Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-09-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11936 ⋅ Poprawnie: 336/353 [95%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wartość wyrażenia \left(4+5\cdot 2^{-1}\right)^{-3} jest równa:
Odpowiedzi:
A. \frac{216}{2197} B. \frac{64}{2197}
C. \frac{8}{2197} D. \frac{16}{28561}
E. \frac{1}{2197} F. \frac{4}{169}
Zadanie 2.  1 pkt ⋅ Numer: pp-11937 ⋅ Poprawnie: 360/384 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wartość wyrażenia 5\log_{2}{2}+4-\log_{2}{2^4} jest równa:
Odpowiedzi:
A. \frac{5}{2} B. \frac{15}{4}
C. 5 D. \frac{10}{3}
E. 10 F. \frac{15}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11938 ⋅ Poprawnie: 133/211 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych sześciocyfrowych, które są nieparzyste i podzielne przez 25, jest:
Odpowiedzi:
A. 9\cdot 10\cdot 10\cdot 10\cdot 10\cdot 2 B. 10\cdot 10\cdot 10\cdot 10\cdot 2
C. 9\cdot 10\cdot 10\cdot 2 D. 9\cdot 10\cdot 10\cdot 10\cdot 2
E. 9\cdot 10\cdot 10\cdot 10\cdot 4 F. 9\cdot 10\cdot 10\cdot 10\cdot 5
Zadanie 4.  1 pkt ⋅ Numer: pp-11939 ⋅ Poprawnie: 65/75 [86%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby rzeczywistej x\neq 1 wyrażenie \frac{6}{x-1}-9 jest równe:
Odpowiedzi:
A. \frac{-9x+14}{x-1} B. \frac{-9x+15}{x-1}
C. \frac{-8x+17}{x-1} D. \frac{-9x+16}{x-1}
E. \frac{-10x+15}{x-1} F. \frac{-11x+15}{x-1}
Zadanie 5.  2 pkt ⋅ Numer: pp-11940 ⋅ Poprawnie: 96/250 [38%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y wyrażenie 36-(x^2+2xy+y^2) jest równe:
Odpowiedzi:
T/N : \left[6-(x+y)\right]\cdot\left[6+(x+y)\right] T/N : -\left[(x+y)-6\right]\cdot\left[(x+y)+6\right]
T/N : \left[6+(x+2y)\right]^2 T/N : \left[6-(x+2y)\right]\cdot\left[6+(x-2y)\right]
T/N : \left[6-(x+y)\right]\cdot\left[6+(x-y)\right] T/N : \left[6-(x+2y)\right]^2
Zadanie 6.  3 pkt ⋅ Numer: pp-21083 ⋅ Poprawnie: 51/72 [70%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż równanie 5x^3-25x^2-20x+100=0.

Podaj najmniejsze rozwiązanie rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
 Podaj pozostałe dwa rozwiązania tego równania w kolejności rosnącej.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11941 ⋅ Poprawnie: 71/99 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Równanie \frac{(x^2+8x)(x+6)(x-8)}{x^2-64}=0 ma w zbiorze liczb rzeczywistych dokładnie:
Odpowiedzi:
A. dwa rozwiązania: x=-6, x=-8 B. dwa rozwiązania: x=-6, x=0
C. trzy rozwiązania: x=-6, x=-8, x=8 D. dwa rozwiązania: x=-6, x=8
Zadanie 8.  1 pkt ⋅ Numer: pp-11947 ⋅ Poprawnie: 46/66 [69%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Zbiór (-\infty, 4)\cup(12,+\infty) jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x-9|\lessdot 5 B. |x+8|> 4
C. |x-8|> 4 D. |x+8|\lessdot 4
E. |x-8|\lessdot 4 F. |x+9|\lessdot 3
Zadanie 9.  1 pkt ⋅ Numer: pp-11942 ⋅ Poprawnie: 118/136 [86%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Klient banku wypłacił z bankomatu kwotę 10620 zł. Bankomat wydał kwotę w banknotach o nominałach 20 zł, 50 zł oraz 100 zł. Banknotów 100-złotowych było 7 razy więcej niż 50-złotowych, a banknotów 20-złotowych było o 8 mniej niż 50-złotowych. Niech x oznacza liczbę banknotów 50-złotowych, a y – liczbę banknotów 20-złotowych, które otrzymał ten klient.

Poprawny układ równań prowadzący do obliczenia liczb x i y to:

Odpowiedzi:
A. \begin{cases}50x+100x\cdot 7x+20y=10620\\y=x-8\end{cases} B. \begin{cases}50x+50x\cdot 7+20y=10620\\y=x+8\end{cases}
C. \begin{cases}50x+100\cdot 7x+20y=10620\\x=y-8\end{cases} D. \begin{cases}50x+50x\cdot 7x+20y=10620\\y=x-8\end{cases}
E. \begin{cases}50x+50x\cdot 7+20y=10620\\y=x-8\end{cases} F. \begin{cases}50x+100\cdot 7x+20y=10620\\y=x-8\end{cases}
Zadanie 10.  3 pkt ⋅ Numer: pp-21091 ⋅ Poprawnie: 36/183 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku, w kartezjańskim układzie współrzędnych (x,y), przedstawiono wykres funkcji f określonej dla każdego x\in[-5,4). Na tym wykresie zaznaczono punkty o współrzędnych całkowitych:

Podaj najmniejszą i największą liczbę całkowitą należącą do zbioru wartości funkcji g określonej wzorem g(x)=f(x+4).

Odpowiedzi:
min_{\in ZW_g}= (wpisz liczbę całkowitą)
max_{\in ZW_g}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : funkcja określona wzorem y=f(x)+4 przyjmuje tylko wartości nieujemne T/N : funkcja f ma trzy miejsca zerowe
Podpunkt 10.3 (1 pkt)
 Najmniejsza wartość funkcji f w przedziale [-4, 2] jest równa:
Odpowiedzi:
A. -2 B. -4
C. 0 D. -6
E. -5 F. -1
Zadanie 11.  1 pkt ⋅ Numer: pp-11943 ⋅ Poprawnie: 85/99 [85%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są: punkt A=(4,4) oraz okrąg o równaniu (x-5)^2+(y+5)^2=25.

Odległość punktu A od środka tego okręgu jest równa:

Odpowiedzi:
A. 3\sqrt{22} B. \sqrt{37}
C. \sqrt{82} D. 5\sqrt{2}
E. \sqrt{170} F. \sqrt{122}
Zadanie 12.  3 pkt ⋅ Numer: pp-21092 ⋅ Poprawnie: 22/64 [34%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Basen ma długość 25\ m. W najpłytszym miejscu jego głębokość jest równa \frac{6}{5}\ m. Przekrój podłużny tego basenu przedstawiono poglądowo na rysunku. Głębokość y basenu zmienia się wraz z odległością x od brzegu w sposób opisany funkcją: y=\left{\begin{cases}ax+b;\ 0\leqslant x\leqslant 15\ m\\0,18x-0,9;\ 15\ m\leqslant x\leqslant 25\ m\end{cases}. Odległość x jest mierzona od płytszego brzegu w poziomie na powierzchni wody (zobacz rysunek). Wielkości x i y są wyrażone w metrach.

Największa głębokość basenu jest równa:

Odpowiedzi:
A. \frac{39}{10} B. \frac{21}{5}
C. 4 D. \frac{19}{5}
E. \frac{17}{5} F. \frac{18}{5}
Podpunkt 12.2 (2 pkt)
 Oblicz wartość współczynnika a i wartość współczynnika b.
Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 13.  2 pkt ⋅ Numer: pp-21093 ⋅ Poprawnie: 78/114 [68%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=-(x-3)^2+4.

Wykresem funkcji f jest parabola, której wierzchołek ma współrzędne:

Odpowiedzi:
A. (-4,-3) B. (3,-4)
C. (4,-3) D. (-3,4)
E. (3,4) F. (-3,-4)
Podpunkt 13.2 (1 pkt)
 Zbiorem wartości funkcji f jest przedział:
Odpowiedzi:
A. (-\infty,-4] B. (-\infty,3]
C. (-\infty,-4] D. [4,+\infty)
E. (-\infty,3) F. (-\infty,4]
Zadanie 14.  2 pkt ⋅ Numer: pp-21087 ⋅ Poprawnie: 57/98 [58%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{2^n}{14} dla każdej liczby naturalnej n\geqslant 1. Wyraz numer 58 ciągu (a_n) jest równy:
Odpowiedzi:
A. \frac{2^{60}}{7} B. \frac{2^{57}}{7}
C. \frac{2^{58}}{7} D. \frac{2^{55}}{7}
E. \frac{2^{59}}{7} F. \frac{2^{56}}{7}
Podpunkt 14.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny T/N : ciąg (a_n) jest rosnący
Zadanie 15.  1 pkt ⋅ Numer: pp-11949 ⋅ Poprawnie: 97/110 [88%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y), dana jest prosta k o równaniu y=3x+b, przechodząca przez punkt A=(3,12). Współczynnik b w równaniu tej prostej jest równy:
Odpowiedzi:
A. 10 B. 1
C. 9 D. 6
E. 5 F. -5
G. 3  
Zadanie 16.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 73/179 [40%] Rozwiąż 
Podpunkt 16.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=3n+6 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. niemonotoniczny B. malejący
C. rosnący D. stały
Podpunkt 16.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-5 B. a_{n+1}-a_n=-3
C. a_{n+1}-a_n=2 D. a_{n+1}-a_n=3
Podpunkt 16.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest większy od 36, jest:
Odpowiedzi:
A. 13 B. 7
C. 14 D. 9
E. 11 F. 16
Podpunkt 16.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa 225 dla n równego:
Odpowiedzi:
A. 6 B. 13
C. 8 D. 10
E. 15 F. 12
Zadanie 17.  1 pkt ⋅ Numer: pp-11950 ⋅ Poprawnie: 46/66 [69%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x, y), dane są:
  • prosta k o równaniu y=2x+5,
  • prosta l o równaniu y-9=2x.

Proste k i l:

Odpowiedzi:
A. przecinają się pod kątem 30^{\circ} B. nie mają punktów wspólnych
C. się pokrywają D. są prostopadłe
Zadanie 18.  1 pkt ⋅ Numer: pp-11951 ⋅ Poprawnie: 54/80 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wartość wyrażenia \left(4-\sin{51}^{\circ}\right)\cdot\left(4+\sin{51}^{\circ}\right)-\cos^2{51}^{\circ} jest równa:
Odpowiedzi:
A. 51 B. 17
C. 18 D. -51
E. 16 F. 15
Zadanie 19.  1 pkt ⋅ Numer: pp-11952 ⋅ Poprawnie: 193/204 [94%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 W pojemniku są wyłącznie kule białe i czerwone. Stosunek liczby kul białych do liczby kul czerwonych jest równy 9:3. Z pojemnika losujemy jedną kulę.

Prawdopodobieństwo wylosowania kuli białej jest równe:

Odpowiedzi:
A. \frac{3}{4} B. \frac{1}{6}
C. \frac{1}{4} D. \frac{1}{3}
E. \frac{5}{6} F. \frac{1}{2}
Zadanie 20.  1 pkt ⋅ Numer: pp-11953 ⋅ Poprawnie: 42/72 [58%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Punkty A, B oraz C należą do okręgu o środku w punkcie O. Kąt ABO ma miarę 40^{\circ}, a kąt OBC ma miarę 21^{\circ} (zobacz rysunek).

Miara kąta ACO jest równa:

Odpowiedzi:
A. 30^{\circ} B. 27^{\circ}
C. 32^{\circ} D. 31^{\circ}
E. 25^{\circ} F. 29^{\circ}
Zadanie 21.  2 pkt ⋅ Numer: pp-21085 ⋅ Poprawnie: 51/115 [44%] Rozwiąż 
Podpunkt 21.1 (2 pkt)
 Dany jest trójkąt ABC o bokach długości 19, 20 oraz 21.

Oblicz cosinus największego kąta \alpha tego trójkąta.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 22.  1 pkt ⋅ Numer: pp-11954 ⋅ Poprawnie: 40/65 [61%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W trójkącie ABC bok AB ma długość 1,2, a bok BC ma długość 2,4. Dwusieczna kąta ABC przecina bok AC w punkcie D takim, że |AD|=1,7 (zobacz rysunek).

Odcinek CD ma długość:

Odpowiedzi:
A. \frac{73}{20} B. \frac{16}{5}
C. \frac{33}{10} D. \frac{7}{2}
E. \frac{17}{5} F. \frac{31}{10}
Zadanie 23.  4 pkt ⋅ Numer: pp-30410 ⋅ Poprawnie: 77/121 [63%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 Rodzinna firma stolarska produkuje małe wiatraki ogrodowe. Na podstawie analizy rzeczywistych wpływów i wydatków stwierdzono, że:
  • przychód P (w złotych) z tygodniowej sprzedaży x wiatraków można opisać funkcją P(x)=276x,
  • koszt K (w złotych) produkcji x wiatraków w ciągu jednego tygodnia można określić funkcją K(x)=x^2+30x+268
    Tygodniowo w zakładzie można wyprodukować co najwyżej n=244 wiatraków.

    Oblicz, ile tygodniowo wiatraków należy sprzedać, aby zysk zakładu w ciągu jednego tygodnia był największy.

  • Odpowiedź:
    ile= (wpisz liczbę całkowitą)
    Podpunkt 23.2 (2 pkt)
     Ile wynosi ten największy zysk?
    Odpowiedź:
    ile= (wpisz liczbę całkowitą)
    Zadanie 24.  1 pkt ⋅ Numer: pp-12001 ⋅ Poprawnie: 501/706 [70%] Rozwiąż 
    Podpunkt 24.1 (1 pkt)
     Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę.

    Mediana ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy jest równa:

    Odpowiedzi:
    A. 3,5 B. 3,25
    C. 3 D. 3,75
    E. 4 F. 4,25
    Zadanie 25.  3 pkt ⋅ Numer: pp-21086 ⋅ Poprawnie: 213/244 [87%] Rozwiąż 
    Podpunkt 25.1 (1 pkt)
     Firma \mathcal{F} zatrudnia 160 osób. Rozkład płac brutto pracowników tej firmy przedstawia poniższy diagram, przy czym płaca x dwudziestu osób w tej firmie wynosi x=5720 zł.

    Na osi poziomej podano – wyrażoną w złotych – miesięczną płacę brutto, a na osi pionowej podano liczbę pracowników firmy \mathcal{F}, którzy otrzymują płacę miesięczną w danej wysokości.

    Średnia miesięczna płaca brutto w firmie \mathcal{F} jest równa:

    Odpowiedzi:
    A. 4685.75 B. 4681.75
    C. 4683.75 D. 4703.75
    E. 4687.75 F. 4691.75
    Podpunkt 25.2 (1 pkt)
     Mediana miesięcznej płacy pracowników firmy \mathcal{F} jest równa:
    Odpowiedzi:
    A. 5360 B. 6000
    C. 4800 D. 5720
    E. 5860 F. 4900
    Podpunkt 25.3 (1 pkt)
     Liczba pracowników firmy \mathcal{F}, których miesięczna płaca brutto nie przewyższa kwoty 5900 zł, stanowi (w zaokrągleniu do 1%):
    Odpowiedzi:
    A. 87\% liczby wszystkich pracowników tej firmy B. 91\% liczby wszystkich pracowników tej firmy
    C. 90\% liczby wszystkich pracowników tej firmy D. 89\% liczby wszystkich pracowników tej firmy
    E. 88\% liczby wszystkich pracowników tej firmy F. 93\% liczby wszystkich pracowników tej firmy
    Zadanie 26.  3 pkt ⋅ Numer: pp-21088 ⋅ Poprawnie: 55/106 [51%] Rozwiąż 
    Podpunkt 26.1 (3 pkt)
     Każda z krawędzi podstawy trójkątnej ostrosłupa ma długość 8\sqrt{3}, a każda jego krawędź boczna ma długość 9.

    Oblicz wysokość tego ostrosłupa.

    Odpowiedź:
    H= \cdot
    (wpisz dwie liczby całkowite)


    ☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

    Masz pytania? Napisz: k42195@poczta.fm