Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2021-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-12107 ⋅ Poprawnie: 192/214 [89%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 25^{7}\cdot 5^{-11} jest równa:
Odpowiedzi:
A. 25^{3} B. 5^{3}
C. 5^{4} D. 5^{7}
E. 5^{2} F. 5^{5}
G. 5^{1} H. 5^{0}
Zadanie 2.  1 pkt ⋅ Numer: pp-12109 ⋅ Poprawnie: 176/180 [97%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{10}{8}+3\log_{10}{5}jest równa:
Odpowiedzi:
A. 2 B. \log_{10}{2}
C. \log_{10}{5} D. 4
E. 3 F. \log_{10}{\frac{2}{5}}
Zadanie 3.  1 pkt ⋅ Numer: pp-12108 ⋅ Poprawnie: 57/85 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba x stanowi 20\% liczby dodatniej y. Wynika stąd, że liczba y to p\% liczby x.

Liczba p zaokrąglona do dwóch miejsc po przecinku jest równa:

Odpowiedzi:
A. 504.00 B. 505.00
C. 495.00 D. 490.00
E. 502.00 F. 498.00
G. 500.00 H. 501.00
Zadanie 4.  1 pkt ⋅ Numer: pp-12110 ⋅ Poprawnie: 188/198 [94%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y wyrażenie (5x+7y)^2 jest równe:
Odpowiedzi:
A. 5x^2+70xy+49y B. 5x^2+70xy+7y
C. 25x^2+35xy+49y D. 25x^2+70xy+49y
E. 25x^2+105xy+49y F. 25x^2+140xy+49y
Zadanie 5.  0.2 pkt ⋅ Numer: pp-12112 ⋅ Poprawnie: 32/37 [86%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności 5-\frac{2+2x}{4}\geqslant 6x+1 jest zbiór:
Odpowiedzi:
A. \left(-\infty, \frac{7}{26}\right] B. \left(-\infty, -\frac{14}{13}\right]
C. \left[\frac{7}{13}, +\infty\right) D. \left[\frac{7}{26}, +\infty\right)
E. \left(-\infty, \frac{7}{13}\right] F. \left[\frac{14}{13}, +\infty\right)
Zadanie 6.  1 pkt ⋅ Numer: pp-12113 ⋅ Poprawnie: 7/13 [53%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=2x+6. Wykres funkcji f przesunięto wzdłuż osi Ox o 3 jednostki w lewo (tzn. przeciwnie do zwrotu osi), w wyniku czego otrzymano wykres funkcji g.

Funkcja g jest określona wzorem:

Odpowiedzi:
A. g(x)=2x B. g(x)=-2x
C. g(x)=2x+12 D. g(x)=2x+10
E. g(x)=2x+14 F. g(x)=-2x+3
Zadanie 7.  1 pkt ⋅ Numer: pp-12114 ⋅ Poprawnie: 30/36 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja f określona jest wxorem f(x)=ax+3 dla każdej liczby rzeczywistej x. Miejscem zerowym funkcji f jest liczba \frac{9}{2}.

Wtedy a jest równe:

Odpowiedzi:
A. -\frac{2}{3} B. -1
C. -\frac{1}{6} D. \frac{4}{9}
E. -\frac{1}{3} F. -\frac{4}{3}
G. \frac{4}{3} H. \frac{1}{3}
Zadanie 8.  1 pkt ⋅ Numer: pp-12115 ⋅ Poprawnie: 9/20 [45%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta k przechodzi przez punkt A=(2,6) i jest nachylona do osi Ox pod kątem 45^{\circ}.

Prosta k ma równanie:

Odpowiedzi:
A. y=x+4 B. y=-x+6
C. y=x+3 D. y=x+7
E. y=x+6 F. y=x+2
G. y=x+5 H. y=-x+2
Zadanie 9.  1 pkt ⋅ Numer: pp-12116 ⋅ Poprawnie: 56/77 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=-4(x-3)(x-7). Wierzchołek paraboli, która jest wykresem funkcji f, ma współrzędną x równą:
Odpowiedzi:
A. 12 B. 4
C. 8 D. 3
E. 6 F. 5
G. -2 H. 0
Zadanie 10.  1 pkt ⋅ Numer: pp-12117 ⋅ Poprawnie: 29/50 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=x^2+3 dla każdej liczby rzeczywistej x.

Zbiorem wartości funkcji f jest przedział:

Odpowiedzi:
A. (3,+\infty) B. (-\infty,3]
C. (-\infty,3) D. [3,+\infty)
Zadanie 11.  1 pkt ⋅ Numer: pp-12118 ⋅ Poprawnie: 9/60 [15%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f:

Jeden spośród podanych poniżej wzorów jest wzorem tej funkcji. Wskaż wzór funkcji f.

Odpowiedzi:
A. y=-6x^2-5x-6 B. y=6x^2+7x+12
C. y=6x^2+7x+12 D. y=-6x^2+7x+12
E. y=-6x^2-17x-396 F. y=-6x^2-4x-12
Zadanie 12.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 108/140 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 3.

Wtedy:

Odpowiedzi:
A. a_{17}-a_{8}=18 B. a_{17}-a_{8}=27
C. a_{17}-a_{8}=33 D. a_{17}-a_{8}=39
E. a_{17}-a_{8}=21 F. a_{17}-a_{8}=30
G. a_{17}-a_{8}=24 H. a_{17}-a_{8}=15
Zadanie 13.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 74/137 [54%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 751 jest równa:
Odpowiedzi:
A. \frac{2+375}{2}\cdot 751 B. \frac{2+1502}{2}\cdot 751
C. \frac{2+751}{2}\cdot 751 D. \frac{2+750}{2}\cdot 751
E. \frac{2+750}{2}\cdot 375 F. \frac{2+751}{2}\cdot 375
G. \frac{2+375}{2}\cdot 375 H. \frac{2+1502}{2}\cdot 375
Zadanie 14.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 56/63 [88%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Trójwyrazowy ciąg (5,x,245) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 36 B. 34
C. 38 D. 33
E. 35 F. 31
Zadanie 15.  1 pkt ⋅ Numer: pp-12122 ⋅ Poprawnie: 11/13 [84%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{3}{5}.

Wynika stąd, że \cos\alpha jest równy:

Odpowiedzi:
A. \frac{4}{25} B. \frac{4}{5}
C. \frac{2}{675} D. \frac{2}{5}
E. \frac{16}{25} F. \frac{2}{15}
Zadanie 16.  1 pkt ⋅ Numer: pp-12123 ⋅ Poprawnie: 11/13 [84%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Czworokąt ABCD jest wpisany w okrąg o środku S. Bok AD jest średnicą tego okręgu, a miara kąta BDC jest równa 15^{\circ} (zobacz rysunek).

Wtedy miara stopniowa kąta BSC jest równa:

Odpowiedzi:
A. 34^{\circ} B. 29^{\circ}
C. 32^{\circ} D. 24^{\circ}
E. 35^{\circ} F. 28^{\circ}
G. 30^{\circ} H. 27^{\circ}
Zadanie 17.  1 pkt ⋅ Numer: pp-12124 ⋅ Poprawnie: 6/13 [46%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Okrąg o środku w punkcie O jest wpisany w trójkąt ABC. Wiadomo, że |AB|=|AC| i |\sphericalangle BOC|=94^{\circ} (zobacz rysunek).

Miara stopniowa kąta BAC jest równa:

Odpowiedzi:
A. 8 B. 12
C. 6 D. 10
E. 11 F. 5
Zadanie 18.  1 pkt ⋅ Numer: pp-12125 ⋅ Poprawnie: 8/13 [61%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkty A, B,C i D leżą na okręgu o środku w punkcie O. Cięciwy DB i AC przecinają się w punkcie E, |\sphericalangle ACB|=42^{\circ} oraz |\sphericalangle AEB|=138^{\circ}(zobacz rysunek).

Miara stopniowa kąta DAC jest równa:

Odpowiedzi:
A. 98^{\circ} B. 96^{\circ}
C. 92^{\circ} D. 93^{\circ}
E. 94^{\circ} F. 100^{\circ}
G. 102^{\circ} H. 95^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-12126 ⋅ Poprawnie: 8/13 [61%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Przekątna AC prostokąta ABCD ma długość \frac{315}{2}. Na boku AB obrano punkt E, na przekątnej AC obrano punkt F, a na boku AD obrano punkt G – tak, że czworokąt AEFG jest prostokątem (zobacz rysunek). Ponadto |EF|=27 i |GF|=36.

Obwód prostokąta ABCD jest równy:

Odpowiedzi:
A. \frac{1323}{2} B. \frac{1764}{5}
C. \frac{2205}{4} D. 294
E. 252 F. 441
Zadanie 20.  1 pkt ⋅ Numer: pp-12127 ⋅ Poprawnie: 27/30 [90%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 W układzie współrzędnych dane są dwa punkty A=(6,2) i B=(2,5).

Współczynnik kierunkowy prostej AB jest równy:

Odpowiedzi:
A. -\frac{3}{8} B. \frac{1}{2}
C. \frac{3}{2} D. -\frac{3}{2}
E. -\frac{3}{4} F. \frac{9}{8}
G. -\frac{9}{8} H. -\frac{3}{16}
Zadanie 21.  1 pkt ⋅ Numer: pp-12128 ⋅ Poprawnie: 24/27 [88%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Prosta k ma równanie y=\frac{3}{11}x-1.

Współczynnik kierunkowy prostej prostopadłej do prostej k jest równy:

Odpowiedzi:
A. -\frac{11}{6} B. \frac{11}{6}
C. \frac{22}{3} D. -\frac{22}{3}
E. -\frac{11}{2} F. -\frac{11}{3}
G. \frac{11}{2} H. -\frac{11}{9}
Zadanie 22.  1 pkt ⋅ Numer: pp-12129 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(-4,1) i C=(4,0) są końcami przekątnej kwadratu ABCD.

Promień okręgu opisanego na tym kwadracie jest równy:

Odpowiedzi:
A. \frac{\sqrt{65}}{4} B. \frac{\sqrt{65}}{3}
C. \frac{3\sqrt{65}}{4} D. \frac{\sqrt{130}}{2}
E. \frac{\sqrt{130}}{4} F. \sqrt{65}
G. \frac{\sqrt{65}}{2} H. \frac{\sqrt{130}}{4}
Zadanie 23.  1 pkt ⋅ Numer: pp-12130 ⋅ Poprawnie: 17/27 [62%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 8\sqrt{3} (zobacz rysunek).

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 576+576\sqrt{3} B. 1152+576\sqrt{2}
C. 768+576\sqrt{3} D. 768+1152\sqrt{3}
E. 1152+384\sqrt{3} F. 1152+576\sqrt{3}
G. 1152+1152\sqrt{3} H. 1152+576\sqrt{6}
Zadanie 24.  1 pkt ⋅ Numer: pp-12131 ⋅ Poprawnie: 5/13 [38%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna sześcianu jest równa 15\sqrt{3}.

Wynika stąd, że objętość tego sześcianu jest równa:

Odpowiedzi:
A. 1125\sqrt{3} B. 3375
C. 10125 D. 10125
E. 3375\sqrt{3} F. 1125\sqrt{6}
G. \frac{10125}{2} H. 6750
Zadanie 25.  1 pkt ⋅ Numer: pp-12132 ⋅ Poprawnie: 84/99 [84%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych parzystych jest:
Odpowiedzi:
A. 5\cdot 10^4 B. 9\cdot 5\cdot 10^3
C. 4\cdot 10^5 D. 9\cdot 2\cdot 10^3
Zadanie 26.  1 pkt ⋅ Numer: pp-12133 ⋅ Poprawnie: 32/38 [84%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 W pudełku znajdują się tylko kule białe i kule czerwone. Stosunek liczby kul białych do liczby kul czerwonych jest równy 7:11. Wylosowanie każdej kuli z tego pudełka jest jednakowo prawdopodobne. Losujemy jedną kulę. Niech A oznacza zdarzenie polegające na tym, że wylosowana z pudełka kula będzie biała.

Prawdopodobieństwo zdarzenia A jest równe:

Odpowiedzi:
A. \frac{7}{12} B. \frac{14}{81}
C. \frac{2}{9} D. \frac{7}{24}
E. \frac{7}{18} F. \frac{14}{45}
Zadanie 27.  1 pkt ⋅ Numer: pp-12134 ⋅ Poprawnie: 138/118 [116%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Średnia arytmetyczna pięciu liczb: 5x+6, 6x+7, 7x+8, 8x+9, 9x+10, jest równa 78.

Wtedy x jest równe:

Odpowiedzi:
A. 12 B. 14
C. \frac{41}{4} D. 11
E. 13 F. 8
G. 10 H. 9
Zadanie 28.  2 pkt ⋅ Numer: pp-21132 ⋅ Poprawnie: 10/13 [76%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Rozwiąż nierówność: x^2-21\geqslant -4x.

Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 28.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 29.  2 pkt ⋅ Numer: pp-21133 ⋅ Poprawnie: 7/13 [53%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Rozwiąż równanie: \frac{x+1}{x-14}=2x-14.

Podaj rozwiązanie niecałkowite tego równania.

Odpowiedź:
x_{\notin \mathbb{Z}}=
(wpisz dwie liczby całkowite)
Podpunkt 29.2 (1 pkt)
 Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{\in \mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 30.  2 pkt ⋅ Numer: pp-21134 ⋅ Poprawnie: 19/47 [40%] Rozwiąż 
Podpunkt 30.1 (2 pkt)
 W trójkącie ABC kąt przy wierzchołku A jest prosty, a kąt przy wierzchołku B ma miarę 30^{\circ}. Na boku AB tego trójkąta obrano punkt D tak, że miara kąta CDA jest równa 60^{\circ} oraz |AD|=4 (zobacz rysunek).

Oblicz |BD|.

Odpowiedź:
|BD|=
(wpisz dwie liczby całkowite)
Zadanie 31.  2 pkt ⋅ Numer: pp-21135 ⋅ Poprawnie: 22/77 [28%] Rozwiąż 
Podpunkt 31.1 (2 pkt)
 Dany jest trapez ABCD o podstawach AB i CD. Przekątne AC i BD tego trapezu przecinają się w punkcie S (zobacz rysunek) tak, że |AS|:|SC|=9:2.

Pole trójkąta ABS jest równe 8. Oblicz pole trójkąta CDS.

Odpowiedź:
P_{\triangle CDS}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21136 ⋅ Poprawnie: 39/53 [73%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do sześciu oczek. Niech A oznacza zdarzenie polegające na tym, że iloczyn liczb oczek wyrzuconych w dwóch rzutach jest równy 12.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 33.  5 pkt ⋅ Numer: pp-30418 ⋅ Poprawnie: 7/28 [25%] Rozwiąż 
Podpunkt 33.1 (3 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{19}{4}n+\frac{105}{2} dla każdej liczby naturalnej n\geqslant 1. Trójwyrazowy ciąg (a_{6}, x^2+2, a_{10}), gdzie x jest liczbą rzeczywistą dodatnią, jest geometryczny i rosnący.

Oblicz x.

Odpowiedź:
x= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 33.2 (2 pkt)
 Oblicz iloraz tego ciągu.
Odpowiedź:
q= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm