Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-12-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11956 ⋅ Poprawnie: 323/348 [92%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \left(3^{8}\cdot 3^{\frac{1}{2}}\right)^{\frac{1}{17}} jest równa:
Odpowiedzi:
A. \sqrt[17]{9} B. \sqrt[34]{3}
C. \sqrt{3} D. \sqrt[17]{3}
Zadanie 2.  1 pkt ⋅ Numer: pp-11957 ⋅ Poprawnie: 117/141 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pan Nowak kupił obligacje Skarbu Państwa za 40000 zł oprocentowane 8\% w skali roku. Odsetki są naliczane i kapitalizowane co rok.

Wartość obligacji kupionych przez pana Nowaka będzie po n=2 latach równa:

Odpowiedzi:
A. 40000\cdot(1.08)^2 B. 40000\cdot(1.64)
C. 40000\cdot(1.08) D. 40000\cdot(1.16)^2
E. 40000\cdot(1.08)^{10} F. 40000\cdot(1.64)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11958 ⋅ Poprawnie: 163/154 [105%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Właściciel sklepu kupił w hurtowni 30 par identycznych spodni po x zł za parę i 80 identycznych marynarek po y zł za sztukę. Za zakupy w hurtowni zapłacił 8400 zł. Po doliczeniu marży 70\% na każdą parę spodni i 80\% na każdą marynarkę ceny detaliczne spodni i marynarki były jednakowe.

Cenę pary spodni x oraz cenę marynarki y, jakie trzeba zapłacić w hurtowni, można obliczyć z układu równań:

Odpowiedzi:
A. \begin{cases}30x+80y=8400\\0,70x=0,80y\end{cases} B. \begin{cases}x+y=8400\\0,70x=0,80y\end{cases}
C. \begin{cases}80x+30y=8400\\1,80x=1,70y\end{cases} D. \begin{cases}80x+30y=8400\\1,70x=1,80y\end{cases}
E. \begin{cases}30x+80y=8400\\1,70x=1,80y\end{cases} F. \begin{cases}x+y=8400\\1,70x=1,80y\end{cases}
Zadanie 4.  1 pkt ⋅ Numer: pp-11959 ⋅ Poprawnie: 38/51 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczby rzeczywiste x i y są dodatnie oraz x\neq y.

Wyrażenie \frac{3}{x+y}+\frac{6}{x-y} można przekształcić do postaci:

Odpowiedzi:
A. \frac{3x+6y}{x-y} B. \frac{+3y}{x^2-y^2}
C. \frac{9x+3y}{x^2-y^2} D. \frac{9x-3y}{x^2-y^2}
E. \frac{9x}{x^2-y^2} F. \frac{9x+3y}{x-y}
Zadanie 5.  1 pkt ⋅ Numer: pp-11960 ⋅ Poprawnie: 123/157 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest:
Odpowiedzi:
A. 9000 B. 2240
C. 3645 D. 2520
E. 3600 F. 3024
Zadanie 6.  1 pkt ⋅ Numer: pp-11961 ⋅ Poprawnie: 111/170 [65%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-\log{x^2}, dla wszystkich liczb rzeczywistych dodatnich x.

Wartość funkcji f dla argumentu x=\sqrt[8]{10^{3}} jest równa:

Odpowiedzi:
A. \frac{16}{3} B. -\frac{16}{3}
C. -\frac{3}{4} D. -\frac{3}{8}
E. -\frac{3}{16} F. \frac{3}{2}
Zadanie 7.  2 pkt ⋅ Numer: pp-21094 ⋅ Poprawnie: 42/101 [41%] Rozwiąż 
Podpunkt 7.1 (0.2 pkt)
 Wierzchołek paraboli, która jest wykresem funkcji f określonej wzorem f(x)=ax^2+bx+c ma współrzędne (-4, -24). Jeden z punktów przecięcia paraboli z osią Ox układu współrzędnych ma współrzędne (-6, 0).

Zbiór wszystkich wartości funkcji f jest przedziałem postaci:

Odpowiedzi:
A. (-\infty, d] B. [d,+\infty)
Podpunkt 7.2 (0.8 pkt)
 Podaj liczbę d.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 7.3 (0.4 pkt)
 Zapisz wzór funkcji f w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.4 (0.6 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11962 ⋅ Poprawnie: 39/58 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest nierówność kwadratowa (2x-8)(x-k)\lessdot 0 z niewiadomą x i parametrem k\in\mathbb{R}. Rozwiązaniem tej nierówności jest przedział (-4,4).

Liczba k jest równa:

Odpowiedzi:
A. -2 B. 1
C. -4 D. 0
E. -3 F. -8
Zadanie 9.  1 pkt ⋅ Numer: pp-11963 ⋅ Poprawnie: 63/93 [67%] Rozwiąż 
Podpunkt 9.1 (0.4 pkt)
 Dana jest funkcja kwadratowa f(x)=ax^2+bx+c, gdzie a, b i c są liczbami rzeczywistymi takimi, że a\neq 0 oraz c\lessdot 0. Funkcja f nie ma miejsc zerowych.

Wykres funkcji f leży w całości:

Odpowiedzi:
A. nad osią Ox B. pod osią Ox
Podpunkt 9.2 (0.6 pkt)
 Powyższa odpowiedź jest poprawna, ponieważ:
Odpowiedzi:
A. a\lessdot 0 i b^2-4ac=0 B. a\lessdot 0 i b\lessdot 0
C. a > 0 i b^2-4ac\lessdot 0 D. a\lessdot 0 i b^2-4ac\lessdot 0
Zadanie 10.  1 pkt ⋅ Numer: pp-11964 ⋅ Poprawnie: 105/116 [90%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest układ równań \begin{cases}y=-x+1\\y=x+1\end{cases}.

Na którym z rysunków przedstawiona jest interpretacja geometryczna tego układu równań?

Odpowiedzi:
A. B.
C. D.
Zadanie 11.  1 pkt ⋅ Numer: pp-11965 ⋅ Poprawnie: 44/50 [88%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dany jest wielomian W(x) określony wzorem W(x)=x^3-4x^2+3x-12 dla każdej liczby rzeczywistej. x.

Wielomian W(x) przy rozkładzie na czynniki ma postać:

Odpowiedzi:
A. W(x)=(x+4)(x^2-3) B. W(x)=(x-4)(x^2+3)
C. W(x)=(x-4)(x^2-3) D. W(x)=(x+4)(x^2+3)
Zadanie 12.  1 pkt ⋅ Numer: pp-11966 ⋅ Poprawnie: 39/52 [75%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Równanie \frac{(5-x)(-3x+3)}{(3x+2)(-3-3x)}=0 ma w zbiorze liczb rzeczywistych dokładnie:
Odpowiedzi:
A. cztery rozwiązania B. dwa rozwiązania
C. trzy rozwiązania D. jedno rozwiązanie
Zadanie 13.  1 pkt ⋅ Numer: pp-11967 ⋅ Poprawnie: 37/51 [72%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dana jest nierówność 7-\frac{x}{2}\geqslant \frac{x}{3}+4.

Największą liczbą całkowitą, która spełnia tę nierówność jest:

Odpowiedzi:
A. -4 B. -3
C. 0 D. 1
E. 3 F. -2
Zadanie 14.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 116/148 [78%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n^2+3n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) jest monotoniczny
Zadanie 15.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 315/273 [115%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Pięciowyrazowy ciąg \left(8,\frac{13}{2},x,y,2\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=\frac{11}{2} oraz y=4 B. x=5 oraz y=\frac{7}{2}
C. x=5 oraz y=\frac{9}{2} D. x=\frac{11}{2} oraz y=\frac{9}{2}
E. x=6 oraz y=4 F. x=6 oraz y=\frac{7}{2}
Zadanie 16.  2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/105 [26%] Rozwiąż 
Podpunkt 16.1 (2 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=-5, a_2=10 a_3=-20.

Wzór ogólny ciągu (a_n) ma postać:

Odpowiedzi:
T/N : a_n=-5\cdot (-2)^{n-1} T/N : a_n=-5\cdot 2^{n}
T/N : a_n=5\cdot (-2)^{n} T/N : a_n=-5\cdot (-2)^{n}
Zadanie 17.  1 pkt ⋅ Numer: pp-11970 ⋅ Poprawnie: 34/50 [68%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Kąt \alpha jest ostry oraz \frac{1}{\sin^2\alpha}+\frac{1}{\cos^2\alpha}=\frac{49}{12}.

Wartość wyrażenia \sin\alpha\cdot\cos\alpha równa:

Odpowiedzi:
A. \frac{2\sqrt{3}}{7} B. \frac{2\sqrt{3}}{21}
C. \frac{3\sqrt{3}}{7} D. \frac{4\sqrt{3}}{21}
E. \frac{\sqrt{3}}{7} F. \frac{3\sqrt{3}}{14}
Zadanie 18.  1 pkt ⋅ Numer: pp-11971 ⋅ Poprawnie: 36/53 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkty A, B, C leżą na okręgu o środku O (zobacz rysunek).
Ponadto|\sphericalangle BOA}|=122^{\circ}.

Miara kąta CAB jest równa:

Odpowiedzi:
A. 50^{\circ} B. 57^{\circ}
C. 54^{\circ} D. 58^{\circ}
E. 49^{\circ} F. 60^{\circ}
Zadanie 19.  4 pkt ⋅ Numer: pp-30411 ⋅ Poprawnie: 41/85 [48%] Rozwiąż 
Podpunkt 19.1 (2 pkt)
 Do wyznaczenia trzech boków pewnego kąpieliska w kształcie prostokąta należy użyć liny o długości 360 m. Czwarty bok tego kąpieliska będzie pokrywał się z brzegiem plaży, który w tym miejscu jest linią prostą (zobacz rysunek).

Wyznacz dłuższy bok tego kąpieliska, którego powierzchnia jest największa możliwa.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (2 pkt)
 Wyznacz krótszy bok tego kąpieliska, którego powierzchnia jest największa możliwa.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 20.  1 pkt ⋅ Numer: pp-11972 ⋅ Poprawnie: 35/50 [70%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Dany jest kwadrat ABCD o boku długości \frac{9}{2}. Z wierzchołka A zakreślono koło o promieniu równym długości boku kwadratu (zobacz rysunek).

Pole powierzchni części wspólnej koła i kwadratu jest równe:

Odpowiedzi:
A. \frac{81\sqrt{2}}{8}\pi B. \frac{9\sqrt{2}}{8}\pi
C. \frac{81}{16}\pi D. \frac{81}{32}\pi
E. \frac{81}{8}\pi F. \frac{81\sqrt{2}}{16}\pi
Zadanie 21.  1 pkt ⋅ Numer: pp-11973 ⋅ Poprawnie: 41/84 [48%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Odcinki AC i BD przecinają się w punkcie O. Ponadto |AD|=2, |OD|=|BC|=7. Kąty ODA i BCO są proste (zobacz rysunek).

Długość odcinka OC jest równa:

Odpowiedzi:
A. \frac{49}{2} B. \frac{98}{5}
C. \frac{245}{12} D. \frac{147}{8}
E. \frac{245}{8} F. \frac{147}{5}
Zadanie 22.  2 pkt ⋅ Numer: pp-21096 ⋅ Poprawnie: 15/93 [16%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 Przekątne równoległoboku ABCD mają długość: |AC|=48, oraz |BD|=36, Wierzchołki E, F𝐹, G oraz H rombu EFGH leżą na bokach równoległoboku ABCD. Boki tego rombu są równoległe do przekątnych równoległoboku (zobacz rysunek).

Oblicz długość boku rombu EFGH.

Oblicz długość odcinka BF.

Odpowiedź:
|EF|=|FG|=
(wpisz dwie liczby całkowite)
Zadanie 23.  2 pkt ⋅ Numer: pp-21097 ⋅ Poprawnie: 29/84 [34%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 Dany jest trójkąt ABC, w którym |AC|=6, |AB|=3 \cos\sphericalangle BAC=\frac{4}{5}.

Oblicz pole trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 24.  2 pkt ⋅ Numer: pp-21098 ⋅ Poprawnie: 46/128 [35%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Dany jest sześciokąt foremny ABCDEF o polu równym 49\sqrt{3} (zobacz rysunek).

Pole trójkąta ABE jest równe:

Odpowiedzi:
A. \frac{196}{9} B. \frac{49\sqrt{3}}{3}
C. \frac{98\sqrt{3}}{9} D. \frac{49\sqrt{3}}{2}
E. \frac{196}{5} F. \frac{49\sqrt{3}}{4}
Podpunkt 24.2 (1 pkt)
 Długość odcinka AE jest równa:
Odpowiedzi:
A. \frac{21\sqrt{2}}{2} B. 84\sqrt{2}
C. \frac{14\sqrt{2}}{3} D. \frac{28}{3}
E. \frac{28\sqrt{6}}{5} F. 7\sqrt{2}
Zadanie 25.  1 pkt ⋅ Numer: pp-11974 ⋅ Poprawnie: 23/52 [44%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Dany jest trapez ABCD, w którym AB\paralel CD oraz przekątne AC i BD przecinają się w punkcie O (zobacz rysunek). Wysokość tego trapezu jest równa 14. Obwód trójkąta ABO jest równy 32, a obwód trójkąta CDO jest równy 8.

Wysokość trójkąta ABO poprowadzona z punktu O jest równa:

Odpowiedzi:
A. \frac{224}{15} B. \frac{56}{5}
C. \sqrt{251} D. \frac{224}{25}
E. \frac{84}{5} F. \frac{42}{5}
Zadanie 26.  1 pkt ⋅ Numer: pp-11975 ⋅ Poprawnie: 41/81 [50%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y), dany jest okrąg \mathcal{O} o równaniu (x-9)^2+(y-9)^2=82.

Okrąg \mathcal{O} przecina oś Oy w punktach o współrzędnych:

Odpowiedzi:
A. (8,0) i (0,9) B. (0,8) i (0,9)
C. (0,9) i (0,10) D. (0,10) i (0,11)
E. (0,-8) i (0,9) F. (0,8) i (0,-9)
Zadanie 27.  1 pkt ⋅ Numer: pp-11976 ⋅ Poprawnie: 57/72 [79%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y), dane są proste k oraz l o równaniach k:y=-3x+3 i l:y=-3x+4.

Proste k oraz l:

Odpowiedzi:
A. są prostopadłe B. są równoległe
C. pokrywają się D. przecinają się w punkcie (1,0)
Zadanie 28.  1 pkt ⋅ Numer: pp-11977 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y) dane są punkty A=(1,2) i B=(2m,m), gdzie m jest liczbą rzeczywistą, oraz prosta k o równaniu y=-\frac{5}{2}x-5.

Prosta przechodząca przez punkty A i B jest równoległa do prostej k, gdy:

Odpowiedzi:
A. m=\frac{3}{8} B. m=\frac{3}{2}
C. m=\frac{1}{2} D. m=\frac{1}{4}
E. m=\frac{9}{8} F. m=\frac{3}{4}
Zadanie 29.  3 pkt ⋅ Numer: pp-21099 ⋅ Poprawnie: 25/93 [26%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Dany jest sześcian ABCDEFGH o krawędzi długości 4. Wierzchołki podstawy ABCD sześcianu połączono odcinkami z punktem W, który jest punktem przecięcia przekątnych podstawy EFGH. Otrzymano w ten sposób ostrosłup prawidłowy czworokątny ABCDW (zobacz rysunek).

Objętość V ostrosłupa ABCDW jest równa:

Odpowiedzi:
A. \frac{64\sqrt{2}}{5} B. \frac{64}{3}
C. 32 D. \frac{128}{3}
E. \frac{128}{9} F. \frac{80}{3}
Podpunkt 29.2 (2 pkt)
 Oblicz cosinus kąta \alpha nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.
Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 30.  1 pkt ⋅ Numer: pp-11978 ⋅ Poprawnie: 38/65 [58%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Dany jest sześcian \mathcal{F} o krawędzi długości a i objętości V oraz sześcian \mathcal{G} o krawędzi długości 5a.

Objętość sześcianu \mathcal{G} jest równa:

Odpowiedzi:
A. \frac{125}{4}V B. \frac{125}{3}V
C. \frac{125}{6}V D. \frac{125}{2}V
E. 125V F. \frac{125}{8}V
Zadanie 31.  1 pkt ⋅ Numer: pp-11979 ⋅ Poprawnie: 107/143 [74%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Na loterii stosunek liczby losów wygrywających do liczby losów przegrywających jest 8:9. Zakupiono jeden los z tej loterii.

Prawdopodobieństwo zdarzenia polegającego na tym, że zakupiony los jest wygrywający jest równe:

Odpowiedzi:
A. \frac{4}{17} B. \frac{8}{17}
C. \frac{10}{17} D. \frac{16}{51}
E. \frac{24}{85} F. \frac{32}{85}
Zadanie 32.  2 pkt ⋅ Numer: pp-21100 ⋅ Poprawnie: 105/202 [51%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 W eksperymencie badano kiełkowanie nasion w pięciu donicach. Na koniec eksperymentu policzono wykiełkowane nasiona w każdej z donic:
  • w 1 donicy – 142 nasiona
  • w 2 donicy – 132 nasion
  • w 3 donicy – 142 nasion
  • w 4 donicy – 132 nasion
  • w 5 donicy – 127 nasion
Odchylenie standardowe liczby wykiełkowanych nasion jest równe \sigma=6.0.

Podaj w kolejności rosnącej numery donic, w których liczba wykiełkowanych nasion mieści się w przedziale \langle \overline{x}-\sigma,\overline{x}+\sigma\rangle.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm