Podgląd arkusza : lo2@cke-2023-05-pp
Zadanie 1. 1 pkt ⋅ Numer: pp-11757 ⋅ Poprawnie: 597/791 [75%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zbiór
A=(-\infty, -9\rangle\cup\langle 6,+\infty)
jest rozwiązaniem nierówności:
Odpowiedzi:
A. \left|x+\frac{3}{2}\right|\leqslant \frac{17}{2}
B. \left|x-\frac{3}{2}\right|\geqslant \frac{15}{2}
C. \left|x+\frac{3}{2}\right|\geqslant \frac{17}{2}
D. \left|x-\frac{3}{2}\right|\leqslant \frac{15}{2}
E. \left|x+\frac{3}{2}\right|\geqslant \frac{15}{2}
F. \left|x+\frac{3}{2}\right|\leqslant \frac{15}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11758 ⋅ Poprawnie: 938/1044 [89%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczba
\sqrt[3]{-\frac{216}{250}}\cdot\sqrt[3]{2}
jest równa:
Odpowiedzi:
A. \frac{36}{5}
B. -\frac{25}{6}
C. -\frac{6}{5}
D. -\frac{36}{5}
E. \frac{6}{5}
F. -\frac{5}{6}
Zadanie 3. 1 pkt ⋅ Numer: pp-11759 ⋅ Poprawnie: 911/963 [94%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczba
\log_{4}{8}+\log_{4}{2}
jest równa:
Odpowiedzi:
A. 1
B. 16
C. 8
D. 2^{\frac{3}{2}}
E. 2
F. 4
Zadanie 4. 1 pkt ⋅ Numer: pp-11760 ⋅ Poprawnie: 856/936 [91%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla każdej liczby rzeczywistej
a wyrażenie
(2a-5)^2-(2a+5)^2
jest równe:
Odpowiedzi:
A. 8a^2-40a
B. -40a
C. 0
D. -21
E. 8a^2+40a
F. 25a
Zadanie 5. 1 pkt ⋅ Numer: pp-11761 ⋅ Poprawnie: 654/816 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zbiorem wszystkich rozwiązań nierówności
-2(x-6)\leqslant\frac{11-x}{3}
jest przedział:
Odpowiedzi:
A. (-\infty,5]
B. (-\infty,-5]
C. [7,+\infty)
D. [-5,+\infty)
E. [-7,+\infty)
F. [5,+\infty)
Zadanie 6. 1 pkt ⋅ Numer: pp-11762 ⋅ Poprawnie: 703/779 [90%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Jednym z rozwiązań równania
\sqrt{5}\cdot (x^2-3)(x-2)=0
jest liczba:
Odpowiedzi:
A. \sqrt{3}
B. -3
C. 3
D. 9
E. -9
F. -2
Zadanie 7. 1 pkt ⋅ Numer: pp-11763 ⋅ Poprawnie: 639/793 [80%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Równanie
\frac{(x+1)(x+8)^2}{(x-8)(x+1)^2}=0 :
Odpowiedzi:
A. nie ma rozwiązania
B. ma dokładnie jedno rozwiązanie równe 1
C. ma dwa rozwiązania równe -1 oraz 8
D. ma dokładnie jedno rozwiązanie równe -8
Zadanie 8. 3 pkt ⋅ Numer: pp-21042 ⋅ Poprawnie: 500/744 [67%]
Rozwiąż
Podpunkt 8.1 (1.5 pkt)
Rozwiąż równanie
3x^3-7x^2-12x+28=0 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1.5 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11764 ⋅ Poprawnie: 694/869 [79%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Punkt
A=(1,0) należy do obu prostych
k
i
l . Prosta
k przecina oś
Oy
w punkcie o rzędnej
6 , zas prosta
l
przecina oś
Oy w punkcie o rzędnej
2 .
Wskaż układ równań, którego interpretację opisano powyżej:
Odpowiedzi:
A. \begin{cases}y=6x-6\\y=-2x+2\end{cases}
B. \begin{cases}y=-6x+6\\y=-2x+2\end{cases}
C. \begin{cases}y=-6x+6\\y=2x-2\end{cases}
D. \begin{cases}y=6x+6\\y=-2x-2\end{cases}
Zadanie 10. 2 pkt ⋅ Numer: pp-21043 ⋅ Poprawnie: 529/743 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dany jest prostokąt o bokach długości
a i
b ,
gdzie
a>b . Obwód tego prostokąta jest równy
40 . Jeden z boków tego prostokąta jest o
10 krótszy od drugiego.
Oceń, które z podanych układów równań opisują zależności pomiędzy bokami tego prostokąta.
Odpowiedzi:
T/N : \begin{cases}2a+2b=40\\a-b=10\end{cases}
T/N : \begin{cases}2a+b=40\\a=10b\end{cases}
T/N : \begin{cases}2a+2b=40\\b=10a\end{cases}
T/N : \begin{cases}2(a+b)=40\\b=a-10\end{cases}
Zadanie 11. 3 pkt ⋅ Numer: pp-21044 ⋅ Poprawnie: 687/984 [69%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji określonej wzorem
y=f(x) :
Dziedziną tej funkcji jest zbiór:
Odpowiedzi:
A. [-3,5]
B. [-6,5]
C. (-6,5)
D. [-3,5)
Podpunkt 11.2 (1 pkt)
Największa wartość tej funkcji w przedziale
[-6,1]
jest równa:
Odpowiedzi:
Podpunkt 11.3 (1 pkt)
Funkcja
f jest malejąca w zbiorze:
Odpowiedzi:
A. [-3,1]
B. [-6,-3]
C. [3,4]
D. (1,2]
Zadanie 12. 1 pkt ⋅ Numer: pp-11765 ⋅ Poprawnie: 616/905 [68%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykres funkcji liniowej określonej wzorem
f(x)=ax+b ,
przechodzi przez pierwszą, drugą i czwartą ćwiartkę układu współrzędnych.
Wówczas liczby a i b
spełniają warunki:
Odpowiedzi:
A. a > 0 \wedge b \lessdot 0
B. a > 0 \wedge b > 0
C. a\lessdot 0 \wedge b > 0
D. a\lessdot 0 \wedge b \lessdot 0
Zadanie 13. 1 pkt ⋅ Numer: pp-11766 ⋅ Poprawnie: 717/854 [83%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Jednym z miejsc zerowych funkcji kwadratowej
f jest liczba
6 . Pierwsza współrzędna wierzchołka paraboli, będącej
wykresem tej funkcji jest równa
-1 .
Drugim miejscem zerowym funkcji f jest liczba:
Odpowiedzi:
Zadanie 14. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 772/834 [92%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+1) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_7 jest równy:
Odpowiedzi:
A. 2304
B. 1024
C. 2048
D. 512
Zadanie 15. 1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 762/842 [90%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Ciąg liczbowy
(27, 9, a-11) jest ciągiem geometrycznym.
Liczba a jest równa:
Odpowiedzi:
A. 12
B. 16
C. 14
D. 10
E. 15
F. 18
Zadanie 16. 2 pkt ⋅ Numer: pp-21045 ⋅ Poprawnie: 557/941 [59%]
Rozwiąż
Podpunkt 16.1 (2 pkt)
Pan Stanisław spłacił pożyczkę w wysokości
11475 zł
w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o
45 zł.
Oblicz kwotę pierwszej raty.
Odpowiedź:
R_1=
(wpisz liczbę całkowitą)
Zadanie 17. 1 pkt ⋅ Numer: pp-11955 ⋅ Poprawnie: 269/365 [73%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Wierzchołek kąta znajduje się w punkcie
O=(0,0) , a do jego ramion należą
punkty
A=(-6,5) oraz
B=(2,0) .
Tangens kąta AOB jest równy:
Odpowiedzi:
A. -\frac{6}{5}
B. \frac{5\sqrt{61}}{61}
C. -\frac{6\sqrt{61}}{61}
D. -\frac{5}{6}
Zadanie 18. 1 pkt ⋅ Numer: pp-11769 ⋅ Poprawnie: 589/823 [71%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Dla każdego kąta ostrego
\alpha wyrażenie
\sin^4\alpha+\sin^2\alpha\cdot\cos^2\alpha
jest równe:
Odpowiedzi:
A. \sin^2\alpha+1
B. \sin^2\alpha(\sin^2\alpha-\cos^2\alpha)
C. \sin^4\alpha+1
D. \sin^2\alpha
Zadanie 19. 1 pkt ⋅ Numer: pp-11772 ⋅ Poprawnie: 584/830 [70%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
W rombie o boku długości
4\sqrt{2} kąt rozwarty ma miarę
150^{\circ} .
Iloczyn długości przekątnych tego rombu jest równy:
Odpowiedzi:
A. 64\sqrt{2}
B. 64
C. 32
D. 16
Zadanie 20. 1 pkt ⋅ Numer: pp-11770 ⋅ Poprawnie: 655/794 [82%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
Punkty
A ,
B i
C
należą do okręgu o środku w punkcie
O , a kąt
\alpha ma miarę
72^{\circ} :
Miara kąta \beta jest równa:
Odpowiedzi:
A. 16^{\circ}
B. 14^{\circ}
C. 18^{\circ}
D. 22^{\circ}
Zadanie 21. 2 pkt ⋅ Numer: pp-21046 ⋅ Poprawnie: 521/804 [64%]
Rozwiąż
Podpunkt 21.1 (2 pkt)
Trójkaty
T_1 i
T_2 są podobne.
Przyprostokatne trójkąta
T_1 mają długość
8 i
15 . Przeciwprostokątna
trójkąta
T_2 ma długość
85 .
Oblicz pole powierzchni trójkąta T_2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 22. 1 pkt ⋅ Numer: pp-11773 ⋅ Poprawnie: 530/804 [65%]
Rozwiąż
Podpunkt 22.1 (0.5 pkt)
Dane są proste o równaniach:
k:y=\frac{2}{3}x oraz
l:y=-\frac{3}{2}x-65 .
Oceń prawdziwość podanych odpowiedzi:
Odpowiedzi:
T/N : proste k i l nie są prostopadłe
T/N : proste k i l są prostopadłe
Podpunkt 22.2 (0.5 pkt)
Oceń prawdziwość podanych odpowiedzi:
Odpowiedzi:
T/N : proste k i l przecinają się w punkcie (30,20)
T/N : proste k i l przecinają się w punkcie (-30,-20)
Zadanie 23. 1 pkt ⋅ Numer: pp-11774 ⋅ Poprawnie: 704/893 [78%]
Rozwiąż
Podpunkt 23.1 (1 pkt)
Prosta
k określona jest równaniem
k:y=-\frac{1}{3}x-5 .
Prosta
l:y=ax+b jest równoległa do prostej
k
i należy do niej punkt
P=(-15,9) .
Wówczas:
Odpowiedzi:
A. a=-\frac{1}{3} i b=4
B. a=3 i b=-4
C. a=-\frac{1}{3} i b=8
D. a=-\frac{1}{3} i b=-4
Zadanie 24. 1 pkt ⋅ Numer: pp-11775 ⋅ Poprawnie: 580/852 [68%]
Rozwiąż
Podpunkt 24.1 (1 pkt)
Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma
długość
4 . Przekątna tego graniastosłupa jest nachylona do
płaszczyzny jego podstawy pod kątem
\alpha takim, że
\cos\alpha=\sqrt{2} .
Długość przekątnej tego graniastosłupa jest równa:
Odpowiedzi:
A. 8
B. 4
C. 8\sqrt{2}
D. \sqrt{2}
Zadanie 25. 4 pkt ⋅ Numer: pp-30402 ⋅ Poprawnie: 270/824 [32%]
Rozwiąż
Podpunkt 25.1 (2 pkt)
Wysokość ściany bocznej ostrosłupa prawidłowego czworokątnego ma długość
2 i jest nachylona do płaszczyzny podstawy pod kątem
30^{\circ} .
Oblicz objętość tego ostrosłupa.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 25.2 (2 pkt)
Oblicz pole powierzchni tego ostrosłupa.
Odpowiedź:
Zadanie 26. 1 pkt ⋅ Numer: pp-11776 ⋅ Poprawnie: 586/825 [71%]
Rozwiąż
Podpunkt 26.1 (1 pkt)
W pewnym ostrosłupie prawidłowym stosunek liczby
W wszystkich
wierzchołków do liczby
K wszystkich krawędzi jest równy
\frac{5}{8} .
Podstawą tego ostrosłupa jest n -kąt foremny. Liczba
n jest równa:
Odpowiedzi:
A. 8
B. 6
C. 7
D. 3
E. 5
F. 4
Zadanie 27. 1 pkt ⋅ Numer: pp-11777 ⋅ Poprawnie: 875/1010 [86%]
Rozwiąż
Podpunkt 27.1 (1 pkt)
Wszystkich liczb naturalnych
5 -ciocyfrowych, w których zapisie
dziesiętnym występują tylko cyfry
0 ,
2
i
8 (np.
28\ 082 ), jest:
Odpowiedzi:
A. 2\cdot 4^3
B. 3^5
C. 2\cdot 3^4
D. 2\cdot 3^5
Zadanie 28. 2 pkt ⋅ Numer: pp-21047 ⋅ Poprawnie: 304/862 [35%]
Rozwiąż
Podpunkt 28.1 (1 pkt)
Na diagramie poniżej przedstawiono ceny pomidorów w
n=17 wybranych sklepach.
Ilość sklepów : 2 | 5 | 2 | 4 | 4 |
Cena pomidorów: 5.00 | 5.30 | 5.80 | 6.10 | 6.50 |
Podaj medianę ceny pomidorów w tych wybranych sklepach.
Odpowiedź:
M_e=
(liczba zapisana dziesiętnie)
Podpunkt 28.2 (1 pkt)
Podaj średnią cenę kilograma pomidorów w tych wybranych sklepach.
Odpowiedź:
\overline{x}=
(liczba zapisana dziesiętnie)
Zadanie 29. 2 pkt ⋅ Numer: pp-21048 ⋅ Poprawnie: 501/868 [57%]
Rozwiąż
Podpunkt 29.1 (2 pkt)
Ze zbioru ośmiu liczb
\{2, 3, 4, 5, 6, 7, 8, 9\} losujemy
ze zwracaniem kolejno dwa razy po jednej liczbie.
Oblicz prawdopodobieństwo zdarzenia A polegającego na tym,
że iloczyn wylosowanych liczb jest podzielny przez 21 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 30. 3 pkt ⋅ Numer: pp-21049 ⋅ Poprawnie: 409/853 [47%]
Rozwiąż
Podpunkt 30.1 (1 pkt)
Właściciel pewnej apteki przeanalizował dane dotyczące liczby obsługiwanych klientów
z
30 kolejnych dni. Przyjmijmy, że liczbę
L obsługiwanych
klientów
n -tego dnia opisuje funkcja
L(n)=-n^2+32n+257 , gdzie
n
jest liczbą naturalną spełniającą warunki
n\geqslant 1 i
n\leqslant 38 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : W dniu numer n=4 obsłużono k=370 klientów
T/N : Łączna liczba klientów obsłużonych w czasie wszystkich analizowanych dni jest równa L(38)
Podpunkt 30.2 (1 pkt)
Którego dnia analizowanego okresu w aptece obsłużono największą liczbę klientów?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Podpunkt 30.3 (1 pkt)
Ile wówczas obsłużono klientów?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż