Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2024-06-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-12002 ⋅ Poprawnie: 624/666 [93%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 2^{-1}\cdot 64^{\frac{2}{3}} jest równa:
Odpowiedzi:
A. \frac{1}{8} B. 8
C. \frac{1}{16} D. \frac{1}{32}
E. 16 F. 32
Zadanie 2.  1 pkt ⋅ Numer: pp-12003 ⋅ Poprawnie: 538/593 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{4}{\frac{16}{2}}+\log_{4}{\frac{2}{64}} jest równa:
Odpowiedzi:
A. -1 B. -4
C. 16 D. 1
E. \frac{1}{4} F. 4
Zadanie 3.  1 pkt ⋅ Numer: pp-12004 ⋅ Poprawnie: 74/462 [16%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba (5\sqrt{14}+\sqrt{2})^2 jest równa:
Odpowiedzi:
A. 16\sqrt{7} B. 408
C. 352+8\sqrt{7} D. 366
E. 352+4\sqrt{7} F. 352+16\sqrt{7}
Zadanie 4.  1 pkt ⋅ Numer: pp-12005 ⋅ Poprawnie: 376/441 [85%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Klient wpłacił do banku na lokatę 4-letnią kwotę w wysokości K_0 zł. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 7\% od kwoty bieżącego kapitału znajdującego się na lokacie – zgodnie z procentem składanym.

Po n=4 latach oszczędzania w tym banku kwota na lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. K_0\cdot(1,04)^7 B. K_0\cdot(1+0,07)^{8}
C. K_0\cdot(0,04)^7 D. K_0\cdot(0,03)^4
E. K_0\cdot(1+0,03)^8 F. K_0\cdot(1,07)^4
Zadanie 5.  1 pkt ⋅ Numer: pp-12006 ⋅ Poprawnie: 250/340 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wszystkich całkowitych dodatnich rozwiązań nierówności \frac{3x-41}{12}\lessdot \frac{1}{3} jest równa:
Odpowiedzi:
A. 20 B. 16
C. 11 D. 12
E. 14 F. 18
Zadanie 6.  1 pkt ⋅ Numer: pp-12008 ⋅ Poprawnie: 328/398 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Układ równań \begin{cases} -4x-3y=-3\\ 8x+6y=12 \end{cases} :
Odpowiedzi:
A. ma dokładnie dwa rozwiązania B. ma nieskończenie wiele rozwiązań
C. ma dokładnie jedno rozwiązanie D. nie ma rozwiązań
Zadanie 7.  1 pkt ⋅ Numer: pp-12009 ⋅ Poprawnie: 282/337 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od: -5, 0 i 5 wartość wyrażenia \frac{4x^3}{x^2-25}\cdot \frac{x+5}{x^{2}} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{4x}{x+5} B. \frac{4x^3+1}{x^2-25}
C. \frac{4}{x(x-5)} D. 4x+1
E. \frac{4x}{x^2-5} F. \frac{4x}{x-5}
Zadanie 8.  1 pkt ⋅ Numer: pp-12010 ⋅ Poprawnie: 248/380 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=ax^3+bx^2+cx+d jest iloczynem wielomianów F(x)=(-3+3x)^2 oraz G(x)=3x-3.

Suma a+b+c+d współczynników wielomianu W(x) jest równa:

Odpowiedź:
a+b+c+d= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21108 ⋅ Poprawnie: 210/438 [47%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku 1., w kartezjańskim układzie współrzędnych (𝑥, 𝑦), przedstawiono wykres funkcji f. Każdy z punktów przecięcia wykresu funkcji f z prostą o równaniu y=4 ma obie współrzędne całkowite.

Zbiorem wszystkich rozwiązań nierówności f(x)\leqslant 4 jest przedział [a,b].

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Wykres funkcji f przesunięto o 1 jednostek w lewo otrzymując w ten sposób wykres funkcji g.

Funkcje f i g są opisane zależnością:

Odpowiedzi:
A. g(x)=f(x)-1 B. g(x)=f(x+1)
C. g(x)=f(x-1) D. g(x)=f(x)+1
Podpunkt 9.3 (0.5 pkt)
 Funkcje f i g mają:
Odpowiedzi:
A. ten sam zbiór wartości B. taką samą dziedzinę
C. takie same miejsca zerowe  
Zadanie 10.  1 pkt ⋅ Numer: pp-12011 ⋅ Poprawnie: 214/483 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja y=f(x) jest określona za pomocą tabeli:
------------------------------
| x | -2 | -1 |  0 |  1 |  2 |
------------------------------
| y | -1 |  0 | -3 |  0 | -1 |
------------------------------

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f ma jedno miejsce zerowe T/N : dziedziną funkcji f jest zbiór [-2,2]
Zadanie 11.  1 pkt ⋅ Numer: pp-12012 ⋅ Poprawnie: 361/446 [80%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczba 2 jest miejscem zerowym funkcji liniowej f(x)=(2-m)x+4.

Liczba m jest równa:

Odpowiedzi:
A. 1 B. -5
C. 0 D. 5
E. -2 F. 3
G. -4 H. 16
I. -1 J. 4
Zadanie 12.  2 pkt ⋅ Numer: pp-21109 ⋅ Poprawnie: 145/369 [39%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Parabola, która jest wykresem funkcji kwadratowej f, ma z osiami kartezjańskiego układu współrzędnych (x, y) dokładnie dwa punkty wspólne: M=(0,-108) oraz N=(-6,0).
Wyznacz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 13.  2 pkt ⋅ Numer: pp-21110 ⋅ Poprawnie: 245/390 [62%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=(x+1)^2-4.

Fragment wykresu funkcji y=f(x) przedstawiono na rysunku:

Odpowiedzi:
A. D B. B
C. A D. C
Podpunkt 13.2 (1 pkt)
 Oceń prawdziwość poniższych zdań.
Odpowiedzi:
T/N : wykres funkcji f przecina oś Oy kartezjańskiego układu współrzędnych (x,y) w punkcie o współrzędnych (0,-4) T/N : miejscami zerowymi funkcji f są liczby -3 i 1
Zadanie 14.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 211/356 [59%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=3\cdot(-1)^{n+1}+4 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 31 B. 40
C. 59 D. 23
E. 21 F. 50
G. 22 H. 41
Podpunkt 14.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny T/N : ciąg (a_n) jest malejący
Zadanie 15.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 422/482 [87%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=1 oraz a_3=-1.

Wyraz a_{13} jest równy:

Odpowiedzi:
A. -6 B. -12
C. -4 D. -16
E. -7 F. -10
G. -5 H. -11
I. -14 J. -15
Zadanie 16.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 278/392 [70%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x-4) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y-5) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x > 4 i y > 5 B. x \lessdot 4 i y > 5
C. x \lessdot 4 i y\lessdot 5 D. x > 4 i y\lessdot 5
Zadanie 17.  1 pkt ⋅ Numer: pp-12015 ⋅ Poprawnie: 257/365 [70%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Liczba \cos^2 42^{\circ}-1 jest równa:
Odpowiedzi:
A. -\sin^2 42^{\circ} B. \sin^2 42^{\circ}-2
C. -2 D. 2+\sin^2 42^{\circ}
Zadanie 18.  1 pkt ⋅ Numer: pp-12016 ⋅ Poprawnie: 277/372 [74%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Podstawy trapezu prostokątnego ABCD mają długości: |AB|=3 oraz |CD|=2. Wysokość AD tego trapezu ma długość \sqrt{3} (zobacz rysunek).
.

Miara kąta ostrego ABC jest równa:

Odpowiedzi:
A. 60^{\circ} B. 30^{\circ}
C. 15^{\circ} D. 45^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-12017 ⋅ Poprawnie: 196/331 [59%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A, B oraz C leżą na okręgu o środku w punkcie S. Długość łuku AB, na którym jest oparty kąt wpisany ACB, jest równa \frac{1}{30} długości okręgu (zobacz rysunek).

Miara stopniowa kąta ostrego ACB jest równa:

Odpowiedzi:
A. 18^{\circ} B. 8^{\circ}
C. 14^{\circ} D. 6^{\circ}
E. 9^{\circ} F. 22^{\circ}
Zadanie 20.  2 pkt ⋅ Numer: pp-21112 ⋅ Poprawnie: 150/357 [42%] Rozwiąż 
Podpunkt 20.1 (2 pkt)
 Bok kwadratu ABCD ma długość równą 22. Punkt S jest środkiem boku BC tego kwadratu. Na odcinku AS leży punkt P taki, że odcinek BP jest prostopadły do odcinka AS.

Oblicz długość odcinka BP.

Odpowiedź:
|BP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 21.  2 pkt ⋅ Numer: pp-21113 ⋅ Poprawnie: 244/422 [57%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y) dany jest okrąg \mathcal{O} o równaniu (x+1)^2+(y+1)^2=74.

Oceń prawdziwość poniższych stwierdzeń.

Odpowiedzi:
T/N : promień okręgu \mathcal{O} jest równy 74 T/N : promień okręgu \mathcal{O} jest równy \sqrt{74}
Podpunkt 21.2 (1 pkt)
 okrąg \mathcal{K} jest obrazem okręgu \mathcal{O} w symetrii środkowej względem początku układu współrzędnych.

okrąg \mathcal{K} jest określony równaniem:

Odpowiedzi:
A. (x+1)^2+(y-1)^2=74. B. (x+1)^2-(y+1)^2=\sqrt{74}.
C. (x-1)^2+(y-1)^2=74. D. (x-1)^2+(y+1)^2=74.
Zadanie 22.  4 pkt ⋅ Numer: pp-30414 ⋅ Poprawnie: 81/334 [24%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są punkty A=(2,-2) oraz B=(0,2). Symetralna odcinka AB przecina oś Ox układu współrzędnych w punkcie P=(x_P, y_P).

Oblicz współrzędne punktu P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 22.2 (2 pkt)
 Oblicz długość odcinka AP.
Odpowiedź:
|AP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 23.  1 pkt ⋅ Numer: pp-12018 ⋅ Poprawnie: 290/360 [80%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Ostrosłup prawidłowy ma k=2043 ścian bocznych.

Liczba wszystkich krawędzi tego ostrosłupa jest równa:

Odpowiedzi:
A. 4086 B. 8172
C. 6133 D. 4087
E. 8176 F. 6129
Zadanie 24.  1 pkt ⋅ Numer: pp-12019 ⋅ Poprawnie: 221/344 [64%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna ściany sześcianu ma długość 7\sqrt{3}. Objętość tego sześcianu jest równa:
Odpowiedzi:
A. \frac{1029\sqrt{3}}{2} B. \frac{147\sqrt{3}}{4}
C. \frac{1029\sqrt{3}}{4} D. \frac{1029\sqrt{6}}{2}
E. \frac{1029\sqrt{6}}{4} F. \frac{147\sqrt{6}}{2}
Zadanie 25.  1 pkt ⋅ Numer: pp-12020 ⋅ Poprawnie: 231/344 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 16. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \alpha takim, że \tan\alpha=5 (zobacz rysunek).

Wysokość tego graniastosłupa jest równa:

Odpowiedzi:
A. \frac{160\sqrt{2}}{3} B. 160\sqrt{2}
C. 320\sqrt{2} D. 20\sqrt{2}
E. 80\sqrt{2} F. 80
Zadanie 26.  1 pkt ⋅ Numer: pp-12021 ⋅ Poprawnie: 423/547 [77%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę, przy czym m=20.

Średnia arytmetyczna ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy, zaokrąglona do dwóch miejsc po przecinku, jest równa:

Odpowiedzi:
A. 2.78 B. 3.08
C. 2.88 D. 2.58
E. 2.68 F. 2.98
Zadanie 27.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 448/525 [85%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych nieparzystych, w których zapisie dziesiętnym występują tylko cyfry 2, 4, 5 jest:
Odpowiedzi:
A. 64 B. 80
C. 63 D. 81
E. 91 F. 100
Zadanie 28.  1 pkt ⋅ Numer: pp-12023 ⋅ Poprawnie: 363/448 [81%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 W pudełku znajdują się wyłącznie kule białe i czarne. Kul czarnych jest 36. Z tego pudełka w sposób losowy wyciągamy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kulę czarną, jest równe \frac{9}{14}.

Liczba kul białych w pudełku, przed wyciągnięciem jednej kuli, była równa:

Odpowiedzi:
A. 18 B. 15
C. 21 D. 23
E. 20 F. 19
Zadanie 29.  2 pkt ⋅ Numer: pp-21114 ⋅ Poprawnie: 241/413 [58%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w pierwszym rzucie wypadnie nie mniejsza liczba oczek niż w drugim rzucie.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21115 ⋅ Poprawnie: 196/335 [58%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Właściciel sklepu z zabawkami przeprowadził lokalne badanie rynkowe dotyczące wpływu zmiany ceny zestawu klocków na liczbę kupujących ten produkt. Z badania wynika, że dzienny przychód P ze sprzedaży zestawów klocków, w zależności od kwoty obniżki ceny zestawu o x zł, wyraża się wzorem P(x)=(78-x)(12+x) gdzie x jest liczbą całkowitą spełniającą warunki x\geqslant 0 i x\leqslant 76.

Dzienny przychód ze sprzedaży zestawów klocków będzie największy, gdy liczba x będzie równa:

Odpowiedzi:
A. 23 B. 35
C. 25 D. 37
E. 33 F. 27
Podpunkt 30.2 (1 pkt)
 Dzienny przychód ze sprzedaży zestawów klocków będzie równy 2009 zł, gdy liczba x będzie równa:
Odpowiedzi:
A. 29 B. 33
C. 39 D. 25
E. 23 F. 31


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm