Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2024-06-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-12002 ⋅ Poprawnie: 626/668 [93%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 2^{-3}\cdot 8^{\frac{7}{3}} jest równa:
Odpowiedzi:
A. \frac{1}{64} B. 64
C. 128 D. 16
E. \frac{1}{32} F. 32
Zadanie 2.  1 pkt ⋅ Numer: pp-12003 ⋅ Poprawnie: 544/597 [91%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{5}{\frac{125}{2}}+\log_{5}{\frac{2}{625}} jest równa:
Odpowiedzi:
A. -5 B. 1
C. 125 D. \frac{1}{5}
E. -1 F. 5
Zadanie 3.  1 pkt ⋅ Numer: pp-12004 ⋅ Poprawnie: 74/462 [16%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba (7\sqrt{10}+\sqrt{2})^2 jest równa:
Odpowiedzi:
A. 532 B. 16\sqrt{5}
C. 492+4\sqrt{5} D. 502
E. 492+8\sqrt{5} F. 492+16\sqrt{5}
Zadanie 4.  1 pkt ⋅ Numer: pp-12005 ⋅ Poprawnie: 376/441 [85%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Klient wpłacił do banku na lokatę 6-letnią kwotę w wysokości K_0 zł. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 9\% od kwoty bieżącego kapitału znajdującego się na lokacie – zgodnie z procentem składanym.

Po n=6 latach oszczędzania w tym banku kwota na lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. K_0\cdot(1,09)^6 B. K_0\cdot(1+0,04)^12
C. K_0\cdot(0,06)^9 D. K_0\cdot(1,06)^9
E. K_0\cdot(0,04)^6 F. K_0\cdot(1+0,09)^{12}
Zadanie 5.  1 pkt ⋅ Numer: pp-12006 ⋅ Poprawnie: 250/340 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wszystkich całkowitych dodatnich rozwiązań nierówności \frac{3x-62}{12}\lessdot \frac{1}{3} jest równa:
Odpowiedzi:
A. 19 B. 20
C. 22 D. 28
E. 21 F. 24
Zadanie 6.  1 pkt ⋅ Numer: pp-12008 ⋅ Poprawnie: 329/398 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Układ równań \begin{cases} 4x-2y=3\\ -8x-4y=-6 \end{cases} :
Odpowiedzi:
A. ma nieskończenie wiele rozwiązań B. ma dokładnie dwa rozwiązania
C. nie ma rozwiązań D. ma dokładnie jedno rozwiązanie
Zadanie 7.  1 pkt ⋅ Numer: pp-12009 ⋅ Poprawnie: 282/337 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od: -4, 0 i 4 wartość wyrażenia \frac{7x^7}{x^2-16}\cdot \frac{x+4}{x^{6}} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{7x}{x+4} B. \frac{7x}{x^2-4}
C. \frac{7x}{x-4} D. \frac{7}{x(x-4)}
E. \frac{7x^3+1}{x^2-16} F. 7x+1
Zadanie 8.  1 pkt ⋅ Numer: pp-12010 ⋅ Poprawnie: 248/380 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=ax^3+bx^2+cx+d jest iloczynem wielomianów F(x)=(-2+6x)^2 oraz G(x)=6x-2.

Suma a+b+c+d współczynników wielomianu W(x) jest równa:

Odpowiedź:
a+b+c+d= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21108 ⋅ Poprawnie: 210/438 [47%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku 1., w kartezjańskim układzie współrzędnych (𝑥, 𝑦), przedstawiono wykres funkcji f. Każdy z punktów przecięcia wykresu funkcji f z prostą o równaniu y=4 ma obie współrzędne całkowite.

Zbiorem wszystkich rozwiązań nierówności f(x)\leqslant 4 jest przedział [a,b].

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Wykres funkcji f przesunięto o 6 jednostek w prawo otrzymując w ten sposób wykres funkcji g.

Funkcje f i g są opisane zależnością:

Odpowiedzi:
A. g(x)=f(x)+6 B. g(x)=f(x)-6
C. g(x)=f(x+6) D. g(x)=f(x-6)
Podpunkt 9.3 (0.5 pkt)
 Funkcje f i g mają:
Odpowiedzi:
A. taką samą dziedzinę B. ten sam zbiór wartości
C. takie same miejsca zerowe  
Zadanie 10.  1 pkt ⋅ Numer: pp-12011 ⋅ Poprawnie: 215/484 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja y=f(x) jest określona za pomocą tabeli:
------------------------------
| x | -2 | -1 |  0 |  1 |  2 |
------------------------------
| y |  0 | -2 | -2 | -2 |  1 |
------------------------------

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f jest różnowartościowa T/N : zbiór wartości funkcji f jest przedziałem liczbowym
Zadanie 11.  1 pkt ⋅ Numer: pp-12012 ⋅ Poprawnie: 361/446 [80%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczba 2 jest miejscem zerowym funkcji liniowej f(x)=(-6-m)x+4.

Liczba m jest równa:

Odpowiedzi:
A. -4 B. 3
C. -14 D. -7
E. -10 F. -13
G. -11 H. -8
I. 0 J. -12
Zadanie 12.  2 pkt ⋅ Numer: pp-21109 ⋅ Poprawnie: 145/369 [39%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Parabola, która jest wykresem funkcji kwadratowej f, ma z osiami kartezjańskiego układu współrzędnych (x, y) dokładnie dwa punkty wspólne: M=(0,108) oraz N=(6,0).
Wyznacz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 13.  2 pkt ⋅ Numer: pp-21110 ⋅ Poprawnie: 245/390 [62%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=-(x-1)^2+4.

Fragment wykresu funkcji y=f(x) przedstawiono na rysunku:

Odpowiedzi:
A. A B. B
C. D D. C
Podpunkt 13.2 (1 pkt)
 Oceń prawdziwość poniższych zdań.
Odpowiedzi:
T/N : wykres funkcji f przecina oś Oy kartezjańskiego układu współrzędnych (x,y) w punkcie o współrzędnych (0,3) T/N : miejscami zerowymi funkcji f są liczby -3 i -1
Zadanie 14.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 211/356 [59%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=4\cdot(-1)^{n+1}+7 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 82 B. 50
C. 63 D. 70
E. 71 F. 76
G. 64 H. 90
Podpunkt 14.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) nie jest monotoniczny
Zadanie 15.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 430/489 [87%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=9 oraz a_3=17.

Wyraz a_{11} jest równy:

Odpowiedzi:
A. 45 B. 25
C. 33 D. 29
E. 53 F. 49
G. 37 H. 57
I. 69 J. 65
Zadanie 16.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 278/392 [70%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x+5) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y-2) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x \lessdot -5 i y > 2 B. x > -5 i y > 2
C. x > -5 i y\lessdot 2 D. x \lessdot -5 i y\lessdot 2
Zadanie 17.  1 pkt ⋅ Numer: pp-12015 ⋅ Poprawnie: 257/365 [70%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Liczba \cos^2 59^{\circ}-1 jest równa:
Odpowiedzi:
A. 2+\sin^2 59^{\circ} B. \sin^2 59^{\circ}
C. -2 D. -\sin^2 59^{\circ}
Zadanie 18.  1 pkt ⋅ Numer: pp-12016 ⋅ Poprawnie: 278/372 [74%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Podstawy trapezu prostokątnego ABCD mają długości: |AB|=11 oraz |CD|=10. Wysokość AD tego trapezu ma długość \sqrt{3} (zobacz rysunek).
.

Miara kąta ostrego ABC jest równa:

Odpowiedzi:
A. 15^{\circ} B. 60^{\circ}
C. 30^{\circ} D. 45^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-12017 ⋅ Poprawnie: 196/331 [59%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A, B oraz C leżą na okręgu o środku w punkcie S. Długość łuku AB, na którym jest oparty kąt wpisany ACB, jest równa \frac{1}{36} długości okręgu (zobacz rysunek).

Miara stopniowa kąta ostrego ACB jest równa:

Odpowiedzi:
A. 9^{\circ} B. 17^{\circ}
C. 3^{\circ} D. 8^{\circ}
E. 7^{\circ} F. 5^{\circ}
Zadanie 20.  2 pkt ⋅ Numer: pp-21112 ⋅ Poprawnie: 150/357 [42%] Rozwiąż 
Podpunkt 20.1 (2 pkt)
 Bok kwadratu ABCD ma długość równą 36. Punkt S jest środkiem boku BC tego kwadratu. Na odcinku AS leży punkt P taki, że odcinek BP jest prostopadły do odcinka AS.

Oblicz długość odcinka BP.

Odpowiedź:
|BP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 21.  2 pkt ⋅ Numer: pp-21113 ⋅ Poprawnie: 244/422 [57%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y) dany jest okrąg \mathcal{O} o równaniu (x-8)^2+(y+3)^2=34.

Oceń prawdziwość poniższych stwierdzeń.

Odpowiedzi:
T/N : promień okręgu \mathcal{O} jest równy \sqrt{34} T/N : do okręgu \mathcal{O} należy punkt o współrzędnych (3,-5)
Podpunkt 21.2 (1 pkt)
 okrąg \mathcal{K} jest obrazem okręgu \mathcal{O} w symetrii środkowej względem początku układu współrzędnych.

okrąg \mathcal{K} jest określony równaniem:

Odpowiedzi:
A. (x-8)^2+(y-3)^2=34. B. (x+8)^2+(y+3)^2=34.
C. (x+8)^2+(y-3)^2=34. D. (x-8)^2-(y+3)^2=\sqrt{34}.
Zadanie 22.  4 pkt ⋅ Numer: pp-30414 ⋅ Poprawnie: 81/334 [24%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są punkty A=(2,10) oraz B=(-4,2). Symetralna odcinka AB przecina oś Ox układu współrzędnych w punkcie P=(x_P, y_P).

Oblicz współrzędne punktu P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 22.2 (2 pkt)
 Oblicz długość odcinka AP.
Odpowiedź:
|AP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 23.  1 pkt ⋅ Numer: pp-12018 ⋅ Poprawnie: 290/360 [80%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Ostrosłup prawidłowy ma k=2065 ścian bocznych.

Liczba wszystkich krawędzi tego ostrosłupa jest równa:

Odpowiedzi:
A. 4131 B. 6199
C. 8260 D. 6195
E. 8264 F. 4130
Zadanie 24.  1 pkt ⋅ Numer: pp-12019 ⋅ Poprawnie: 221/344 [64%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna ściany sześcianu ma długość 10\sqrt{5}. Objętość tego sześcianu jest równa:
Odpowiedzi:
A. 2500\sqrt{10} B. 1250\sqrt{5}
C. 125\sqrt{5} D. 250\sqrt{10}
E. 2500\sqrt{5} F. 1250\sqrt{10}
Zadanie 25.  1 pkt ⋅ Numer: pp-12020 ⋅ Poprawnie: 231/344 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 24. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \alpha takim, że \tan\alpha=8 (zobacz rysunek).

Wysokość tego graniastosłupa jest równa:

Odpowiedzi:
A. 96\sqrt{2} B. 128\sqrt{2}
C. 192 D. 48\sqrt{2}
E. 192\sqrt{2} F. 768\sqrt{2}
Zadanie 26.  1 pkt ⋅ Numer: pp-12021 ⋅ Poprawnie: 426/551 [77%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę, przy czym m=27.

Średnia arytmetyczna ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy, zaokrąglona do dwóch miejsc po przecinku, jest równa:

Odpowiedzi:
A. 2.55 B. 2.95
C. 2.65 D. 2.75
E. 2.85 F. 2.45
Zadanie 27.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 462/533 [86%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrfowych parzystych, w których zapisie dziesiętnym występują tylko cyfry 2, 3, 8 jest:
Odpowiedzi:
A. 162 B. 149
C. 165 D. 151
E. 170 F. 178
Zadanie 28.  1 pkt ⋅ Numer: pp-12023 ⋅ Poprawnie: 382/464 [82%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 W pudełku znajdują się wyłącznie kule białe i czarne. Kul czarnych jest 58. Z tego pudełka w sposób losowy wyciągamy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kulę czarną, jest równe \frac{29}{42}.

Liczba kul białych w pudełku, przed wyciągnięciem jednej kuli, była równa:

Odpowiedzi:
A. 29 B. 26
C. 20 D. 28
E. 24 F. 30
Zadanie 29.  2 pkt ⋅ Numer: pp-21114 ⋅ Poprawnie: 241/413 [58%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w drugim rzucie wypadnie nie mniejsza liczba oczek niż w pierwszym rzucie.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21115 ⋅ Poprawnie: 196/335 [58%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Właściciel sklepu z zabawkami przeprowadził lokalne badanie rynkowe dotyczące wpływu zmiany ceny zestawu klocków na liczbę kupujących ten produkt. Z badania wynika, że dzienny przychód P ze sprzedaży zestawów klocków, w zależności od kwoty obniżki ceny zestawu o x zł, wyraża się wzorem P(x)=(72-x)(2+x) gdzie x jest liczbą całkowitą spełniającą warunki x\geqslant 0 i x\leqslant 70.

Dzienny przychód ze sprzedaży zestawów klocków będzie największy, gdy liczba x będzie równa:

Odpowiedzi:
A. 25 B. 37
C. 29 D. 41
E. 33 F. 35
Podpunkt 30.2 (1 pkt)
 Dzienny przychód ze sprzedaży zestawów klocków będzie równy 1365 zł, gdy liczba x będzie równa:
Odpowiedzi:
A. 35 B. 31
C. 25 D. 29
E. 39 F. 37


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm