-11991) [ Rozwiąż
Podpunkt 20.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-5) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny T/N : wszystkie wyrazy ciągu (a_n) są dodatnie
Zadanie 21.  (1 pkt)  (Numer zadania: pp-11992) [ Rozwiąż
Podpunkt 21.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m-13) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 21.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 22.  (1 pkt)  (Numer zadania: pp-12013) [ Rozwiąż
Podpunkt 22.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=5 oraz a_3=-1.

Wyraz a_{16} jest równy:

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 23.  (1 pkt)  (Numer zadania: pp-12014) [ Rozwiąż
Podpunkt 23.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x-4) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y+3) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x > 4 i y\lessdot -3 B. x \lessdot 4 i y\lessdot -3
C. x > 4 i y > -3 D. x \lessdot 4 i y > -3
Zadanie 24.  (1 pkt)  (Numer zadania: pp-12034) [ Rozwiąż
Podpunkt 24.1 (1 pkt)
 Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy -125.

Wynika z tego, że y jest równe:

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 25.  (1 pkt)  (Numer zadania: pp-12035) [ Rozwiąż
Podpunkt 25.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -5, a pierwszy wyraz tego ciągu jest równy 3.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedź:
\frac{a_4}{a_2}=
(wpisz dwie liczby całkowite)
Zadanie 26.  (1 pkt)  (Numer zadania: pp-12037) [ Rozwiąż
Podpunkt 26.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=3n^2+4, b_n=2^n, c_n=6n-3, d_n=\frac{2}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg c_n jest arytmetyczny B. ciąg b_n jest arytmetyczny
C. ciąg d_n jest arytmetyczny D. żaden z ciągów nie jest arytmetyczny
Zadanie 27.  (1 pkt)  (Numer zadania: pp-12038) [ Rozwiąż
Podpunkt 27.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-3)^n\cdot n-5 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 28.  (1 pkt)  (Numer zadania: pp-12064) [ Rozwiąż
Podpunkt 28.1 (1 pkt)
 Trzywyrzowy ciąg \left(24,3x,\frac{3}{8}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 29.  (1 pkt)  (Numer zadania: pp-12065) [ Rozwiąż
Podpunkt 29.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=5n^2-13n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 30.  (1 pkt)  (Numer zadania: pp-12066) [ Rozwiąż
Podpunkt 30.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=180.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 31.  (1 pkt)  (Numer zadania: pp-12090) [ Rozwiąż
Podpunkt 31.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 263 jest 13-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (c_n)
C. (b_n) D. (a_n)
Zadanie 32.  (1 pkt)  (Numer zadania: pp-12091) [ Rozwiąż
Podpunkt 32.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{2}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. q=a_1^2 B. a_1=q
C. q^2=a_1 D. a_1=\frac{1}{q^2}
Zadanie 33.  (1 pkt)  (Numer zadania: pp-12119) [ Rozwiąż
Podpunkt 33.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -7.

Wtedy różnica a_{15}-a_{8} jest równa:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 34.  (1 pkt)  (Numer zadania: pp-12120) [ Rozwiąż
Podpunkt 34.1 (1 pkt)
 Oblicz sumę wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 401.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 35.  (1 pkt)  (Numer zadania: pp-12121) [ Rozwiąż
Podpunkt 35.1 (1 pkt)
 Trójwyrazowy ciąg \left(3,x,\frac{867}{4}\right) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 36.  (1 pkt)  (Numer zadania: pp-12224) [ Rozwiąż
Podpunkt 36.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, są dane dwa wyrazy: a_2=8 i a_{4}=12.

Zapisz wzór tego ciągu w postaci a_n=a\cdot n+b.
Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 37.  (1 pkt)  (Numer zadania: pp-12225) [ Rozwiąż
Podpunkt 37.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Wiadomo, że a_6=16.

Suma S=a_{4}+a_{8} jest równa:

Odpowiedź:
S= (wpisz liczbę całkowitą)
Zadanie 38.  (1 pkt)  (Numer zadania: pp-12226) [ Rozwiąż
Podpunkt 38.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1 oraz a_{7}=5 i a_{10}=-40.

Oceń prawdziwość podanych warunków:

Odpowiedzi:
T/N : a_{12}\lessdot a_{15} T/N : a_{12}> a_{9}
Zadanie 39.  (1 pkt)  (Numer zadania: pp-12227) [ Rozwiąż
Podpunkt 39.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=2n^2-5 dla n\in\mathbb{N_{+}}.

Wówczas różnica r=a_{14}-a_{13} jest równa:

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 40.  (1 pkt)  (Numer zadania: pp-12228) [ Rozwiąż
Podpunkt 40.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla n\in\mathbb{N_{+}}, czwarty wyraz jest równy 3, a różnica tego ciągu jest równa 3.

Wówczas:

Odpowiedź:
a_1+a_2+a_3+a_4= (wpisz liczbę całkowitą)
Zadanie 41.  (1 pkt)  (Numer zadania: pp-12230) [ Rozwiąż
Podpunkt 41.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n), określony dla n\geqslant 1, w którym są dane: a_1=2 i a_2=11.

Wyznacz n, dla którego a_n=101.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 42.  (1 pkt)  (Numer zadania: pp-12231) [ Rozwiąż
Podpunkt 42.1 (1 pkt)
 Dany jest trzywyrazowy ciąg geometryczny (9,2x,121) o wyrazach dodatnich.

Wynika z tego, że liczba x jest równa:

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 43.  (1 pkt)  (Numer zadania: pp-12232) [ Rozwiąż
Podpunkt 43.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla n\in\mathbb{N_{+}}, dane są dwa wyrazy: a_1=-15 i a_{9}=33.

Suma 9 początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_n= (wpisz liczbę całkowitą)
Zadanie 44.  (1 pkt)  (Numer zadania: pp-12233) [ Rozwiąż
Podpunkt 44.1 (1 pkt)
 Wszystkie wyrazy ciągu geometrycznego (a_n), określonego dla n\in\mathbb{N_{+}}, są liczbami dodatnimi. Drugi wyraz tego ciągu jest równy 18, a czwarty wyraz jest równy 8.

Oznacza to, że iloraz tego ciągu jest równy:

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 45.  (1 pkt)  (Numer zadania: pp-12234) [ Rozwiąż
Podpunkt 45.1 (1 pkt)
 Dany jest rosnący ciąg arytmetyczny (a_n), określony dla liczb naturalnych n\in\mathbb{N_{+}}, o wyrazach dodatnich. Jeśli a_{3}+a_{15}=a_{7}+a_{k}, to k jest równe:
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 46.  (1 pkt)  (Numer zadania: pp-12235) [ Rozwiąż
Podpunkt 46.1 (1 pkt)
 W ciągu (a_n) określonym dla każdej liczby n\in\mathbb{N_{+}} jest spełniony warunek a_{n+3}=-2\cdot 3^{n+1}.

Wyraz a_{5} tego ciągu jest równy:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 47.  (1 pkt)  (Numer zadania: pp-12236) [ Rozwiąż
Podpunkt 47.1 (1 pkt)
 W ciągu arytmetycznym (a_n) określonym dla każdej liczby n\in\mathbb{N_{+}}, dane są wyrazy: a_1=3 i a_8=-46.

Suma S_8 ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 48.  (1 pkt)  (Numer zadania: pp-12237) [ Rozwiąż
Podpunkt 48.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla n\in\mathbb{N_{+}}. Wszystkie wyrazy tego ciągu są dodatnie i spełniony jest warunek \frac{a_{8}}{a_{6}}=\frac{9}{16}.

Iloraz tego ciągu jest równy:

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 49.  (1 pkt)  (Numer zadania: pp-12238) [ Rozwiąż
Podpunkt 49.1 (1 pkt)
 Ciąg arytmetyczny (a_n), określony dla n\in\mathbb{N_{+}}, spełnia warunek a_{4}+a_{5}+a_{6}=\frac{19}{2}.

Wtedy wyraz a_{5} jest równy:

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 50.  (1 pkt)  (Numer zadania: pp-12239) [ Rozwiąż
Podpunkt 50.1 (1 pkt)
 Dla pewnej liczby x ciąg (x-5,x-1, 16) jest geometryczny.

Liczba x jest równa:

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 51.  (1 pkt)  (Numer zadania: pp-12240) [ Rozwiąż
Podpunkt 51.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n) określony wzorem a_n=4-\frac{2}{3}n dla każdej liczby n\in\mathbb{N_{+}}.

Różnica r tego ciągu jest równa:

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 52.  (1 pkt)  (Numer zadania: pp-12241) [ Rozwiąż
Podpunkt 52.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n) określony wzorem a_n=\frac{3-5n}{6} dla każdej liczby n\in\mathbb{N_{+}}.

Różnica r tego ciągu jest równa:

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 53.  (1 pkt)  (Numer zadania: pp-12242) [ Rozwiąż
Podpunkt 53.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n) określony dla każdej liczby n\in\mathbb{N_{+}}, w którym a_1=4\sqrt{3}, a_2=8\sqrt{3}, a_3=16\sqrt{3}.

Wzór na n-ty wyraz tego ciągu ma postać a\cdot c^n.
Podaj liczbę a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 54.  (1 pkt)  (Numer zadania: pp-12243) [ Rozwiąż
Podpunkt 54.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla n\in\mathbb{N_{+}}, spełnione są warunki 2a_3=2a_2+a_1+1 oraz a_1=2.

Różnica r tego ciągu jest równa:

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 55.  (1 pkt)  (Numer zadania: pp-12244) [ Rozwiąż
Podpunkt 55.1 (1 pkt)
 Dany jest ciąg geometryczny \left(\frac{1}{3}x,x,3x, 9 \right) o wyrazach nieujemnych.

Oznacza to, że liczba x jest równa:

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 56.  (1 pkt)  (Numer zadania: pp-12245) [ Rozwiąż
Podpunkt 56.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: a_1=3, a_2=10.

Wyraz numer k tego ciągu jest równy 80.
Podaj liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 57.  (1 pkt)  (Numer zadania: pp-12246) [ Rozwiąż
Podpunkt 57.1 (1 pkt)
 Dany jest trzywyrazowy ciąg geometryczny (24,6,a-7).

Wynika z tego, że liczba a jest równa:

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 58.  (1 pkt)  (Numer zadania: pp-12247) [ Rozwiąż
Podpunkt 58.1 (1 pkt)
 Dla każdej liczby całkowitej dodatniej n suma n początkowych wyrazów ciągu (a_n) jest określona wzorem S_n=2n^2+3n.

Wynika z tego, że wyraz a_2 jest równy:

Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 59.  (1 pkt)  (Numer zadania: pp-12350) [ Rozwiąż
Podpunkt 59.1 (1 pkt)
 Ciąg (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu wyraża się wzorem S_n=n^2+2n dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz ciągu (a_n) jest równy:

Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 60.  (1 pkt)  (Numer zadania: pp-12351) [ Rozwiąż
Podpunkt 60.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n) określony dla każdej liczby naturalnej n\geqslant 1, w którym a_2=-4 oraz a_{5}=-32.

Iloraz ciągu (a_n) jest równy:

Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 61.  (1 pkt)  (Numer zadania: pp-12352) [ Rozwiąż
Podpunkt 61.1 (0.5 pkt)
 Trzywyrazowy ciąg (-3m+1,-2,1) jest arytmetyczny.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : ciąg ten jest rosnący T/N : ciąg ten jest malejący
Podpunkt 61.2 (0.5 pkt)
 Liczba m jest równa:
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 62.  (1 pkt)  (Numer zadania: pp-12372) [ Rozwiąż
Podpunkt 62.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=2\cdot(-1)^n+12 dla każdej liczby naturalnej n \geqslant 1.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : ciąg (a_n) jest arytmetyczny T/N : wszystkie wyrazy ciągu (a_n) są dodatnie
Zadanie 63.  (1 pkt)  (Numer zadania: pp-12373) [ Rozwiąż
Podpunkt 63.1 (1 pkt)
 Trzywyrazowy ciąg (-5m, -4+2m, m) jest arytmetyczny, gdy liczba m jest równa:
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 64.  (1 pkt)  (Numer zadania: pp-12374) [ Rozwiąż
Podpunkt 64.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n) określony dla każdej liczby naturalnej n \geqslant 1, w którym a_{2}=2 oraz a_{3}=8.

Wówczas wyraz a_{5} jest równy:

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 65.  (1 pkt)  (Numer zadania: pp-12397) [ Rozwiąż
Podpunkt 65.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n) określony dla każdej liczby naturalnej n\geqslant 1, w którym a_1=5 oraz a_2=1.

Czwarty wyraz ciągu (a_n) jest równy:

Odpowiedź:
a_4=
(wpisz dwie liczby całkowite)
Zadanie 66.  (1 pkt)  (Numer zadania: pp-12410) [ Rozwiąż
Podpunkt 66.1 (1 pkt)
 Trzywyrazowy ciąg (4, m+3, m+2) jest geometryczny, gdy liczba m jest równa:
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 67.  (1 pkt)  (Numer zadania: pp-12429) [ Rozwiąż
Podpunkt 67.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{128\cdot (-1)^n}{2^{n-1}}, dla każdej liczby naturalnej n\in\mathbb{N_+}.

Siódmy wyraz tego ciągu jest równy:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 68.  (1 pkt)  (Numer zadania: pp-12430) [ Rozwiąż
Podpunkt 68.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\in\mathbb{N_+}. Różnica tego ciągu jest równa -6 oraz a_{13}=-62.

Wyraz a_{3} tego ciągu jest równy:

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 69.  (1 pkt)  (Numer zadania: pp-12431) [ Rozwiąż
Podpunkt 69.1 (1 pkt)
 Ciąg geometryczny (a_n), o wszystkich wyrazach rzeczywistych różnych od 0, jest określony dla każdej liczby naturalnej n\geqslant 1. Wyrazy tego ciągu spełniają warunek a_{6}=8a_{9}.

Iloraz tego ciągu jest równy:

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 70.  (1 pkt)  (Numer zadania: pp-12432) [ Rozwiąż
Podpunkt 70.1 (1 pkt)
 Trzywyrazowy ciąg \left(\sqrt{19},\sqrt{2}, x\right) jest jest arytmetyczny. Trzywyrazowy ciąg \left(\sqrt{6},\sqrt{2}, y\right) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x \lessdot 0 \wedge y \lessdot 0 B. x > 0 \wedge y > 0
C. x > 0 \wedge y \lessdot 0 D. x \lessdot 0 \wedge y > 0

Masz pytania? Napisz: k42195@poczta.fm