Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2024-06-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-12002 ⋅ Poprawnie: 626/668 [93%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 2^{-3}\cdot 8^{\frac{7}{3}} jest równa:
Odpowiedzi:
A. \frac{1}{32} B. 64
C. 128 D. 32
E. 16 F. \frac{1}{16}
Zadanie 2.  1 pkt ⋅ Numer: pp-12003 ⋅ Poprawnie: 544/597 [91%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{4}{\frac{4}{2}}+\log_{4}{\frac{2}{16}} jest równa:
Odpowiedzi:
A. -1 B. -\frac{1}{4}
C. 4 D. \frac{1}{4}
E. 1 F. -4
Zadanie 3.  1 pkt ⋅ Numer: pp-12004 ⋅ Poprawnie: 74/462 [16%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba (3\sqrt{6}+\sqrt{2})^2 jest równa:
Odpowiedzi:
A. 56+4\sqrt{3} B. 16\sqrt{3}
C. 56+8\sqrt{3} D. 62
E. 80 F. 56+16\sqrt{3}
Zadanie 4.  1 pkt ⋅ Numer: pp-12005 ⋅ Poprawnie: 376/441 [85%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Klient wpłacił do banku na lokatę 3-letnią kwotę w wysokości K_0 zł. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 6\% od kwoty bieżącego kapitału znajdującego się na lokacie – zgodnie z procentem składanym.

Po n=3 latach oszczędzania w tym banku kwota na lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. K_0\cdot(1+0,03)^6 B. K_0\cdot(1+0,06)^{6}
C. K_0\cdot(1,03)^6 D. K_0\cdot(0,03)^6
E. K_0\cdot(1,06)^3 F. K_0\cdot(0,03)^3
Zadanie 5.  1 pkt ⋅ Numer: pp-12006 ⋅ Poprawnie: 250/340 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wszystkich całkowitych dodatnich rozwiązań nierówności \frac{3x-29}{12}\lessdot \frac{1}{3} jest równa:
Odpowiedzi:
A. 11 B. 10
C. 17 D. 7
E. 9 F. 14
Zadanie 6.  1 pkt ⋅ Numer: pp-12008 ⋅ Poprawnie: 329/398 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Układ równań \begin{cases} -4x-4y=3\\ 16x+16y=-24 \end{cases} :
Odpowiedzi:
A. ma nieskończenie wiele rozwiązań B. ma dokładnie dwa rozwiązania
C. ma dokładnie jedno rozwiązanie D. nie ma rozwiązań
Zadanie 7.  1 pkt ⋅ Numer: pp-12009 ⋅ Poprawnie: 282/337 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od: -2, 0 i 2 wartość wyrażenia \frac{2x^7}{x^2-4}\cdot \frac{x+2}{x^{6}} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{2x}{x+2} B. \frac{2x^3+1}{x^2-4}
C. 2x+1 D. \frac{2x}{x-2}
E. \frac{2}{x(x-2)} F. \frac{2x}{x^2-2}
Zadanie 8.  1 pkt ⋅ Numer: pp-12010 ⋅ Poprawnie: 248/380 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=ax^3+bx^2+cx+d jest iloczynem wielomianów F(x)=(-3+x)^2 oraz G(x)=x-3.

Suma a+b+c+d współczynników wielomianu W(x) jest równa:

Odpowiedź:
a+b+c+d= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21108 ⋅ Poprawnie: 210/438 [47%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku 1., w kartezjańskim układzie współrzędnych (𝑥, 𝑦), przedstawiono wykres funkcji f. Każdy z punktów przecięcia wykresu funkcji f z prostą o równaniu y=2 ma obie współrzędne całkowite.

Zbiorem wszystkich rozwiązań nierówności f(x)\leqslant 2 jest przedział [a,b].

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Wykres funkcji f przesunięto o 6 jednostek w lewo otrzymując w ten sposób wykres funkcji g.

Funkcje f i g są opisane zależnością:

Odpowiedzi:
A. g(x)=f(x+6) B. g(x)=f(x)-6
C. g(x)=f(x)+6 D. g(x)=f(x-6)
Podpunkt 9.3 (0.5 pkt)
 Funkcje f i g mają:
Odpowiedzi:
A. ten sam zbiór wartości B. takie same miejsca zerowe
C. taką samą dziedzinę  
Zadanie 10.  1 pkt ⋅ Numer: pp-12011 ⋅ Poprawnie: 215/484 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja y=f(x) jest określona za pomocą tabeli:
------------------------------
| x | -2 | -1 |  0 |  1 |  2 |
------------------------------
| y |  0 | -1 | -3 | -1 |  0 |
------------------------------

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f ma jedno miejsce zerowe T/N : zbiór wartości funkcji f jest przedziałem liczbowym
Zadanie 11.  1 pkt ⋅ Numer: pp-12012 ⋅ Poprawnie: 361/446 [80%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczba 2 jest miejscem zerowym funkcji liniowej f(x)=(7-m)x+4.

Liczba m jest równa:

Odpowiedzi:
A. 10 B. 5
C. 14 D. 17
E. 4 F. 0
G. 8 H. 9
I. 2 J. 1
Zadanie 12.  2 pkt ⋅ Numer: pp-21109 ⋅ Poprawnie: 145/369 [39%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Parabola, która jest wykresem funkcji kwadratowej f, ma z osiami kartezjańskiego układu współrzędnych (x, y) dokładnie dwa punkty wspólne: M=(0,-36) oraz N=(-6,0).
Wyznacz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 13.  2 pkt ⋅ Numer: pp-21110 ⋅ Poprawnie: 245/390 [62%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=(x-1)^2-4.

Fragment wykresu funkcji y=f(x) przedstawiono na rysunku:

Odpowiedzi:
A. C B. D
C. A D. B
Podpunkt 13.2 (1 pkt)
 Oceń prawdziwość poniższych zdań.
Odpowiedzi:
T/N : wykres funkcji f przecina oś Oy kartezjańskiego układu współrzędnych (x,y) w punkcie o współrzędnych (0,-4) T/N : miejscami zerowymi funkcji f są liczby -1 i 3
Zadanie 14.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 211/356 [59%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=3\cdot(-1)^{n+1}+2 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 3 B. 24
C. 20 D. 21
E. 6 F. 8
G. 2 H. 22
Podpunkt 14.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) jest geometryczny
Zadanie 15.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 430/489 [87%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-4 oraz a_3=-12.

Wyraz a_{8} jest równy:

Odpowiedzi:
A. -48 B. -36
C. -24 D. -52
E. -28 F. -44
G. -32 H. -16
I. -20 J. -40
Zadanie 16.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 278/392 [70%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x+2) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y+5) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x > -2 i y > -5 B. x \lessdot -2 i y > -5
C. x > -2 i y\lessdot -5 D. x \lessdot -2 i y\lessdot -5
Zadanie 17.  1 pkt ⋅ Numer: pp-12015 ⋅ Poprawnie: 257/365 [70%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Liczba \cos^2 31^{\circ}+1 jest równa:
Odpowiedzi:
A. 2 B. \sin^2 31^{\circ}-1
C. 2+\sin^2 31^{\circ} D. 2-\sin^2 31^{\circ}
Zadanie 18.  1 pkt ⋅ Numer: pp-12016 ⋅ Poprawnie: 278/372 [74%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Podstawy trapezu prostokątnego ABCD mają długości: |AB|=7 oraz |CD|=4. Wysokość AD tego trapezu ma długość \sqrt{3} (zobacz rysunek).
.

Miara kąta ostrego ABC jest równa:

Odpowiedzi:
A. 60^{\circ} B. 30^{\circ}
C. 45^{\circ} D. 15^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-12017 ⋅ Poprawnie: 196/331 [59%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A, B oraz C leżą na okręgu o środku w punkcie S. Długość łuku AB, na którym jest oparty kąt wpisany ACB, jest równa \frac{1}{5} długości okręgu (zobacz rysunek).

Miara stopniowa kąta ostrego ACB jest równa:

Odpowiedzi:
A. 38^{\circ} B. 36^{\circ}
C. 52^{\circ} D. 34^{\circ}
E. 44^{\circ} F. 48^{\circ}
Zadanie 20.  2 pkt ⋅ Numer: pp-21112 ⋅ Poprawnie: 150/357 [42%] Rozwiąż 
Podpunkt 20.1 (2 pkt)
 Bok kwadratu ABCD ma długość równą 14. Punkt S jest środkiem boku BC tego kwadratu. Na odcinku AS leży punkt P taki, że odcinek BP jest prostopadły do odcinka AS.

Oblicz długość odcinka BP.

Odpowiedź:
|BP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 21.  2 pkt ⋅ Numer: pp-21113 ⋅ Poprawnie: 244/422 [57%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y) dany jest okrąg \mathcal{O} o równaniu (x+8)^2+(y+7)^2=346.

Oceń prawdziwość poniższych stwierdzeń.

Odpowiedzi:
T/N : promień okręgu \mathcal{O} jest równy \sqrt{346} T/N : do okręgu \mathcal{O} należy punkt o współrzędnych (3,9)
Podpunkt 21.2 (1 pkt)
 okrąg \mathcal{K} jest obrazem okręgu \mathcal{O} w symetrii środkowej względem początku układu współrzędnych.

okrąg \mathcal{K} jest określony równaniem:

Odpowiedzi:
A. (x-8)^2+(y+7)^2=346. B. (x+8)^2+(y-7)^2=346.
C. (x+8)^2-(y+7)^2=\sqrt{346}. D. (x-8)^2+(y-7)^2=346.
Zadanie 22.  4 pkt ⋅ Numer: pp-30414 ⋅ Poprawnie: 81/334 [24%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są punkty A=(2,4) oraz B=(10,2). Symetralna odcinka AB przecina oś Ox układu współrzędnych w punkcie P=(x_P, y_P).

Oblicz współrzędne punktu P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 22.2 (2 pkt)
 Oblicz długość odcinka AP.
Odpowiedź:
|AP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 23.  1 pkt ⋅ Numer: pp-12018 ⋅ Poprawnie: 290/360 [80%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Ostrosłup prawidłowy ma k=2027 ścian bocznych.

Liczba wszystkich krawędzi tego ostrosłupa jest równa:

Odpowiedzi:
A. 4054 B. 6085
C. 4055 D. 8112
E. 6081 F. 8108
Zadanie 24.  1 pkt ⋅ Numer: pp-12019 ⋅ Poprawnie: 221/344 [64%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna ściany sześcianu ma długość 6\sqrt{2}. Objętość tego sześcianu jest równa:
Odpowiedzi:
A. 432 B. 216\sqrt{2}
C. 72 D. 18\sqrt{2}
E. 216 F. 108\sqrt{2}
Zadanie 25.  1 pkt ⋅ Numer: pp-12020 ⋅ Poprawnie: 231/344 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 12. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \alpha takim, że \tan\alpha=3 (zobacz rysunek).

Wysokość tego graniastosłupa jest równa:

Odpowiedzi:
A. 9\sqrt{2} B. 144\sqrt{2}
C. 36 D. 72\sqrt{2}
E. 24\sqrt{2} F. 36\sqrt{2}
Zadanie 26.  1 pkt ⋅ Numer: pp-12021 ⋅ Poprawnie: 426/551 [77%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę, przy czym m=16.

Średnia arytmetyczna ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy, zaokrąglona do dwóch miejsc po przecinku, jest równa:

Odpowiedzi:
A. 3.08 B. 3.17
C. 2.78 D. 2.88
E. 2.98 F. 2.68
Zadanie 27.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 462/533 [86%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich liczb naturalnych czterocyfrowych nieparzystych, w których zapisie dziesiętnym występują tylko cyfry 1, 3, 9 jest:
Odpowiedzi:
A. 75 B. 62
C. 80 D. 71
E. 63 F. 81
Zadanie 28.  1 pkt ⋅ Numer: pp-12023 ⋅ Poprawnie: 382/464 [82%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 W pudełku znajdują się wyłącznie kule białe i czarne. Kul czarnych jest 20. Z tego pudełka w sposób losowy wyciągamy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kulę czarną, jest równe \frac{5}{9}.

Liczba kul białych w pudełku, przed wyciągnięciem jednej kuli, była równa:

Odpowiedzi:
A. 10 B. 16
C. 13 D. 14
E. 19 F. 12
Zadanie 29.  2 pkt ⋅ Numer: pp-21114 ⋅ Poprawnie: 241/413 [58%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w pierwszym rzucie wypadnie nie mniejsza liczba oczek niż w drugim rzucie.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21115 ⋅ Poprawnie: 196/335 [58%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Właściciel sklepu z zabawkami przeprowadził lokalne badanie rynkowe dotyczące wpływu zmiany ceny zestawu klocków na liczbę kupujących ten produkt. Z badania wynika, że dzienny przychód P ze sprzedaży zestawów klocków, w zależności od kwoty obniżki ceny zestawu o x zł, wyraża się wzorem P(x)=(62-x)(20+x) gdzie x jest liczbą całkowitą spełniającą warunki x\geqslant 0 i x\leqslant 60.

Dzienny przychód ze sprzedaży zestawów klocków będzie największy, gdy liczba x będzie równa:

Odpowiedzi:
A. 21 B. 25
C. 29 D. 23
E. 13 F. 11
Podpunkt 30.2 (1 pkt)
 Dzienny przychód ze sprzedaży zestawów klocków będzie równy 1677 zł, gdy liczba x będzie równa:
Odpowiedzi:
A. 17 B. 15
C. 27 D. 23
E. 29 F. 25


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm