Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@cke-2023-08-pp

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11804  
Podpunkt 1.1 (1 pkt)
 Dana jest nierówność |x-5| > 2 oraz zbiory zaznaczone na osi liczbowej:

Rozwiązanie tej nierówności pokazano na rysunku:

Odpowiedzi:
A. D B. C
C. A D. B
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11803  
Podpunkt 2.1 (1 pkt)
 Liczba 2\sqrt{75}-\sqrt{48} jest równa:
Odpowiedzi:
A. 7\sqrt{3} B. 3^{\frac{1}{2}}
C. 6\cdot 3^{\frac{1}{2}} D. 12\sqrt{3}
E. 5\sqrt{3} F. 6
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11805  
Podpunkt 3.1 (1 pkt)
 Liczba \log_{9}{1}-\frac{1}{4}\log_{9}{3} jest równa:
Odpowiedzi:
A. \frac{1}{4} B. -\frac{1}{8}
C. -\frac{1}{16} D. 8
E. -1 F. \frac{1}{8}
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11806  
Podpunkt 4.1 (1 pkt)
 Wartość wyrażenia \frac{3^{-1}}{\left(-\frac{1}{9}\right)^{-2}}\cdot 9 jest równa:
Odpowiedzi:
A. \frac{1}{81} B. -9
C. -\frac{1}{81} D. -3
E. 3 F. \frac{1}{27}
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11807  
Podpunkt 5.1 (1 pkt)
 Wartość wyrażenia \left(2-\sqrt{6}\right)^2-\left(\sqrt{6}-2\right)^2 jest równa:
Odpowiedzi:
A. 0 B. 6
C. 2\sqrt{6} D. -2\sqrt{6}
E. 8\sqrt{6} F. 12
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11811  
Podpunkt 6.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od 0 wartość wyrażenia \frac{2}{3x}-x jest równa:
Odpowiedzi:
A. \frac{2+3x}{3x} B. \frac{2-3x}{3x}
C. \frac{2-3x^2}{3x} D. -\frac{2}{3x}
E. \frac{2}{x} F. \frac{2-x}{3x}
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11809  
Podpunkt 7.1 (1 pkt)
 Równanie \frac{(x^2-2x)(x^2+1)}{x^2-4}=0 w zbiorze liczb rzeczywistych ma dokładnie:
Odpowiedzi:
A. jedno rozwiązanie B. cztery rozwiązania
C. trzy rozwiązania D. dwa rozwiązania
Zadanie 8.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-21056  
Podpunkt 8.1 (2 pkt)
 Rozwiąż równanie 6x^3-8x^2-6x+8=0.

Podaj najmniejsze i największe rozwiązanie całkowite tego równania.

Odpowiedzi:
min_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
max_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11808  
Podpunkt 9.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y), punkt (-10,4) jest punktem przecięcia prostych o równaniach:
Odpowiedzi:
A. 3x+2y=-22 i 2x+y=4 B. x+y=-6 i x-2y=6
C. 2x+3y=-8 i -x+y=-14 D. x-y=-14 i -2x+y=24
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11812  
Podpunkt 10.1 (1 pkt)
 Miejscem zerowym funkcji liniowej f jest liczba 2. Wykres tej funkcji zawiera punkt o współrzędnych (-2,-2).

Wzór funkcji f ma postać

Odpowiedzi:
A. f(x)=\frac{1}{2}x-1 B. f(x)=\frac{1}{2}x+0
C. f(x)=x-1 D. f(x)=-\frac{1}{4}x-1
Zadanie 11.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11810  
Podpunkt 11.1 (1 pkt)
 Funkcja f jest określona dla każdej liczby rzeczywistej x wzorem f(x)=\frac{2x-k}{x^2+4} gdzie k jest pewną liczbą rzeczywistą. Ta funkcja spełnia warunek f(1)=2.

Wartość współczynnika k we wzorze tej funkcji jest równa:

Odpowiedzi:
A. -1 B. -7
C. -6 D. -13
E. -12 F. -8
G. -2 H. -9
Zadanie 12.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11813  
Podpunkt 12.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=(x+2)^2-4. Jednym z miejsc zerowych tej funkcji jest liczba -4.

Drugim miejscem zerowym funkcji f jest liczba:

Odpowiedzi:
A. 4 B. 1
C. -1 D. 0
E. -4 F. -3
G. 3 H. 2
Zadanie 13.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-21090  
Podpunkt 13.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) narysowano wykres funkcji y=f(x) (zobacz rysunek).

Funkcja f jest rosnąca w przedziale:

Odpowiedzi:
A. [4,7] B. [5,6]
C. [-4, 4] D. [-1,4]
Podpunkt 13.2 (1 pkt)
 Zapisz w postaci sumy przedziałów zbiór wszystkich argumentów, dla których funkcja f przyjmuje wartości większe od 1.

Uceń, które z podanych liczb należą do tego zbioru:

Odpowiedzi:
T/N : -6 T/N : -4
T/N : 5  
Podpunkt 13.3 (1 pkt)
 Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(-x), dla każdego x\in[-7,-5]\cup[-4,4]\cup[5,7]. Na jednym z rysunków A–D przedstawiono, w kartezjańskim układzie współrzędnych (x,y), wykres funkcji y=g(x).
Wykres funkcji y=g(x) przedstawiono na rysunku:
Odpowiedzi:
A. B B. C
C. D D. A
Zadanie 14.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21057  
Podpunkt 14.1 (2 pkt)
 Oceń, które podanych funkcji mają zbiór wartości będący przedziałem (-\infty, 2]:
Odpowiedzi:
T/N : f(x)=4x^2-4x+1 T/N : f(x)=(x-2)^2
T/N : f(x)=2x^2+2 T/N : f(x)=-(x-2)^2
Zadanie 15.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11815  
Podpunkt 15.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+4}{3}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -\frac{5}{3} B. -2
C. -\frac{7}{3} D. \frac{7}{3}
E. -\frac{11}{3} F. -3
Zadanie 16.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11816  
Podpunkt 16.1 (1 pkt)
 Dany jest ciąg geometryczny \left(a_n\right) określony dla każdej liczby naturalnej n\geqslant 1. Pierwszy wyraz tego ciągu jest równy 4, natomiast iloraz tego ciągu jest równy -\frac{1}{2}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : różnica a_3-a_2 jest równa 3 T/N : a_4=1
Zadanie 17.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21058  
Podpunkt 17.1 (2 pkt)
 Ciąg \left(3x^2-13x+12,x^2-6x+9,-x^2+6x+11\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 18.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11817  
Podpunkt 18.1 (1 pkt)
 Kąt \alpha jest ostry \cos\alpha=\frac{2\sqrt{6}}{7}.

Sinus kąta \alpha jest równy:

Odpowiedzi:
A. \frac{5\sqrt{6}}{12} B. \frac{5}{7}
C. \frac{7}{5} D. \frac{2\sqrt{6}}{5}
Zadanie 19.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11818  
Podpunkt 19.1 (1 pkt)
 Trapez T_1, o polu równym 90 i obwodzie 48, jest podobny do trapezu T_2. Pole powierzchni trapezu T_2 jest równe 10.

Obwód trapezu T_2jest równy:

Odpowiedzi:
A. 12 B. 48
C. 4 D. 16
E. 8 F. 32
Zadanie 20.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11819  
Podpunkt 20.1 (1 pkt)
 Koło ma promień równy 3.

Obwód wycinka tego koła o kącie środkowym 30^{\circ} jest równy:

Odpowiedzi:
A. 6+\frac{1}{2}\pi B. 12+\pi
C. 12+\frac{1}{2} D. 6+\pi
E. 6+\frac{1}{4}\pi F. 3+\frac{1}{4}\pi
Zadanie 21.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11820  
Podpunkt 21.1 (1 pkt)
 W okręgu \mathcal{O} kąt środkowy \beta oraz kąt wpisany \alpha są oparte na tym samym łuku. Kąt \beta ma miarę o 36^{\circ} większą od kąta \alpha.

Miara kąta \beta jest równa:

Odpowiedzi:
A. 72^{\circ} B. 60^{\circ}
C. 84^{\circ} D. 108^{\circ}
E. 36^{\circ} F. 54^{\circ}
Zadanie 22.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11821  
Podpunkt 22.1 (1 pkt)
 W trójkącie ABC długość boku AC jest równa 4, a długość boku BC jest równa 5. Dwusieczna kąta ACB przecina bok AB w punkcie D.

Stosunek |AD|:|DB| jest równy:

Odpowiedzi:
A. \frac{5}{9} B. \frac{4}{9}
C. \frac{16}{25} D. \frac{4}{5}
E. \frac{25}{16} F. \frac{5}{4}
Zadanie 23.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21059  
Podpunkt 23.1 (2 pkt)
 Dany jest trapez równoramienny ABCD, w którym podstawa CD ma długość 7, ramię AD ma długość 4, a kąty BAD oraz ABC mają miarę 30^{\circ} (zobacz rysunek).

Oblicz pole powierzchni tego trapezu.

Odpowiedź:
P= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 24.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11822  
Podpunkt 24.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są prosta k o równaniu y=\frac{3}{4}x-\frac{3}{2} oraz punkt P=(9,-3).

Prosta przechodząca przez punkt P i równoległa do prostej k ma równanie:

Odpowiedzi:
A. y=-\frac{3}{4}x+\frac{15}{4} B. y=\frac{4}{3}x-15
C. y=\frac{3}{4}x-\frac{39}{4} D. y=\frac{3}{4}x+\frac{61}{4}
Zadanie 25.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11823  
Podpunkt 25.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dany jest okrąg \mathcal{O} o środku S=(-4,-3) i promieniu 6.

Okrąg \mathcal{O} jest określony równaniem:

Odpowiedzi:
A. (x+4)^2+(y+3)^2=36 B. (x-4)^2+(y-3)^2=36
C. (x-4)^2+(y-3)^2=6 D. (x-4)^2+(y+3)^2=36
Zadanie 26.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11824  
Podpunkt 26.1 (0.25 pkt)
 W kartezjańskim układzie współrzędnych (x,y) proste o równaniach: y=\sqrt{5}x+2, y=-\sqrt{5}x+2 i y=-\frac{\sqrt{5}}{5}x+6, przecinają się w punktach, które są wierzchołkami trójkąta KLM.

Trójkąt KLM jest:

Odpowiedzi:
A. równoramienny B. prostokątny
Podpunkt 26.2 (0.75 pkt)
 Powyższa odpowiedź jest prawidłowa, ponieważ:
Odpowiedzi:
A. dwie z tych prostych są prostopadłe B.Ox przechodzi przez jeden z wierzchołków tego trójkąta i środek jednego z boków tego trójkąta
C.Oy zawiera dwusieczną tego trójkąta  
Zadanie 27.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11825  
Podpunkt 27.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) punkt A=(4, -4) jest wierzchołkiem równoległoboku ABCD. Punkt S=(-4,-2) jest środkiem symetrii tego równoległoboku.

Długość przekątnej AC równoległoboku ABCD jest równa:

Odpowiedzi:
A. 8\sqrt{17} B. 12\sqrt{17}
C. \frac{8\sqrt{17}}{3} D. 16\sqrt{17}
E. 2\sqrt{17} F. 4\sqrt{17}
Zadanie 28.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21060  
Podpunkt 28.1 (1 pkt)
 Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 3\sqrt{3}.

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 162+40\sqrt{3} B. 162+27\sqrt{3}
C. 162+20\sqrt{3} D. 162+162\sqrt{3}
E. 162+243\sqrt{3} F. 162+81\sqrt{3}
Podpunkt 28.2 (1 pkt)
 Oblicz cosinus kąta nachylenia dłuższej przekątnej tego graniastosłupa do płaszczyzny podstawy tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 29.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11826  
Podpunkt 29.1 (1 pkt)
 Wszystkich liczb naturalnych 5-ciocyfrowych, w których zapisie dziesiętnym cyfry się nie powtarzają jest:
Odpowiedzi:
A. 9\cdot 9\cdot 8\cdot 7\cdot 6 B. 9\cdot 10\cdot 10\cdot 10\cdot 10
C. 10\cdot 10\cdot 10\cdot 10\cdot 10 D. 10\cdot 9\cdot 8\cdot 7\cdot 6
Zadanie 30.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21061  
Podpunkt 30.1 (2 pkt)
 Ze zbioru liczb \{1,2,3,4,5,6\} losujemy bez zwracania kolejno dwa razy po jednej liczbie.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że obie wylosowane liczby są nieparzyste. Podaj \overline{\overline{\Omega}} i P(A).

Odpowiedzi:
\overline{\overline{\Omega}}=
(wpisz liczbę całkowitą)

P(A)=
(dwie liczby całkowite)
Zadanie 31.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11827  
Podpunkt 31.1 (1 pkt)
 Na diagramie poniżej przedstawiono przedstawiono rozkład wynagrodzenia brutto wszystkich stu pracowników pewnej firmy za styczeń 2023 roku:
Ilość osób          :      3 |    8 |    9 |   17 |    8 |   55 |
Wynagrodzenie brutto:   4200 | 4600 | 5300 | 6300 | 7200 | 7400 |

Średnia wynagrodzenia brutto wszystkich pracowników tej firmy za styczeń 2023 roku jest równa:

Odpowiedzi:
A. 6648 B. 6708
C. 6738 D. 6668
E. 6608 F. 6688
Zadanie 32.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30404  
Podpunkt 32.1 (2 pkt)
 Zakład stolarski produkuje krzesła, które sprzedaje po 112 złotych za sztukę. Właściciel, na podstawie analizy rzeczywistych wpływów i wydatków, stwierdził, że:
  • przychód P (w złotych) ze sprzedaży x krzeseł można opisać funkcją P(x)=112x,
  • koszt K (w złotych) produkcji x krzeseł dziennie można opisać funkcją K(x)=3x^2+4x+105.

    Dziennie w zakładzie można wyprodukować co najwyżej 30 krzeseł.

    Oblicz, ile krzeseł powinien dziennie sprzedawać zakład, aby zysk ze sprzedaży krzeseł wyprodukowanych przez ten zakład w ciągu jednego dnia był możliwie największy.

    Wskazówka: przyjmij, że zysk jest różnicą przychodu i kosztów.

  • Odpowiedź:
    x= (wpisz liczbę całkowitą)
    Podpunkt 32.2 (2 pkt)
     Oblicz maksymalny zysk zakładu.
    Odpowiedź:
    ZYSK_{max}= (wpisz liczbę całkowitą)


    Masz pytania? Napisz: k42195@poczta.fm