Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2024-06-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-12002 ⋅ Poprawnie: 625/667 [93%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 2^{-1}\cdot 128^{\frac{3}{7}} jest równa:
Odpowiedzi:
A. \frac{1}{4} B. 8
C. 4 D. \frac{1}{8}
E. 16 F. \frac{1}{16}
Zadanie 2.  1 pkt ⋅ Numer: pp-12003 ⋅ Poprawnie: 540/594 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{3}{\frac{3}{2}}+\log_{3}{\frac{2}{9}} jest równa:
Odpowiedzi:
A. 3 B. -3
C. 3 D. -1
E. 1 F. \frac{1}{3}
Zadanie 3.  1 pkt ⋅ Numer: pp-12004 ⋅ Poprawnie: 74/462 [16%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba (4\sqrt{22}+\sqrt{2})^2 jest równa:
Odpowiedzi:
A. 376 B. 16\sqrt{11}
C. 354+4\sqrt{11} D. 442
E. 354+16\sqrt{11} F. 354+8\sqrt{11}
Zadanie 4.  1 pkt ⋅ Numer: pp-12005 ⋅ Poprawnie: 376/441 [85%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Klient wpłacił do banku na lokatę 3-letnią kwotę w wysokości K_0 zł. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 5\% od kwoty bieżącego kapitału znajdującego się na lokacie – zgodnie z procentem składanym.

Po n=3 latach oszczędzania w tym banku kwota na lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. K_0\cdot(1,05)^3 B. K_0\cdot(1,03)^5
C. K_0\cdot(0,03)^5 D. K_0\cdot(1+0,02)^6
E. K_0\cdot(0,02)^3 F. K_0\cdot(1+0,05)^{6}
Zadanie 5.  1 pkt ⋅ Numer: pp-12006 ⋅ Poprawnie: 250/340 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wszystkich całkowitych dodatnich rozwiązań nierówności \frac{3x-29}{12}\lessdot \frac{1}{3} jest równa:
Odpowiedzi:
A. 7 B. 17
C. 8 D. 10
E. 11 F. 13
Zadanie 6.  1 pkt ⋅ Numer: pp-12008 ⋅ Poprawnie: 328/398 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Układ równań \begin{cases} -2x+4y=-3\\ 4x-8y=6 \end{cases} :
Odpowiedzi:
A. ma dokładnie dwa rozwiązania B. ma nieskończenie wiele rozwiązań
C. nie ma rozwiązań D. ma dokładnie jedno rozwiązanie
Zadanie 7.  1 pkt ⋅ Numer: pp-12009 ⋅ Poprawnie: 282/337 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od: -9, 0 i 9 wartość wyrażenia \frac{3x^4}{x^2-81}\cdot \frac{x+9}{x^{3}} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{3x}{x+9} B. 3x+1
C. \frac{3}{x(x-9)} D. \frac{3x^3+1}{x^2-81}
E. \frac{3x}{x^2-9} F. \frac{3x}{x-9}
Zadanie 8.  1 pkt ⋅ Numer: pp-12010 ⋅ Poprawnie: 248/380 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=ax^3+bx^2+cx+d jest iloczynem wielomianów F(x)=(6-3x)^2 oraz G(x)=-3x+6.

Suma a+b+c+d współczynników wielomianu W(x) jest równa:

Odpowiedź:
a+b+c+d= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21108 ⋅ Poprawnie: 210/438 [47%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku 1., w kartezjańskim układzie współrzędnych (𝑥, 𝑦), przedstawiono wykres funkcji f. Każdy z punktów przecięcia wykresu funkcji f z prostą o równaniu y=2 ma obie współrzędne całkowite.

Zbiorem wszystkich rozwiązań nierówności f(x)\leqslant 2 jest przedział [a,b].

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Wykres funkcji f przesunięto o 3 jednostek w lewo otrzymując w ten sposób wykres funkcji g.

Funkcje f i g są opisane zależnością:

Odpowiedzi:
A. g(x)=f(x+3) B. g(x)=f(x)+3
C. g(x)=f(x-3) D. g(x)=f(x)-3
Podpunkt 9.3 (0.5 pkt)
 Funkcje f i g mają:
Odpowiedzi:
A. takie same miejsca zerowe B. ten sam zbiór wartości
C. taką samą dziedzinę  
Zadanie 10.  1 pkt ⋅ Numer: pp-12011 ⋅ Poprawnie: 214/483 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja y=f(x) jest określona za pomocą tabeli:
------------------------------
| x | -2 | -1 |  0 |  1 |  2 |
------------------------------
| y | -3 |  1 |  0 |  1 | -3 |
------------------------------

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : dziedziną funkcji f jest zbiór [-2,2] T/N : funkcja f ma dwa miejsca zerowe
Zadanie 11.  1 pkt ⋅ Numer: pp-12012 ⋅ Poprawnie: 361/446 [80%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczba 2 jest miejscem zerowym funkcji liniowej f(x)=(7-m)x+4.

Liczba m jest równa:

Odpowiedzi:
A. 17 B. 9
C. 1 D. 20
E. 14 F. 6
G. 10 H. 16
I. 7 J. 15
Zadanie 12.  2 pkt ⋅ Numer: pp-21109 ⋅ Poprawnie: 145/369 [39%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Parabola, która jest wykresem funkcji kwadratowej f, ma z osiami kartezjańskiego układu współrzędnych (x, y) dokładnie dwa punkty wspólne: M=(0,-9) oraz N=(-3,0).
Wyznacz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 13.  2 pkt ⋅ Numer: pp-21110 ⋅ Poprawnie: 245/390 [62%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=(x-1)^2-4.

Fragment wykresu funkcji y=f(x) przedstawiono na rysunku:

Odpowiedzi:
A. D B. A
C. C D. B
Podpunkt 13.2 (1 pkt)
 Oceń prawdziwość poniższych zdań.
Odpowiedzi:
T/N : miejscami zerowymi funkcji f są liczby -1 i 3 T/N : wykres funkcji f przecina oś Oy kartezjańskiego układu współrzędnych (x,y) w punkcie o współrzędnych (0,-4)
Zadanie 14.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 211/356 [59%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=2\cdot(-1)^{n+1}+3 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 46 B. 30
C. 32 D. 20
E. 31 F. 24
G. 44 H. 17
Podpunkt 14.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) jest geometryczny
Zadanie 15.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 429/488 [87%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-4 oraz a_3=-8.

Wyraz a_{18} jest równy:

Odpowiedzi:
A. -48 B. -24
C. -44 D. -34
E. -38 F. -36
G. -30 H. -28
I. -40 J. -46
Zadanie 16.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 278/392 [70%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x-3) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y+5) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x > 3 i y > -5 B. x > 3 i y\lessdot -5
C. x \lessdot 3 i y > -5 D. x \lessdot 3 i y\lessdot -5
Zadanie 17.  1 pkt ⋅ Numer: pp-12015 ⋅ Poprawnie: 257/365 [70%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Liczba \cos^2 37^{\circ}+1 jest równa:
Odpowiedzi:
A. 2-\sin^2 37^{\circ} B. 2+\sin^2 37^{\circ}
C. \sin^2 37^{\circ}-1 D. \sin^2 37^{\circ}
Zadanie 18.  1 pkt ⋅ Numer: pp-12016 ⋅ Poprawnie: 278/372 [74%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Podstawy trapezu prostokątnego ABCD mają długości: |AB|=5 oraz |CD|=2. Wysokość AD tego trapezu ma długość \sqrt{3} (zobacz rysunek).
.

Miara kąta ostrego ABC jest równa:

Odpowiedzi:
A. 30^{\circ} B. 45^{\circ}
C. 15^{\circ} D. 60^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-12017 ⋅ Poprawnie: 196/331 [59%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A, B oraz C leżą na okręgu o środku w punkcie S. Długość łuku AB, na którym jest oparty kąt wpisany ACB, jest równa \frac{1}{3} długości okręgu (zobacz rysunek).

Miara stopniowa kąta ostrego ACB jest równa:

Odpowiedzi:
A. 64^{\circ} B. 60^{\circ}
C. 58^{\circ} D. 63^{\circ}
E. 62^{\circ} F. 76^{\circ}
Zadanie 20.  2 pkt ⋅ Numer: pp-21112 ⋅ Poprawnie: 150/357 [42%] Rozwiąż 
Podpunkt 20.1 (2 pkt)
 Bok kwadratu ABCD ma długość równą 14. Punkt S jest środkiem boku BC tego kwadratu. Na odcinku AS leży punkt P taki, że odcinek BP jest prostopadły do odcinka AS.

Oblicz długość odcinka BP.

Odpowiedź:
|BP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 21.  2 pkt ⋅ Numer: pp-21113 ⋅ Poprawnie: 244/422 [57%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y) dany jest okrąg \mathcal{O} o równaniu (x+4)^2+(y-8)^2=257.

Oceń prawdziwość poniższych stwierdzeń.

Odpowiedzi:
T/N : promień okręgu \mathcal{O} jest równy \sqrt{257} T/N : do okręgu \mathcal{O} należy punkt o współrzędnych (-3,-7)
Podpunkt 21.2 (1 pkt)
 okrąg \mathcal{K} jest obrazem okręgu \mathcal{O} w symetrii środkowej względem początku układu współrzędnych.

okrąg \mathcal{K} jest określony równaniem:

Odpowiedzi:
A. (x+4)^2+(y+8)^2=257. B. (x-4)^2+(y+8)^2=257.
C. (x-4)^2+(y-8)^2=257. D. (x+4)^2-(y-8)^2=\sqrt{257}.
Zadanie 22.  4 pkt ⋅ Numer: pp-30414 ⋅ Poprawnie: 81/334 [24%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są punkty A=(2,-6) oraz B=(10,2). Symetralna odcinka AB przecina oś Ox układu współrzędnych w punkcie P=(x_P, y_P).

Oblicz współrzędne punktu P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 22.2 (2 pkt)
 Oblicz długość odcinka AP.
Odpowiedź:
|AP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 23.  1 pkt ⋅ Numer: pp-12018 ⋅ Poprawnie: 290/360 [80%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Ostrosłup prawidłowy ma k=2035 ścian bocznych.

Liczba wszystkich krawędzi tego ostrosłupa jest równa:

Odpowiedzi:
A. 4071 B. 6105
C. 4070 D. 8144
E. 8140 F. 6109
Zadanie 24.  1 pkt ⋅ Numer: pp-12019 ⋅ Poprawnie: 221/344 [64%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna ściany sześcianu ma długość 6\sqrt{2}. Objętość tego sześcianu jest równa:
Odpowiedzi:
A. 18\sqrt{2} B. 108\sqrt{2}
C. 216\sqrt{2} D. 432
E. 72 F. 216
Zadanie 25.  1 pkt ⋅ Numer: pp-12020 ⋅ Poprawnie: 231/344 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 10. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \alpha takim, że \tan\alpha=4 (zobacz rysunek).

Wysokość tego graniastosłupa jest równa:

Odpowiedzi:
A. 80\sqrt{2} B. 40\sqrt{2}
C. 40 D. 20\sqrt{2}
E. \frac{80\sqrt{2}}{3} F. 160\sqrt{2}
Zadanie 26.  1 pkt ⋅ Numer: pp-12021 ⋅ Poprawnie: 424/548 [77%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę, przy czym m=16.

Średnia arytmetyczna ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy, zaokrąglona do dwóch miejsc po przecinku, jest równa:

Odpowiedzi:
A. 2.88 B. 3.17
C. 2.78 D. 2.68
E. 2.98 F. 3.08
Zadanie 27.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 450/526 [85%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich liczb naturalnych czterocyfrowych nieparzystych, w których zapisie dziesiętnym występują tylko cyfry 1, 3, 9 jest:
Odpowiedzi:
A. 81 B. 63
C. 66 D. 100
E. 94 F. 76
Zadanie 28.  1 pkt ⋅ Numer: pp-12023 ⋅ Poprawnie: 371/453 [81%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 W pudełku znajdują się wyłącznie kule białe i czarne. Kul czarnych jest 28. Z tego pudełka w sposób losowy wyciągamy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kulę czarną, jest równe \frac{7}{11}.

Liczba kul białych w pudełku, przed wyciągnięciem jednej kuli, była równa:

Odpowiedzi:
A. 11 B. 16
C. 18 D. 12
E. 13 F. 14
Zadanie 29.  2 pkt ⋅ Numer: pp-21114 ⋅ Poprawnie: 241/413 [58%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w pierwszym rzucie wypadnie większa liczba oczek niż w drugim rzucie.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21115 ⋅ Poprawnie: 196/335 [58%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Właściciel sklepu z zabawkami przeprowadził lokalne badanie rynkowe dotyczące wpływu zmiany ceny zestawu klocków na liczbę kupujących ten produkt. Z badania wynika, że dzienny przychód P ze sprzedaży zestawów klocków, w zależności od kwoty obniżki ceny zestawu o x zł, wyraża się wzorem P(x)=(98-x)(16+x) gdzie x jest liczbą całkowitą spełniającą warunki x\geqslant 0 i x\leqslant 96.

Dzienny przychód ze sprzedaży zestawów klocków będzie największy, gdy liczba x będzie równa:

Odpowiedzi:
A. 41 B. 35
C. 33 D. 45
E. 37 F. 39
Podpunkt 30.2 (1 pkt)
 Dzienny przychód ze sprzedaży zestawów klocków będzie równy 3245 zł, gdy liczba x będzie równa:
Odpowiedzi:
A. 39 B. 33
C. 35 D. 47
E. 45 F. 37


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm