Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2023-06-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11778 ⋅ Poprawnie: 476/889 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wszystkich liczb całkowitych dodatnich spełniających nierówność |x+7|\lessdot 13 jest:
Odpowiedzi:
A. 21 B. 6
C. 5 D. 20
Zadanie 2.  1 pkt ⋅ Numer: pp-11779 ⋅ Poprawnie: 1049/1197 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dla każdej dodatniej liczby rzeczywistej x iloczyn \sqrt{x}\cdot \sqrt[3]{x}\cdot \sqrt[7]{x} jest równy:
Odpowiedzi:
A. x B. \sqrt[42]{x^{123}}
C. \sqrt[126]{x^{82}} D. \sqrt[84]{x^{123}}
E. \sqrt[42]{x^{41}} F. \sqrt[84]{x^{41}}
Zadanie 3.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 805/918 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Klient wpłacił do banku 31000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 5\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 2542.00 zł B. 3813.00 zł
C. 2723.57 zł D. 2647.92 zł
E. 3971.88 zł F. 3177.50 zł
Zadanie 4.  1 pkt ⋅ Numer: pp-11781 ⋅ Poprawnie: 1162/1185 [98%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba \log_{2}{\frac{1}{16}}+\log_{2}{2} jest równa:
Odpowiedzi:
A. -12 B. -\frac{1}{3}
C. 3 D. -6
E. 6 F. -3
Zadanie 5.  1 pkt ⋅ Numer: pp-11782 ⋅ Poprawnie: 984/1032 [95%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba (1+\sqrt{12})^2-(1-\sqrt{12})^2 jest równa:
Odpowiedzi:
A. 8\sqrt{3} B. 0
C. 2-4\sqrt{3} D. 2+4\sqrt{3}
E. -24 F. -4\sqrt{3}
Zadanie 6.  1 pkt ⋅ Numer: pp-11783 ⋅ Poprawnie: 781/873 [89%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od 0 i -4 wyrażenie \frac{x^2-x}{(x-4)^2}\cdot\frac{x-4}{x} jest równe:
Odpowiedzi:
A. \frac{x-1}{2} B. \frac{x^2-1}{x-4}
C. \frac{x^2}{(x-4)^2} D. \frac{x-1}{x-4}
Zadanie 7.  2 pkt ⋅ Numer: pp-21050 ⋅ Poprawnie: 356/848 [41%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x(6x-2)\lessdot 6x.

Rozwiązanie zapisz w postaci przedziału lub sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pp-21051 ⋅ Poprawnie: 607/828 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^3+6x^2-3x-18=0.

Podaj rozwiązanie tego równania, które jest liczba całkowitą.

Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj rozwiązanie ujemne, które nie jest liczba całkowitą.
Odpowiedź:
x_{\lessdot 0,\notin\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj rozwiązanie dodatnie, które nie jest liczba całkowitą.
Odpowiedź:
x_{> 0,\notin\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11784 ⋅ Poprawnie: 688/849 [81%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Równanie \frac{(x^2-x)(x-2)}{x^2-4}=0 w zbiorze liczb rzeczywistych ma dokładnie:
Odpowiedzi:
A. jedno rozwiązanie B. dwa rozwiązania
C. trzy rozwiązania D. cztery rozwiązania
Zadanie 10.  1 pkt ⋅ Numer: pp-11785 ⋅ Poprawnie: 659/853 [77%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykresy funkcji liniowych f(x)=(-2m+3)x-3 oraz g(x)=-x nie mają punktów wspólnych dla:
Odpowiedzi:
A. m=3 B. m=1
C. m=0 D. m=6
E. m=4 F. m=2
Zadanie 11.  1 pkt ⋅ Numer: pp-11786 ⋅ Poprawnie: 757/915 [82%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty A=(-5,-2) oraz B=(2,2).

Współczynnik a w równaniu tej prostej jest równy:

Odpowiedzi:
A. \frac{1}{2} B. -\frac{7}{4}
C. \frac{4}{7} D. \frac{2}{7}
E. -2 F. \frac{7}{4}
Zadanie 12.  3 pkt ⋅ Numer: pp-21052 ⋅ Poprawnie: 97/968 [10%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dana jest funkcja y=f(x), której wykres pokazano na rysunku:

Dziedziną funkcji f jest zbiór:

Odpowiedzi:
A. (-3,-1)\cup(1,3) B. [-5,-1]\cup[1,5]
C. (-3,3) D. (-5,-1)\cup(1,5)
E. [-3,-1]\cup[1,3] F. (-5,5)
Podpunkt 12.2 (1 pkt)
 Zbiorem wartości funkcji f jest zbiór:
Odpowiedzi:
A. [-5,-1]\cup[1,5] B. (-3,3)
C. [-3,-1]\cup[1,3] D. (-3,-1)\cup(1,3)
E. (-5,5) F. (-5,-1)\cup(1,5)
Podpunkt 12.3 (1 pkt)
 Zbiór A jest zbiorem wszystkich rozwiązań nierówności f(x)\lessdot -1.

Podaj najmniejszą i największą liczbę całkowitą należącą do zbioru A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11787 ⋅ Poprawnie: 601/838 [71%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=ax^2+bx+1, gdzie a oraz b są pewnymi liczbami rzeczywistymi, takimi, że a\lessdot 0 i b > 0.

Fragment wykresu funkcji f przedstawiono na rysunku:

Odpowiedzi:
A. A B. D
C. C D. B
Zadanie 14.  2 pkt ⋅ Numer: pp-21053 ⋅ Poprawnie: 195/827 [23%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Masa m leku L zażytego przez chorego zmienia się w organizmie zgodnie z zależnością wykładniczą:
m(t)=m_0\cdot(0,6)^{0,25t}, gdzie:

m_0 – masa (wyrażona w mg) przyjętej w chwili t=0 dawki leku,
t – czas (wyrażony w godzinach) liczony od momentu t=0 zażycia leku.

Chory przyjął jednorazowo lek L w dawce 125 mg. Oblicz, ile mg leku L pozostanie w organizmie chorego po 12 godzinach od momentu przyjęcia dawki.

Odpowiedź:
m(t)=
(wpisz dwie liczby całkowite)
Podpunkt 14.2 (1 pkt)
 Liczby m\left(\frac{9}{2}\right), m\left(\frac{17}{2}\right) i m\left(\frac{25}{2}\right) w podanej kolejności tworzą ciąg geometryczny.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 739/893 [82%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-7}{3}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 18 jest równa:

Odpowiedzi:
A. 60 B. 62
C. 59 D. 64
E. 58 F. 63
Zadanie 16.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 887/1043 [85%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Trzywyrazowy ciąg (3,7,a-1) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 17.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 707/893 [79%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=2.75 oraz a_2=-16.50.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{349}{4} B. \frac{339}{4}
C. \frac{345}{4} D. 85
E. \frac{343}{4} F. \frac{341}{4}
Zadanie 18.  1 pkt ⋅ Numer: pp-11791 ⋅ Poprawnie: 648/859 [75%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Dla każdego kąta ostrego \alpha wyrażenie -3\cos\alpha+3\cos\alpha\cdot\sin^2\alpha jest równe:
Odpowiedzi:
A. -3\sin^2\alpha B. 3\cos^2\alpha
C. 3\cos\alpha D. -6-6\sin^2\alpha
E. -3-3\sin^2\alpha F. -3\cos^3\alpha
Zadanie 19.  2 pkt ⋅ Numer: pp-21054 ⋅ Poprawnie: 328/920 [35%] Rozwiąż 
Podpunkt 19.1 (2 pkt)
 Dany jest trójkąt, którego kąty mają miary 30^{\circ}, 45^{\circ} oraz 105^{\circ}. Długości boków tego trójkąta są równe: |AB|=2c, |BC|=3b i |AC|=2a.

Oceń, które z podanych wyrażeń poprawnie określają pole tego trójkąta:

Odpowiedzi:
T/N : 2\sqrt{2}a\cdot c T/N : \frac{3}{2}b\cdot c
T/N : \frac{3}{4}b\cdot c T/N : 4\sqrt{2}a\cdot c
Zadanie 20.  1 pkt ⋅ Numer: pp-11792 ⋅ Poprawnie: 553/922 [59%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Odcinek AB jest średnicą okręgu o środku S. Prosta k jest styczna do tego okręgu w punkcie A. Prosta l przecina ten okrąg w punktach B i C. Proste k i l przecinają się w punkcie D, przy czym a=12 i b=16 (zobacz rysunek).

Odległość punktu A od prostej l jest równa:

Odpowiedzi:
A. 24\sqrt{3} B. 16\sqrt{3}
C. 2\sqrt{3} D. 8\sqrt{3}
E. 1+2\sqrt{3} F. 4\sqrt{3}
Zadanie 21.  1 pkt ⋅ Numer: pp-11794 ⋅ Poprawnie: 350/889 [39%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 W trapezie ABCD o podstawach AB i CD przekątne przecinają się w punkcie E (zobacz rysunek).

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : \triangle ABE \sim \triangle DEC T/N : P_{\triangle ABD}=P_{\triangle ABC}
Zadanie 22.  1 pkt ⋅ Numer: pp-11793 ⋅ Poprawnie: 644/828 [77%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Na łukach AB i CD okręgu są oparte kąty wpisane ADB i DBC, takie, że \alpha=22^{\circ} i \beta=30^{\circ} (zobacz rysunek).
Cięciwy AC i BD przecinają się w punkcie K.

Miara kąta DKC jest równa:

Odpowiedzi:
A. 58^{\circ} B. 46^{\circ}
C. 54^{\circ} D. 50^{\circ}
E. 52^{\circ} F. 60^{\circ}
Zadanie 23.  1 pkt ⋅ Numer: pp-11795 ⋅ Poprawnie: 316/862 [36%] Rozwiąż 
Podpunkt 23.1 (0.5 pkt)
 Pole trójkąta równobocznego T_1 jest równe \frac{(1.5)^2\sqrt{3}}{4}. Pole trójkąta równobocznego T_2 jest równe \frac{(6.0)^2\sqrt{3}}{4}.

Trójkąt T_2 jest podobny do trójkąta T_1 w skali:

Odpowiedzi:
A. \frac{1}{16} B. 4
C. 16 D. \frac{1}{4}
Podpunkt 23.2 (0.5 pkt)
 Oceń, które z podanych zdań poprawnie uzasadniają powyższą odpowiedź:
Odpowiedzi:
T/N : ponieważ pole trójkąta T_2 jest 16 razy większe od pola trójkąta T_1 T/N : ponieważ bok trójkąta T_2 jest o 4.5 dłuższy od boku trójkąta T_1
Zadanie 24.  1 pkt ⋅ Numer: pp-11796 ⋅ Poprawnie: 596/897 [66%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Pole równoległoboku ABCD jest równe 240\sqrt{6}. Bok AD tego równoległoboku ma długość 24, a kąt ABC równoległoboku ma miarę 135^{\circ} (zobacz rysunek).

Długość boku AB jest równa:

Odpowiedzi:
A. 10\sqrt{3} B. 20\sqrt{3}
C. 40\sqrt{3} D. 20\sqrt{6}
E. 10\sqrt{6} F. 60
Zadanie 25.  1 pkt ⋅ Numer: pp-11797 ⋅ Poprawnie: 548/833 [65%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Funkcja liniowaf jest określona wzorem f(x)=-x-3. Funkcja g jest liniowa. W kartezjańskim układzie współrzędnych (x, y) do wykresu funkcji g należy punkt P=(3,-4) i prosta będąca jej wykresem jest prostopadła do wykresu funkcji f.

Wzorem funkcji g jest:

Odpowiedzi:
A. g(x)=x-4 B. g(x)=-x-10
C. g(x)=x-8 D. g(x)=-x-4
E. g(x)=x-7 F. g(x)=x-9
Zadanie 26.  1 pkt ⋅ Numer: pp-11798 ⋅ Poprawnie: 579/876 [66%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) punkty A=(-2,3) oraz C=(0,-1) są przeciwległymi wierzchołkami kwadratu ABCD.

Pole powierzchni kwadratu ABCD jest równe:

Odpowiedzi:
A. 20 B. 4\sqrt{5}
C. 2\sqrt{5} D. 10
E. 2\sqrt{10} F. 10\sqrt{2}
Zadanie 27.  1 pkt ⋅ Numer: pp-11799 ⋅ Poprawnie: 501/832 [60%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są punkty A=(0,5) oraz P=(2,-1). Punkt P dzieli odcinek AB tak, że |AP|:|PB|=1:3.

Punkt B ma współrzędne:

Odpowiedzi:
A. (10,-31) B. (10,-19)
C. (8,-19) D. (8,-31)
E. (8,-13) F. (6,-13)
Zadanie 28.  2 pkt ⋅ Numer: pp-21089 ⋅ Poprawnie: 111/306 [36%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Dany jest ostrosłup, którego podstawą jest kwadrat o boku długości 10. Jedna z krawędzi bocznych tego ostrosłupa ma długość 8 i jest prostopadła do płaszczyzny jego podstawy.

Wyznacz objętość tego ostrosłupa.

Odpowiedź:
V=
(wpisz dwie liczby całkowite)
Podpunkt 28.2 (1 pkt)
 Tangens kąta nachylenia najdłuższej krawędzi bocznej tego ostrosłupa do płaszczyzny jego podstawy jest równy:
Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 29.  1 pkt ⋅ Numer: pp-11801 ⋅ Poprawnie: 538/944 [56%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Dany jest graniastosłup prawidłowy sześciokątny ABCDEFA'B'C'D'E'F', w którym krawędź podstawy ma długość 7. Przekątna AD' tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem D'AD o mierze 30^{\circ} (zobacz rysunek).

Pole powierzchni ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. \frac{196\sqrt{3}}{3} B. \frac{98}{3}
C. \frac{98\sqrt{6}}{3} D. \frac{49\sqrt{6}}{3}
E. \frac{49\sqrt{3}}{3} F. \frac{98\sqrt{3}}{3}
Zadanie 30.  1 pkt ⋅ Numer: pp-11802 ⋅ Poprawnie: 826/1009 [81%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych o sumie cyfr równej 3 jest
Odpowiedzi:
A. 8 B. 4
C. 12 D. 16
E. 5 F. 6
Zadanie 31.  2 pkt ⋅ Numer: pp-21055 ⋅ Poprawnie: 390/940 [41%] Rozwiąż 
Podpunkt 31.1 (2 pkt)
 Ze zbioru kolejnych liczb naturalnych \{1,2,3,4,5,6,7,8\} losujemy kolejno bez zwracania dwa razy po jednej liczbie. Niech A oznacza zdarzenie polegające na tym, że suma wylosowanych liczb jest dzielnikiem liczby 8.

Oblicz \overline{\overline{\Omega}} oraz prawdopodobieństwo zdarzenia A.

Odpowiedzi:
\overline{\overline{\Omega}}=
(wpisz liczbę całkowitą)

P(A)=
(wpisz dwie liczby całkowite)
Zadanie 32.  4 pkt ⋅ Numer: pp-30403 ⋅ Poprawnie: 164/933 [17%] Rozwiąż 
Podpunkt 32.1 (3 pkt)
 Działka ma kształt trapezu. Podstawy AB i CD tego trapezu mają długość |AB|=440 m i |CD|=80 m. Wysokość trapezu jest równa 65 m, a jego kąty DAB i ABC są ostre.

Z działki postanowiono wydzielić plac w kształcie prostokąta z przeznaczeniem na parking. Dwa z wierzchołków tego prostokąta mają leżeć na podstawie AB tego trapezu, a dwa pozostałe – E oraz F – na ramionach AD i BC trapezu (zobacz rysunek).

Wyznacz długości boków prostokąta, dla których powierzchnia wydzielonego placu będzie największa. Wyznacz tę największą powierzchnię.

Wskazówka: Aby powiązać ze sobą wymiary prostokąta, skorzystaj z tego, że pole trapezu ABCD jest sumą pól trapezów ABFE oraz EFCD: P_{ABCD}=P_{ABFE}+P_{EFCD}.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Podpunkt 32.2 (1 pkt)
 Wyznacz tę największą powierzchnię.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm