Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2021-05-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-12052 ⋅ Poprawnie: 311/325 [95%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 100^{-12}\cdot (0,1)^{5} jest równa:
Odpowiedzi:
A. 10^{-31} B. 10^{-33}
C. 10^{-26} D. 10^{-29}
E. 10^{-25} F. 10^{-19}
Zadanie 2.  1 pkt ⋅ Numer: pp-12053 ⋅ Poprawnie: 117/124 [94%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 117 stanowi 150\% liczby c.

Wtedy liczba c jest równa:

Odpowiedzi:
A. 87 B. 75
C. 78 D. 85
E. 79 F. 68
Zadanie 3.  1 pkt ⋅ Numer: pp-12054 ⋅ Poprawnie: 119/135 [88%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Rozważamy przedziały liczbowe (-\infty, 10) i [-3+\infty).

Ile jest wszystkich liczb całkowitych, które należą jednocześnie do obu rozważanych przedziałów?

Odpowiedzi:
A. 13 B. 15
C. 8 D. 16
E. 17 F. 9
Zadanie 4.  1 pkt ⋅ Numer: pp-12055 ⋅ Poprawnie: 285/287 [99%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba 6\log_{2}{\sqrt{2}}+\log_{2}{2^{9}} jest równa:
Odpowiedzi:
A. 14 B. 8
C. 17 D. 11
E. 16 F. 12
Zadanie 5.  1 pkt ⋅ Numer: pp-12056 ⋅ Poprawnie: 304/359 [84%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Różnica 0,(6)-\frac{13}{44} jest równa:
Odpowiedzi:
A. \frac{7}{33} B. \frac{49}{132}
C. \frac{49}{99} D. \frac{49}{220}
E. \frac{49}{264} F. \frac{49}{66}
Zadanie 6.  1 pkt ⋅ Numer: pp-12057 ⋅ Poprawnie: 34/44 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{12-x}{2}-12x\geqslant 1 jest:
Odpowiedzi:
A. \left(-\infty,\frac{4}{15}\right] B. \left(-\infty,\frac{2}{5}\right)
C. \left(-\infty,\frac{8}{25}\right] D. \left(-\infty,\frac{3}{5}\right]
E. \left[\frac{2}{5},+\infty\right) F. \left[\frac{2}{5},+\infty\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-12058 ⋅ Poprawnie: 90/182 [49%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na poniższym rysunku przedstawiono wykres funkcji f określonej w zbiorze [-6,5].
Funkcja g jest określona wzorem g(x)=f(x)-2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcje f i g mają taki sam zbiór wartości T/N : funkcje f i g mają takie same miejsca zerowe
T/N : f(-2)+g(-2)=-2  
Zadanie 8.  1 pkt ⋅ Numer: pp-12059 ⋅ Poprawnie: 121/110 [110%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Na rysunku przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań.

Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku:

Odpowiedzi:
A. \begin{cases}y=x-1\\y=2x+4\end{cases} B. \begin{cases}y=x-1\\y=-2x-4\end{cases}
C. \begin{cases}y=x+1\\y=2x-4\end{cases} D. \begin{cases}y=x+1\\y=2x+4\end{cases}
E. \begin{cases}y=x-1\\y=-2x+4\end{cases} F. \begin{cases}y=x+1\\y=-2x+4\end{cases}
Zadanie 9.  1 pkt ⋅ Numer: pp-12060 ⋅ Poprawnie: 121/126 [96%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Proste o równaniach y=3x-6 oraz y=\frac{m-8}{2}x+8 są równoległe, gdy m jest równe:
Odpowiedzi:
A. 14 B. 13
C. 7 D. 19
E. 6 F. 16
G. 10 H. 20
Zadanie 10.  1 pkt ⋅ Numer: pp-12061 ⋅ Poprawnie: 108/164 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{(x+2)^2}{2x+2} dla każdej liczby rzeczywistej x\neq 1.

Wtedy dla argumentu x=\sqrt{3}-3 wartość funkcji f jest równa:

Odpowiedzi:
A. -1 B. \frac{1}{\sqrt{3}}
C. \sqrt{3}+2 D. \frac{1}{\sqrt{3}}
E. 1 F. \frac{1}{\sqrt{3}+1}
Zadanie 11.  1 pkt ⋅ Numer: pp-12062 ⋅ Poprawnie: 115/164 [70%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Do wykresu funkcji f określonej dla każdej liczby rzeczywistej x wzorem f(x)=3^x-6 należy punkt o współrzędnych:
Odpowiedzi:
A. (2,2) B. (0,-3)
C. (3,21) D. (2,6)
E. (1,-2) F. (4,72)
Zadanie 12.  1 pkt ⋅ Numer: pp-12063 ⋅ Poprawnie: 97/109 [88%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=-5(x-3)(x-7) jest malejąca w przedziale:
Odpowiedzi:
A. \left\langle 3,+\infty) B. \left\langle 5,+\infty)
C. \left(-\infty, 5\rangle D. \left(-\infty, 7\rangle
Zadanie 13.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 106/117 [90%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trzywyrzowy ciąg \left(54,3x,\frac{2}{3}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. 3 B. \frac{1}{2}
C. 2 D. 4
E. 1 F. \frac{2}{3}
Zadanie 14.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 113/129 [87%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=2n^2-53n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 24 B. 36
C. 21 D. 29
E. 26 F. 37
G. 30 H. 20
Zadanie 15.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 201/214 [93%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci i piąty wyraz tego ciągu spełniają warunek a_3+a_5=168.

Wtedy czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 94 B. 82
C. 85 D. 75
E. 72 F. 84
G. 81 H. 76
Zadanie 16.  1 pkt ⋅ Numer: pp-12067 ⋅ Poprawnie: 46/54 [85%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Dla każdego kąta ostrego \alpha iloczyn \frac{\cos\alpha}{1-\sin^2\alpha}\cdot\frac{1-\cos^2\alpha}{\sin\alpha} jest równy:
Odpowiedzi:
A. \cos^2\alpha B. \cos\alpha
C. \frac{1}{\sin\alpha\cdot\cos\alpha} D. \tan\alpha
E. \sin\alpha\cdot\cos\alpha F. \sin\alpha
Zadanie 17.  1 pkt ⋅ Numer: pp-12068 ⋅ Poprawnie: 58/73 [79%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Prosta k jest styczna w punkcie A do okręgu o środku O. Punkt B leży na tym okręgu i miara kąta AOB jest równa 76^{}\circ{. Przez punkty O i B poprowadzono prostą, która przecina prostą k w punkcie C (zobacz rysunek).

Miara kąta BAC jest równa:

Odpowiedzi:
A. 34 B. 31
C. 47 D. 32
E. 39 F. 38
G. 36 H. 30
Zadanie 18.  1 pkt ⋅ Numer: pp-12069 ⋅ Poprawnie: 70/107 [65%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 8 oraz \tan\alpha=\frac{9}{2} (zobacz rysunek).

Pole tego trójkąta jest równe:

Odpowiedzi:
A. 72 B. 144
C. 54 D. 192
E. 216 F. 240
G. 360 H. 36
Zadanie 19.  1 pkt ⋅ Numer: pp-12070 ⋅ Poprawnie: 66/91 [72%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Pole pewnego trójkąta równobocznego jest równe \frac{25\sqrt{3}}{256}.

Obwód tego trójkąta jest równy:

Odpowiedzi:
A. \frac{49}{24} B. \frac{121}{56}
C. \frac{15}{8} D. \frac{15\sqrt{3}}{16}
E. \frac{13}{8} F. \frac{17}{8}
G. \frac{15\sqrt{3}}{8} H. \frac{23}{8}
Zadanie 20.  1 pkt ⋅ Numer: pp-12071 ⋅ Poprawnie: 62/91 [68%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 W trójkącie ABC bok BC ma długość 37, a wysokość CD tego trójkąta dzieli bok AB na odcinki o długościach |AD|=3 i |BD|=35 (zobacz rysunek).

Długość boku AC jest równa:

Odpowiedzi:
A. 3\sqrt{17} B. \frac{9\sqrt{17}}{8}
C. \frac{153}{4} D. 6\sqrt{17}
E. \sqrt{17} F. \frac{9\sqrt{17}}{4}
Zadanie 21.  1 pkt ⋅ Numer: pp-12072 ⋅ Poprawnie: 23/43 [53%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Punkty A, B, C i D leżą na okręgu o środku S. Miary kątów SBC, BCD, CDA są równe odpowiednio: 60^{\circ}, 100^{\circ}, 90^{\circ} (zobacz rysunek).

Wynika z tego, że miara \alpha jest równa:

Odpowiedzi:
A. 47^{\circ} B. 45^{\circ}
C. 44^{\circ} D. 54^{\circ}
E. 48^{\circ} F. 50^{\circ}
G. 53^{\circ} H. 55^{\circ}
Zadanie 22.  1 pkt ⋅ Numer: pp-12073 ⋅ Poprawnie: 34/43 [79%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W równoległoboku ABCD, przedstawionym na rysunku, kąt \alpha ma miarę 79^{\circ}.

Wtedy kąt \beta ma miarę:

Odpowiedzi:
A. 74^{\circ} B. 79^{\circ}
C. 83^{\circ} D. 75^{\circ}
E. 78^{\circ} F. 81^{\circ}
G. 85^{\circ} H. 87^{\circ}
Zadanie 23.  1 pkt ⋅ Numer: pp-12074 ⋅ Poprawnie: 34/43 [79%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 W każdym n-kącie wypukłym (n\geqslant 3) liczba przekątnych jest równa \frac{n(n-3)}{2}.

Wielokątem wypukłym, w którym liczba przekątnych jest o 228 większa od liczby jego boków, jest k-kąt wypukły.
Liczba k jest równa:

Odpowiedzi:
A. 22 B. 27
C. 23 D. 26
E. 25 F. 24
Zadanie 24.  1 pkt ⋅ Numer: pp-12075 ⋅ Poprawnie: 34/52 [65%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Pole figury F_1 złożonej z dwóch stycznych zewnętrznie kół o promieniach 5 i 12 jest równe polu figury F_2 złożonej z dwóch stycznych zewnętrznie kół o promieniach długości r (zobacz rysunek).

Długość promienia r jest równa:

Odpowiedzi:
A. \frac{13\sqrt{2}}{5} B. 13
C. \frac{13\sqrt{2}}{2} D. \frac{26\sqrt{2}}{3}
E. \frac{26\sqrt{2}}{3} F. \frac{39\sqrt{2}}{2}
Zadanie 25.  1 pkt ⋅ Numer: pp-12076 ⋅ Poprawnie: 38/56 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Punkt A=(-4,2) jest wierzchołkiem kwadratu ABCD, a punkt M=(4,-1) jest punktem przecięcia się przekątnych tego kwadratu.

Wynika z tego, że pole kwadratu ABCD jest równe:

Odpowiedzi:
A. 147 B. 142
C. 146 D. 150
E. 151 F. 152
Zadanie 26.  1 pkt ⋅ Numer: pp-12077 ⋅ Poprawnie: 51/87 [58%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Z wierzchołków sześcianu ABCDEFGH losujemy jednocześnie dwa różne wierzchołki.

Prawdopodobieństwo tego, że wierzchołki te będą końcami przekątnej sześcianu ABCDEFGH, jest równe:

Odpowiedzi:
A. \frac{1}{14} B. \frac{4}{7}
C. \frac{2}{7} D. \frac{1}{7}
E. \frac{3}{14} F. \frac{3}{7}
Zadanie 27.  1 pkt ⋅ Numer: pp-12078 ⋅ Poprawnie: 130/140 [92%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych, większych od 800, w których każda cyfra należy do zbioru \{2,4,5,7,8,9\} i żadna cyfra się nie powtarza, jest:
Odpowiedzi:
A. 69 B. 33
C. 40 D. 89
E. 31 F. 47
Zadanie 28.  1 pkt ⋅ Numer: pp-12079 ⋅ Poprawnie: 239/225 [106%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Sześciowyrazowy ciąg liczbowy (1,2,2x,x+2,5,6) jest niemalejący. Mediana wyrazów tego ciągu jest równa \frac{55}{16}.

Wynika z tego, że liczba x jest równa:

Odpowiedzi:
A. \frac{23}{16} B. 2
C. \frac{31}{16} D. \frac{13}{8}
E. \frac{51}{32} F. \frac{29}{16}
Zadanie 29.  2 pkt ⋅ Numer: pp-21121 ⋅ Poprawnie: 41/43 [95%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Rozwiąż nierówność x^2-6x\leqslant 16.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów?

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 29.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów?
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 30.  2 pkt ⋅ Numer: pp-21122 ⋅ Poprawnie: 45/57 [78%] Rozwiąż 
Podpunkt 30.1 (2 pkt)
 Funkcja liniowa f przyjmuje wartość 5 dla argumentu 0, a ponadto f(8)-f(6)=24. Wyznacz wzór funkcji f(a)=ax+b.

Podaj wartości współczynników a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21123 ⋅ Poprawnie: 31/43 [72%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{3x-16}{3x-20}=10-x.

Podaj rozwiązanie niecałkowite tego równania.

Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Podpunkt 31.2 (1 pkt)
 Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 32.  2 pkt ⋅ Numer: pp-21124 ⋅ Poprawnie: 33/91 [36%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Trójkąt równoboczny ABC ma pole równe \sqrt{3}. Prosta równoległa do boku BC przecina boki AB i AC – odpowiednio – w punktach K i L. Trójkąty ABC i AKL są podobne, a stosunek długości boków tych trójkątów jest równy \frac{13}{2}.

Oblicz długość boku trójkąta AKL.

Odpowiedź:
a_{\trangle AKL}=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21125 ⋅ Poprawnie: 136/176 [77%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Gracz rzuca dwukrotnie symetryczną sześcienną kostką do gry i oblicza sumę liczb wyrzuconych oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma liczb wyrzuconych oczek jest równa 6 lub 7 lub 8.
Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30416 ⋅ Poprawnie: 41/71 [57%] Rozwiąż 
Podpunkt 34.1 (3 pkt)
 Punkty A=(-18,17) i B=(9,8) są wierzchołkami trójkąta równoramiennego ABC, w którym |AC|=|BC|. Wierzchołek C należy do prostej określonej równaniem x=2.

Oblicz współrzędne wierzchołka C=(2, y_C).
Podaj współrzędną y_C.

Odpowiedź:
y_C=
(wpisz dwie liczby całkowite)
Podpunkt 34.2 (2 pkt)
 Oblicz obwód trójkąta ABC.
Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm