Ciągi liczbowe
Zadania z matur CKE dla liceum ogólnokształcącego - poziom podstawowy
Uczeń:
oblicza wyrazy ciągu określonego wzorem ogólnym;
oblicza początkowe wyrazy ciągów określonych rekurencyjnie, jak w przykładach:
\begin{cases}a_1=0,001\\a_{n+1}=a_n+\frac{1}{2}a_n(1-a_n)\end{cases}
\begin{cases}a_1=1\\a_2=1\\a_{n+2}=a_n+a_{n+1}\end{cases}
w prostych przypadkach bada, czy ciąg jest rosnący, czy malejący;
sprawdza, czy dany ciąg jest arytmetyczny lub geometryczny;
stosuje wzór na n -ty wyraz i na sumę n początkowych wyrazów ciągu arytmetycznego;
stosuje wzór na n -ty wyraz i na sumę n początkowych wyrazów ciągu geometrycznego;
wykorzystuje własności ciągów, w tym arytmetycznych i geometrycznych, do rozwiązywania zadań, również osadzonych w kontekście praktycznym.
Zadanie 1. (1 pkt) (Numer zadania: pp-11767)
[ ⇒ Rozwiąż ]
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+5) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_6 jest równy:
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. (1 pkt) (Numer zadania: pp-11768)
[ ⇒ Rozwiąż ]
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(27, 9, a+8) jest ciągiem geometrycznym.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. (1 pkt) (Numer zadania: pp-11788)
[ ⇒ Rozwiąż ]
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-11}{4} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 28 jest równa:
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 4. (1 pkt) (Numer zadania: pp-11789)
[ ⇒ Rozwiąż ]
Podpunkt 4.1 (1 pkt)
Trzywyrazowy ciąg
(4,11,a+6) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 5. (1 pkt) (Numer zadania: pp-11790)
[ ⇒ Rozwiąż ]
Podpunkt 5.1 (1 pkt)
Ciąg geometryczny
(a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 . W tym ciągu
a_1=5.75 oraz
a_2=-46.00 .
Suma trzech początkowych wyrazów ciągu (a_n) jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. (1 pkt) (Numer zadania: pp-11815)
[ ⇒ Rozwiąż ]
Podpunkt 6.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+11}{4} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. (1 pkt) (Numer zadania: pp-11816)
[ ⇒ Rozwiąż ]
Podpunkt 7.1 (1 pkt)
Dany jest ciąg geometryczny
\left(a_n\right) określony dla każdej liczby
naturalnej
n\geqslant 1 . Pierwszy wyraz tego ciągu jest równy
64 , natomiast iloraz tego ciągu jest równy
-\frac{1}{4} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : różnica a_3-a_2 jest równa 20
T/N : wyraz a_{2093} jest dodatni
Zadanie 8. (1 pkt) (Numer zadania: pp-11836)
[ ⇒ Rozwiąż ]
Podpunkt 8.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=10
oraz
a_3=18 .
11-ty wyraz tego ciągu a_{11} jest równy:
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. (1 pkt) (Numer zadania: pp-11837)
[ ⇒ Rozwiąż ]
Podpunkt 9.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 .
Suma
n początkowych wyrazów tego ciągu jest określona wzorem
S_n=4\cdot(7^n-1) , dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : iloczyn a_1\cdot a_2 jest równy 4032
T/N : różnica a_2-a_1 jest równa 144
Zadanie 10. (1 pkt) (Numer zadania: pp-11838)
[ ⇒ Rozwiąż ]
Podpunkt 10.1 (1 pkt)
Trzywyrazowy ciąg
(-3-2a, 12, 48) jest geometryczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 11. (1 pkt) (Numer zadania: pp-11860)
[ ⇒ Rozwiąż ]
Podpunkt 11.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{5n^2+18n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedź:
a_7=
(wpisz liczbę całkowitą)
Zadanie 12. (1 pkt) (Numer zadania: pp-11861)
[ ⇒ Rozwiąż ]
Podpunkt 12.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=35 oraz
a_{10}=70 . Różnica tego ciągu jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. (1 pkt) (Numer zadania: pp-11862)
[ ⇒ Rozwiąż ]
Podpunkt 13.1 (1 pkt)
Wszystkie wyrazy nieskończonego ciągu geometrycznego
\left(a_n\right) , określonego dla każdej
liczby naturalnej
n\geqslant 1 , są dodatnie i
81a_5=49a_3 .
Wtedy iloraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. (1 pkt) (Numer zadania: pp-11904)
[ ⇒ Rozwiąż ]
Podpunkt 14.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n+5}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. (1 pkt) (Numer zadania: pp-11891)
[ ⇒ Rozwiąż ]
Podpunkt 15.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
2 oraz
a_8=23 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedź:
a_4=
(wpisz liczbę całkowitą)
Zadanie 16. (1 pkt) (Numer zadania: pp-11918)
[ ⇒ Rozwiąż ]
Podpunkt 16.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 54 :
Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
B. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 17. (1 pkt) (Numer zadania: pp-11919)
[ ⇒ Rozwiąż ]
Podpunkt 17.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
4 .
Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedź:
S=
(wpisz liczbę całkowitą)
Zadanie 18. (1 pkt) (Numer zadania: pp-11968)
[ ⇒ Rozwiąż ]
Podpunkt 18.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=4n^2+5n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny
T/N : ciąg (a_n) nie jest monotoniczny
Zadanie 19. (1 pkt) (Numer zadania: pp-11969)
[ ⇒ Rozwiąż ]
Podpunkt 19.1 (1 pkt)
Pięciowyrazowy ciąg
(9,\frac{23}{2},x,y,19)
jest arytmetyczny.
Liczby x i y są równe:
Odpowiedzi:
Zadanie 20. (1 pkt) (Numer zadania: pp-11991)
[ ⇒ Rozwiąż ]
Podpunkt 20.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n+2) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : wyraz a_5 jest mniejszy od wyrazu a_{6}
T/N : wszystkie wyrazy ciągu (a_n) są dodatnie
Zadanie 21. (1 pkt) (Numer zadania: pp-11992)
[ ⇒ Rozwiąż ]
Podpunkt 21.1 (0.2 pkt)
Trzywyrazowy ciąg
(12, 6, 2m+5)
jest geometryczny.
Ten ciąg jest:
Odpowiedzi:
Podpunkt 21.2 (0.8 pkt)
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 22. (1 pkt) (Numer zadania: pp-12013)
[ ⇒ Rozwiąż ]
Podpunkt 22.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=9 oraz
a_3=13 .
Wyraz a_{18} jest równy:
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 23. (1 pkt) (Numer zadania: pp-12014)
[ ⇒ Rozwiąż ]
Podpunkt 23.1 (1 pkt)
Trzywyrazowy ciąg
(-1,2,x+2) jest arytmetyczny.
Trzywyrazowy ciąg
(-1,2,y+5) jest geometryczny.
Liczby x oraz y spełniają warunki:
Odpowiedzi:
A. x > -2 i y > -5
B. x \lessdot -2 i y > -5
C. x > -2 i y\lessdot -5
D. x \lessdot -2 i y\lessdot -5
Zadanie 24. (1 pkt) (Numer zadania: pp-12034)
[ ⇒ Rozwiąż ]
Podpunkt 24.1 (1 pkt)
Ciąg
(x,y,z) jest geometryczny. Iloczyn wszystkich
wyrazów tego ciągu jest równy
8 .
Wynika z tego, że y jest równe:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 25. (1 pkt) (Numer zadania: pp-12035)
[ ⇒ Rozwiąż ]
Podpunkt 25.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
2 , a pierwszy wyraz tego ciągu jest równy
6 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 26. (1 pkt) (Numer zadania: pp-12037)
[ ⇒ Rozwiąż ]
Podpunkt 26.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=6n^2+7 ,
b_n=\frac{9}{n} .
c_n=3^n ,
d_n=4n+5 ,
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. ciąg c_n jest arytmetyczny
B. żaden z ciągów nie jest arytmetyczny
C. ciąg b_n jest arytmetyczny
D. ciąg d_n jest arytmetyczny
Zadanie 27. (1 pkt) (Numer zadania: pp-12038)
[ ⇒ Rozwiąż ]
Podpunkt 27.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-4)^n\cdot n+2 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 28. (1 pkt) (Numer zadania: pp-12064)
[ ⇒ Rozwiąż ]
Podpunkt 28.1 (1 pkt)
Trzywyrzowy ciąg
\left(48,3x,3\right)
jest geometryczny i wszystkie jego wyrazy są dodatnie.
Wynika z tego, że x jest równe:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 29. (1 pkt) (Numer zadania: pp-12065)
[ ⇒ Rozwiąż ]
Podpunkt 29.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=5n^2-52n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 30. (1 pkt) (Numer zadania: pp-12066)
[ ⇒ Rozwiąż ]
Podpunkt 30.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Piąty i siódmy wyraz tego ciągu
spełniają warunek
a_5+a_7=208 .
Wtedy szósty wyraz tego ciągu jest równy:
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 31. (1 pkt) (Numer zadania: pp-12090)
[ ⇒ Rozwiąż ]
Podpunkt 31.1 (1 pkt)
Dane są ciągi
(a_n) ,
(b_n) ,
(c_n) ,
(d_n) , określone dla każdej
liczby naturalnej
n\geqslant 1 wzorami:
a_n=20n+3 ,
b_n=2n^2-3 ,
c_n=n^2+10n-2 ,
d_n=\frac{n+187}{n} .
Liczba 303 jest 15 -tym wyrazem ciągu:
Odpowiedzi:
A. (d_n)
B. (a_n)
C. (b_n)
D. (c_n)
Zadanie 32. (1 pkt) (Numer zadania: pp-12091)
[ ⇒ Rozwiąż ]
Podpunkt 32.1 (1 pkt)
Ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 , jest rosnący i wszystkie jego wyrazy są dodatnie.
Ponadto spełniony jest warunek
a_3=a_1^{5}\cdot a_2 .
Niech
q oznacza iloraz ciągu
(a_n) .
Wtedy:
Odpowiedzi:
A. q=a_1^5
B. a_1=q
C. q^5=a_1
D. a_1=\frac{1}{q^5}
Zadanie 33. (1 pkt) (Numer zadania: pp-12119)
[ ⇒ Rozwiąż ]
Podpunkt 33.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
4 .
Wtedy różnica a_{19}-a_{8} jest równa:
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 34. (1 pkt) (Numer zadania: pp-12120)
[ ⇒ Rozwiąż ]
Podpunkt 34.1 (1 pkt)
Oblicz sumę wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od
801 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 35. (1 pkt) (Numer zadania: pp-12121)
[ ⇒ Rozwiąż ]
Podpunkt 35.1 (1 pkt)
Trójwyrazowy ciąg
\left(7,x,\frac{2527}{4}\right) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 36. (1 pkt) (Numer zadania: pp-12224)
[ ⇒ Rozwiąż ]
Podpunkt 36.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , są dane dwa wyrazy:
a_5=27 i
a_{7}=35 .
Zapisz wzór tego ciągu w postaci a_n=a\cdot n+b .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 37. (1 pkt) (Numer zadania: pp-12225)
[ ⇒ Rozwiąż ]
Podpunkt 37.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Wiadomo, że
a_6=38 .
Suma S=a_{4}+a_{8} jest równa:
Odpowiedź:
S=
(wpisz liczbę całkowitą)
Zadanie 38. (1 pkt) (Numer zadania: pp-12226)
[ ⇒ Rozwiąż ]
Podpunkt 38.1 (1 pkt)
Ciąg geometryczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 oraz
a_{15}=6 i
a_{18}=-48 .
Oceń prawdziwość podanych warunków:
Odpowiedzi:
T/N : a_{22}> a_{21}
T/N : a_{20}> a_{17}
Zadanie 39. (1 pkt) (Numer zadania: pp-12227)
[ ⇒ Rozwiąż ]
Podpunkt 39.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=2n^2+2 dla
n\in\mathbb{N_{+}} .
Wówczas różnica r=a_{16}-a_{15} jest równa:
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 40. (1 pkt) (Numer zadania: pp-12228)
[ ⇒ Rozwiąż ]
Podpunkt 40.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla
n\in\mathbb{N_{+}} , czwarty wyraz jest równy
6 , a różnica tego ciągu jest równa
5 .
Wówczas:
Odpowiedź:
a_1+a_2+a_3+a_4=
(wpisz liczbę całkowitą)
Zadanie 41. (1 pkt) (Numer zadania: pp-12230)
[ ⇒ Rozwiąż ]
Podpunkt 41.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) , określony dla
n\geqslant 1 , w którym są dane:
a_1=5 i
a_2=15 .
Wyznacz n , dla którego a_n=295 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 42. (1 pkt) (Numer zadania: pp-12231)
[ ⇒ Rozwiąż ]
Podpunkt 42.1 (1 pkt)
Dany jest trzywyrazowy ciąg geometryczny
(100,5x,169) o wyrazach
dodatnich.
Wynika z tego, że liczba x jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 43. (1 pkt) (Numer zadania: pp-12232)
[ ⇒ Rozwiąż ]
Podpunkt 43.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla
n\in\mathbb{N_{+}} , dane są dwa wyrazy:
a_1=-8 i
a_{17}=88 .
Suma 17 początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_n=
(wpisz liczbę całkowitą)
Zadanie 44. (1 pkt) (Numer zadania: pp-12233)
[ ⇒ Rozwiąż ]
Podpunkt 44.1 (1 pkt)
Wszystkie wyrazy ciągu geometrycznego
(a_n) , określonego dla
n\in\mathbb{N_{+}} , są liczbami dodatnimi.
Drugi wyraz tego ciągu jest równy
216 , a czwarty wyraz
jest równy
24 .
Oznacza to, że iloraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 45. (1 pkt) (Numer zadania: pp-12234)
[ ⇒ Rozwiąż ]
Podpunkt 45.1 (1 pkt)
Dany jest rosnący ciąg arytmetyczny
(a_n) , określony dla liczb
naturalnych
n\in\mathbb{N_{+}} , o wyrazach dodatnich.
Jeśli
a_{8}+a_{24}=a_{12}+a_{k} , to
k jest równe:
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 46. (1 pkt) (Numer zadania: pp-12235)
[ ⇒ Rozwiąż ]
Podpunkt 46.1 (1 pkt)
W ciągu
(a_n) określonym dla każdej liczby
n\in\mathbb{N_{+}} jest spełniony warunek
a_{n+5}=-2\cdot 3^{n+3} .
Wyraz a_{7} tego ciągu jest równy:
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 47. (1 pkt) (Numer zadania: pp-12236)
[ ⇒ Rozwiąż ]
Podpunkt 47.1 (1 pkt)
W ciągu arytmetycznym
(a_n) określonym dla każdej liczby
n\in\mathbb{N_{+}} , dane są wyrazy:
a_1=8 i
a_8=-48 .
Suma S_8 ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 48. (1 pkt) (Numer zadania: pp-12237)
[ ⇒ Rozwiąż ]
Podpunkt 48.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla
n\in\mathbb{N_{+}} . Wszystkie wyrazy tego ciągu są dodatnie
i spełniony jest warunek
\frac{a_{13}}{a_{11}}=\frac{121}{144} .
Iloraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 49. (1 pkt) (Numer zadania: pp-12238)
[ ⇒ Rozwiąż ]
Podpunkt 49.1 (1 pkt)
Ciąg arytmetyczny
(a_n) , określony dla
n\in\mathbb{N_{+}} , spełnia warunek
a_{11}+a_{12}+a_{13}=\frac{23}{2} .
Wtedy wyraz a_{12} jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 50. (1 pkt) (Numer zadania: pp-12239)
[ ⇒ Rozwiąż ]
Podpunkt 50.1 (1 pkt)
Dla pewnej liczby
x ciąg
(x+2,x+6, 16)
jest geometryczny.
Liczba x jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 51. (1 pkt) (Numer zadania: pp-12240)
[ ⇒ Rozwiąż ]
Podpunkt 51.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) określony wzorem
a_n=12-\frac{5}{6}n dla każdej liczby
n\in\mathbb{N_{+}} .
Różnica r tego ciągu jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 52. (1 pkt) (Numer zadania: pp-12241)
[ ⇒ Rozwiąż ]
Podpunkt 52.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) określony wzorem
a_n=\frac{6+2n}{8} dla każdej liczby
n\in\mathbb{N_{+}} .
Różnica r tego ciągu jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 53. (1 pkt) (Numer zadania: pp-12242)
[ ⇒ Rozwiąż ]
Podpunkt 53.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) określony dla każdej liczby
n\in\mathbb{N_{+}} , w którym
a_1=4\sqrt{7} ,
a_2=20\sqrt{7} ,
a_3=100\sqrt{7} .
Wzór na n -ty wyraz tego ciągu ma postać a\cdot c^n .
Podaj liczbę a .
Odpowiedź:
Zadanie 54. (1 pkt) (Numer zadania: pp-12243)
[ ⇒ Rozwiąż ]
Podpunkt 54.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla
n\in\mathbb{N_{+}} , spełnione są warunki
2a_3=5a_2+a_1+1 oraz
a_1=4 .
Różnica r tego ciągu jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 55. (1 pkt) (Numer zadania: pp-12244)
[ ⇒ Rozwiąż ]
Podpunkt 55.1 (1 pkt)
Dany jest ciąg geometryczny
\left(\frac{1}{8}x,x,8x, 64 \right)
o wyrazach nieujemnych.
Oznacza to, że liczba x jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 56. (1 pkt) (Numer zadania: pp-12245)
[ ⇒ Rozwiąż ]
Podpunkt 56.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla
n\geqslant 1 , dane są:
a_1=7 ,
a_2=14 .
Wyraz numer k tego ciągu jest równy 273 .
Podaj liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 57. (1 pkt) (Numer zadania: pp-12246)
[ ⇒ Rozwiąż ]
Podpunkt 57.1 (1 pkt)
Dany jest trzywyrazowy ciąg geometryczny
(24,6,a+2) .
Wynika z tego, że liczba a jest równa:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 58. (1 pkt) (Numer zadania: pp-12247)
[ ⇒ Rozwiąż ]
Podpunkt 58.1 (1 pkt)
Dla każdej liczby całkowitej dodatniej
n suma
n
początkowych wyrazów ciągu
(a_n) jest określona wzorem
S_n=4n^2+6n .
Wynika z tego, że wyraz a_2 jest równy:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Masz pytania? Napisz: k42195@poczta.fm