Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2021-05-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-12052 ⋅ Poprawnie: 311/325 [95%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 100^{12}\cdot (0,1)^{-10} jest równa:
Odpowiedzi:
A. 10^{32} B. 10^{37}
C. 10^{26} D. 10^{30}
E. 10^{34} F. 10^{44}
Zadanie 2.  1 pkt ⋅ Numer: pp-12053 ⋅ Poprawnie: 117/124 [94%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 81 stanowi 150\% liczby c.

Wtedy liczba c jest równa:

Odpowiedzi:
A. 58 B. 62
C. 52 D. 54
E. 48 F. 51
Zadanie 3.  1 pkt ⋅ Numer: pp-12054 ⋅ Poprawnie: 119/135 [88%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Rozważamy przedziały liczbowe (-\infty, 2) i [-9+\infty).

Ile jest wszystkich liczb całkowitych, które należą jednocześnie do obu rozważanych przedziałów?

Odpowiedzi:
A. 8 B. 11
C. 13 D. 12
E. 10 F. 14
Zadanie 4.  1 pkt ⋅ Numer: pp-12055 ⋅ Poprawnie: 285/287 [99%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba 8\log_{3}{\sqrt{3}}+\log_{3}{3^{3}} jest równa:
Odpowiedzi:
A. 12 B. 7
C. 8 D. 5
E. 3 F. 10
Zadanie 5.  1 pkt ⋅ Numer: pp-12056 ⋅ Poprawnie: 304/359 [84%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Różnica 0,(3)-\frac{15}{11} jest równa:
Odpowiedzi:
A. -\frac{17}{22} B. -\frac{119}{66}
C. -\frac{34}{55} D. -\frac{34}{33}
E. -\frac{68}{99} F. -\frac{17}{11}
Zadanie 6.  1 pkt ⋅ Numer: pp-12057 ⋅ Poprawnie: 34/44 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{7-x}{2}-7x\geqslant 1 jest:
Odpowiedzi:
A. \left[\frac{1}{3},+\infty\right) B. \left(-\infty,\frac{1}{2}\right]
C. \left(-\infty,\frac{1}{3}\right) D. \left(-\infty,\frac{2}{3}\right]
E. \left[\frac{1}{3},+\infty\right) F. \left(-\infty,\frac{2}{9}\right]
Zadanie 7.  1 pkt ⋅ Numer: pp-12058 ⋅ Poprawnie: 90/182 [49%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na poniższym rysunku przedstawiono wykres funkcji f określonej w zbiorze [-6,5].
Funkcja g jest określona wzorem g(x)=f(x)-2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcje f i g mają taki sam zbiór wartości T/N : punkt P=(-3,1) należy do wykresów obu funkcji
T/N : funkcja f ma dwa miejsca zerowe  
Zadanie 8.  1 pkt ⋅ Numer: pp-12059 ⋅ Poprawnie: 121/110 [110%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Na rysunku przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań.

Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku:

Odpowiedzi:
A. \begin{cases}y=x+1\\y=2x-4\end{cases} B. \begin{cases}y=x-1\\y=-2x-4\end{cases}
C. \begin{cases}y=x+1\\y=-2x+4\end{cases} D. \begin{cases}y=x-1\\y=2x+4\end{cases}
E. \begin{cases}y=x-1\\y=-2x+4\end{cases} F. \begin{cases}y=x+1\\y=2x+4\end{cases}
Zadanie 9.  1 pkt ⋅ Numer: pp-12060 ⋅ Poprawnie: 121/126 [96%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Proste o równaniach y=3x-2 oraz y=\frac{m-2}{2}x+2 są równoległe, gdy m jest równe:
Odpowiedzi:
A. 1 B. 4
C. 2 D. 16
E. 12 F. 14
G. 10 H. 8
Zadanie 10.  1 pkt ⋅ Numer: pp-12061 ⋅ Poprawnie: 108/164 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{(x-4)^2}{2x-10} dla każdej liczby rzeczywistej x\neq 1.

Wtedy dla argumentu x=\sqrt{3}+3 wartość funkcji f jest równa:

Odpowiedzi:
A. 1 B. \frac{1}{\sqrt{3}}
C. \frac{1}{\sqrt{3}-6} D. \sqrt{3}-4
E. \frac{1}{\sqrt{3}-5} F. -1
Zadanie 11.  1 pkt ⋅ Numer: pp-12062 ⋅ Poprawnie: 115/164 [70%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Do wykresu funkcji f określonej dla każdej liczby rzeczywistej x wzorem f(x)=3^x-3 należy punkt o współrzędnych:
Odpowiedzi:
A. (1,-2) B. (2,4)
C. (4,80) D. (4,75)
E. (3,27) F. (0,-2)
Zadanie 12.  1 pkt ⋅ Numer: pp-12063 ⋅ Poprawnie: 97/109 [88%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=(x+6)(x+2) jest malejąca w przedziale:
Odpowiedzi:
A. \left\langle -6,+\infty) B. \left\langle -4,+\infty)
C. \left(-\infty, -4\rangle D. \left(-\infty, -2\rangle
Zadanie 13.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 106/117 [90%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trzywyrzowy ciąg \left(12,3x,\frac{4}{3}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. \frac{4}{9} B. \frac{8}{9}
C. \frac{1}{3} D. 2
E. \frac{8}{3} F. \frac{4}{3}
Zadanie 14.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 113/129 [87%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=2n^2-47n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 29 B. 19
C. 20 D. 23
E. 35 F. 33
G. 28 H. 22
Zadanie 15.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 201/214 [93%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci i piąty wyraz tego ciągu spełniają warunek a_3+a_5=84.

Wtedy czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 29 B. 36
C. 38 D. 42
E. 47 F. 46
G. 23 H. 22
Zadanie 16.  1 pkt ⋅ Numer: pp-12067 ⋅ Poprawnie: 46/54 [85%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Dla każdego kąta ostrego \alpha iloczyn \frac{\cos\alpha}{1-\sin^2\alpha}\cdot\frac{1-\cos^2\alpha}{\sin\alpha} jest równy:
Odpowiedzi:
A. \cos\alpha B. \sin\alpha\cdot\cos\alpha
C. \sin^2\alpha D. \cos^2\alpha
E. \tan\alpha F. \frac{1}{\sin\alpha\cdot\cos\alpha}
Zadanie 17.  1 pkt ⋅ Numer: pp-12068 ⋅ Poprawnie: 58/73 [79%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Prosta k jest styczna w punkcie A do okręgu o środku O. Punkt B leży na tym okręgu i miara kąta AOB jest równa 58^{}\circ{. Przez punkty O i B poprowadzono prostą, która przecina prostą k w punkcie C (zobacz rysunek).

Miara kąta BAC jest równa:

Odpowiedzi:
A. 24 B. 29
C. 32 D. 21
E. 37 F. 26
G. 27 H. 33
Zadanie 18.  1 pkt ⋅ Numer: pp-12069 ⋅ Poprawnie: 70/107 [65%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 8 oraz \tan\alpha=\frac{7}{5} (zobacz rysunek).

Pole tego trójkąta jest równe:

Odpowiedzi:
A. \frac{896}{15} B. \frac{448}{5}
C. \frac{112}{5} D. \frac{128}{5}
E. \frac{336}{5} F. \frac{84}{5}
G. \frac{224}{5} H. \frac{224}{3}
Zadanie 19.  1 pkt ⋅ Numer: pp-12070 ⋅ Poprawnie: 66/91 [72%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Pole pewnego trójkąta równobocznego jest równe \frac{\sqrt{3}}{9}.

Obwód tego trójkąta jest równy:

Odpowiedzi:
A. \frac{7}{4} B. 3
C. 2\sqrt{3} D. \frac{9}{5}
E. \frac{16}{7} F. 2
G. \frac{13}{6} H. \frac{12}{5}
Zadanie 20.  1 pkt ⋅ Numer: pp-12071 ⋅ Poprawnie: 62/91 [68%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 W trójkącie ABC bok BC ma długość 25, a wysokość CD tego trójkąta dzieli bok AB na odcinki o długościach |AD|=3 i |BD|=24 (zobacz rysunek).

Długość boku AC jest równa:

Odpowiedzi:
A. \frac{2\sqrt{58}}{3} B. \sqrt{58}
C. \frac{4\sqrt{58}}{3} D. \frac{\sqrt{58}}{3}
E. \frac{3\sqrt{58}}{8} F. 2\sqrt{58}
Zadanie 21.  1 pkt ⋅ Numer: pp-12072 ⋅ Poprawnie: 23/43 [53%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Punkty A, B, C i D leżą na okręgu o środku S. Miary kątów SBC, BCD, CDA są równe odpowiednio: 60^{\circ}, 110^{\circ}, 90^{\circ} (zobacz rysunek).

Wynika z tego, że miara \alpha jest równa:

Odpowiedzi:
A. 36^{\circ} B. 35^{\circ}
C. 38^{\circ} D. 40^{\circ}
E. 42^{\circ} F. 34^{\circ}
G. 37^{\circ} H. 44^{\circ}
Zadanie 22.  1 pkt ⋅ Numer: pp-12073 ⋅ Poprawnie: 34/43 [79%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W równoległoboku ABCD, przedstawionym na rysunku, kąt \alpha ma miarę 67^{\circ}.

Wtedy kąt \beta ma miarę:

Odpowiedzi:
A. 71^{\circ} B. 66^{\circ}
C. 67^{\circ} D. 75^{\circ}
E. 65^{\circ} F. 62^{\circ}
G. 72^{\circ} H. 63^{\circ}
Zadanie 23.  1 pkt ⋅ Numer: pp-12074 ⋅ Poprawnie: 34/43 [79%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 W każdym n-kącie wypukłym (n\geqslant 3) liczba przekątnych jest równa \frac{n(n-3)}{2}.

Wielokątem wypukłym, w którym liczba przekątnych jest o 52 większa od liczby jego boków, jest k-kąt wypukły.
Liczba k jest równa:

Odpowiedzi:
A. 10 B. 13
C. 15 D. 12
E. 17 F. 16
Zadanie 24.  1 pkt ⋅ Numer: pp-12075 ⋅ Poprawnie: 34/52 [65%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Pole figury F_1 złożonej z dwóch stycznych zewnętrznie kół o promieniach 2 i 3 jest równe polu figury F_2 złożonej z dwóch stycznych zewnętrznie kół o promieniach długości r (zobacz rysunek).

Długość promienia r jest równa:

Odpowiedzi:
A. \sqrt{26} B. \frac{2\sqrt{26}}{3}
C. \frac{\sqrt{26}}{2} D. \frac{3\sqrt{26}}{2}
E. \frac{\sqrt{13}}{2} F. \sqrt{13}
Zadanie 25.  1 pkt ⋅ Numer: pp-12076 ⋅ Poprawnie: 38/56 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Punkt A=(-1,-3) jest wierzchołkiem kwadratu ABCD, a punkt M=(-3,1) jest punktem przecięcia się przekątnych tego kwadratu.

Wynika z tego, że pole kwadratu ABCD jest równe:

Odpowiedzi:
A. 45 B. 36
C. 47 D. 42
E. 40 F. 35
Zadanie 26.  1 pkt ⋅ Numer: pp-12077 ⋅ Poprawnie: 51/87 [58%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Z wierzchołków sześcianu ABCDEFGH losujemy jednocześnie dwa różne wierzchołki.

Prawdopodobieństwo tego, że wierzchołki te będą końcami przekątnej sześcianu ABCDEFGH, jest równe:

Odpowiedzi:
A. \frac{2}{7} B. \frac{3}{14}
C. \frac{1}{8} D. \frac{3}{7}
E. \frac{4}{7} F. \frac{1}{7}
Zadanie 27.  1 pkt ⋅ Numer: pp-12078 ⋅ Poprawnie: 130/140 [92%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych, większych od 600, w których każda cyfra należy do zbioru \{1,2,4,5,6,8\} i żadna cyfra się nie powtarza, jest:
Odpowiedzi:
A. -16 B. 40
C. 24 D. 15
E. 39 F. 67
Zadanie 28.  1 pkt ⋅ Numer: pp-12079 ⋅ Poprawnie: 239/225 [106%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Sześciowyrazowy ciąg liczbowy (1,2,2x,x+2,5,6) jest niemalejący. Mediana wyrazów tego ciągu jest równa \frac{89}{32}.

Wynika z tego, że liczba x jest równa:

Odpowiedzi:
A. \frac{37}{32} B. \frac{39}{32}
C. 1 D. \frac{25}{16}
E. \frac{17}{16} F. \frac{19}{16}
Zadanie 29.  2 pkt ⋅ Numer: pp-21121 ⋅ Poprawnie: 41/43 [95%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Rozwiąż nierówność x^2+x\leqslant 20.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów?

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 29.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów?
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 30.  2 pkt ⋅ Numer: pp-21122 ⋅ Poprawnie: 45/57 [78%] Rozwiąż 
Podpunkt 30.1 (2 pkt)
 Funkcja liniowa f przyjmuje wartość -5 dla argumentu 0, a ponadto f(10)-f(8)=8. Wyznacz wzór funkcji f(a)=ax+b.

Podaj wartości współczynników a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21123 ⋅ Poprawnie: 31/43 [72%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{3x-4}{3x-8}=6-x.

Podaj rozwiązanie niecałkowite tego równania.

Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Podpunkt 31.2 (1 pkt)
 Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 32.  2 pkt ⋅ Numer: pp-21124 ⋅ Poprawnie: 33/91 [36%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Trójkąt równoboczny ABC ma pole równe 16\sqrt{3}. Prosta równoległa do boku BC przecina boki AB i AC – odpowiednio – w punktach K i L. Trójkąty ABC i AKL są podobne, a stosunek długości boków tych trójkątów jest równy \frac{5}{2}.

Oblicz długość boku trójkąta AKL.

Odpowiedź:
a_{\trangle AKL}=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21125 ⋅ Poprawnie: 136/176 [77%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Gracz rzuca dwukrotnie symetryczną sześcienną kostką do gry i oblicza sumę liczb wyrzuconych oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma liczb wyrzuconych oczek jest równa 3 lub 4 lub 6.
Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30416 ⋅ Poprawnie: 41/71 [57%] Rozwiąż 
Podpunkt 34.1 (3 pkt)
 Punkty A=(-23,8) i B=(4,-1) są wierzchołkami trójkąta równoramiennego ABC, w którym |AC|=|BC|. Wierzchołek C należy do prostej określonej równaniem x=-3.

Oblicz współrzędne wierzchołka C=(-3, y_C).
Podaj współrzędną y_C.

Odpowiedź:
y_C=
(wpisz dwie liczby całkowite)
Podpunkt 34.2 (2 pkt)
 Oblicz obwód trójkąta ABC.
Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm