Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2024-06-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-12002 ⋅ Poprawnie: 653/692 [94%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 2^{-3}\cdot 16^{\frac{7}{4}} jest równa:
Odpowiedzi:
A. 128 B. 64
C. 32 D. 16
E. \frac{1}{32} F. \frac{1}{16}
Zadanie 2.  1 pkt ⋅ Numer: pp-12003 ⋅ Poprawnie: 563/619 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{4}{\frac{4}{2}}+\log_{4}{\frac{2}{16}} jest równa:
Odpowiedzi:
A. -1 B. -\frac{1}{4}
C. 4 D. \frac{1}{4}
E. -4 F. 4
Zadanie 3.  1 pkt ⋅ Numer: pp-12004 ⋅ Poprawnie: 78/482 [16%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba (3\sqrt{10}+\sqrt{2})^2 jest równa:
Odpowiedzi:
A. 92+16\sqrt{5} B. 92+8\sqrt{5}
C. 102 D. 92+4\sqrt{5}
E. 132 F. 16\sqrt{5}
Zadanie 4.  1 pkt ⋅ Numer: pp-12005 ⋅ Poprawnie: 399/461 [86%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Klient wpłacił do banku na lokatę 3-letnią kwotę w wysokości K_0 zł. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 6\% od kwoty bieżącego kapitału znajdującego się na lokacie – zgodnie z procentem składanym.

Po n=3 latach oszczędzania w tym banku kwota na lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. K_0\cdot(0,03)^6 B. K_0\cdot(0,03)^3
C. K_0\cdot(1,06)^3 D. K_0\cdot(1+0,03)^6
E. K_0\cdot(1,03)^6 F. K_0\cdot(1+0,06)^{6}
Zadanie 5.  1 pkt ⋅ Numer: pp-12006 ⋅ Poprawnie: 270/360 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wszystkich całkowitych dodatnich rozwiązań nierówności \frac{3x-32}{12}\lessdot \frac{1}{3} jest równa:
Odpowiedzi:
A. 17 B. 12
C. 8 D. 18
E. 15 F. 11
Zadanie 6.  1 pkt ⋅ Numer: pp-12008 ⋅ Poprawnie: 344/417 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Układ równań \begin{cases} -4x-2y=3\\ 16x+8y=-24 \end{cases} :
Odpowiedzi:
A. ma nieskończenie wiele rozwiązań B. ma dokładnie dwa rozwiązania
C. ma dokładnie jedno rozwiązanie D. nie ma rozwiązań
Zadanie 7.  1 pkt ⋅ Numer: pp-12009 ⋅ Poprawnie: 299/357 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od: -3, 0 i 3 wartość wyrażenia \frac{2x^7}{x^2-9}\cdot \frac{x+3}{x^{6}} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{2x}{x+3} B. \frac{2}{x(x-3)}
C. 2x+1 D. \frac{2x}{x^2-3}
E. \frac{2x}{x-3} F. \frac{2x^3+1}{x^2-9}
Zadanie 8.  1 pkt ⋅ Numer: pp-12010 ⋅ Poprawnie: 262/400 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=ax^3+bx^2+cx+d jest iloczynem wielomianów F(x)=(5-x)^2 oraz G(x)=-x+5.

Suma a+b+c+d współczynników wielomianu W(x) jest równa:

Odpowiedź:
a+b+c+d= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21108 ⋅ Poprawnie: 218/458 [47%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku 1., w kartezjańskim układzie współrzędnych (𝑥, 𝑦), przedstawiono wykres funkcji f. Każdy z punktów przecięcia wykresu funkcji f z prostą o równaniu y=2 ma obie współrzędne całkowite.

Zbiorem wszystkich rozwiązań nierówności f(x)\leqslant 2 jest przedział [a,b].

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Wykres funkcji f przesunięto o 6 jednostek w lewo otrzymując w ten sposób wykres funkcji g.

Funkcje f i g są opisane zależnością:

Odpowiedzi:
A. g(x)=f(x)+6 B. g(x)=f(x-6)
C. g(x)=f(x+6) D. g(x)=f(x)-6
Podpunkt 9.3 (0.5 pkt)
 Funkcje f i g mają:
Odpowiedzi:
A. taką samą dziedzinę B. takie same miejsca zerowe
C. ten sam zbiór wartości  
Zadanie 10.  1 pkt ⋅ Numer: pp-12011 ⋅ Poprawnie: 229/504 [45%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja y=f(x) jest określona za pomocą tabeli:
------------------------------
| x | -2 | -1 |  0 |  1 |  2 |
------------------------------
| y |  2 |  0 | -3 |  0 |  2 |
------------------------------

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres funkcji f jest symetryczny względem osi Oy T/N : funkcja f ma dwa miejsca zerowe
Zadanie 11.  1 pkt ⋅ Numer: pp-12012 ⋅ Poprawnie: 381/466 [81%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczba 2 jest miejscem zerowym funkcji liniowej f(x)=(6-m)x+4.

Liczba m jest równa:

Odpowiedzi:
A. 3 B. 10
C. 7 D. 20
E. 8 F. 9
G. 6 H. 0
I. 19 J. 11
Zadanie 12.  2 pkt ⋅ Numer: pp-21109 ⋅ Poprawnie: 152/389 [39%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Parabola, która jest wykresem funkcji kwadratowej f, ma z osiami kartezjańskiego układu współrzędnych (x, y) dokładnie dwa punkty wspólne: M=(0,-36) oraz N=(-6,0).
Wyznacz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 13.  2 pkt ⋅ Numer: pp-21110 ⋅ Poprawnie: 257/409 [62%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem f(x)=(x-1)^2-4.

Fragment wykresu funkcji y=f(x) przedstawiono na rysunku:

Odpowiedzi:
A. A B. D
C. C D. B
Podpunkt 13.2 (1 pkt)
 Oceń prawdziwość poniższych zdań.
Odpowiedzi:
T/N : miejscami zerowymi funkcji f są liczby -1 i 3 T/N : wykres funkcji f przecina oś Oy kartezjańskiego układu współrzędnych (x,y) w punkcie o współrzędnych (0,-4)
Zadanie 14.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 227/376 [60%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=3\cdot(-1)^{n+1}+2 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 35 B. 33
C. 5 D. 19
E. 20 F. 16
G. 4 H. 6
Podpunkt 14.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) nie jest monotoniczny
Zadanie 15.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 456/509 [89%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-3 oraz a_3=-11.

Wyraz a_{10} jest równy:

Odpowiedzi:
A. -35 B. -31
C. -43 D. -19
E. -59 F. -23
G. -51 H. -39
I. -55 J. -11
Zadanie 16.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 293/412 [71%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x-5) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y-3) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x \lessdot 5 i y\lessdot 3 B. x > 5 i y\lessdot 3
C. x \lessdot 5 i y > 3 D. x > 5 i y > 3
Zadanie 17.  1 pkt ⋅ Numer: pp-12015 ⋅ Poprawnie: 269/384 [70%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Liczba \cos^2 32^{\circ}+1 jest równa:
Odpowiedzi:
A. \sin^2 32^{\circ} B. 2
C. \sin^2 32^{\circ}-1 D. 2-\sin^2 32^{\circ}
Zadanie 18.  1 pkt ⋅ Numer: pp-12016 ⋅ Poprawnie: 307/406 [75%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Podstawy trapezu prostokątnego ABCD mają długości: |AB|=8 oraz |CD|=5. Wysokość AD tego trapezu ma długość \sqrt{3} (zobacz rysunek).
.

Miara kąta ostrego ABC jest równa:

Odpowiedzi:
A. 30^{\circ} B. 15^{\circ}
C. 60^{\circ} D. 45^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-12017 ⋅ Poprawnie: 209/350 [59%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A, B oraz C leżą na okręgu o środku w punkcie S. Długość łuku AB, na którym jest oparty kąt wpisany ACB, jest równa \frac{1}{12} długości okręgu (zobacz rysunek).

Miara stopniowa kąta ostrego ACB jest równa:

Odpowiedzi:
A. 13^{\circ} B. 15^{\circ}
C. 18^{\circ} D. 17^{\circ}
E. 27^{\circ} F. 19^{\circ}
Zadanie 20.  2 pkt ⋅ Numer: pp-21112 ⋅ Poprawnie: 167/391 [42%] Rozwiąż 
Podpunkt 20.1 (2 pkt)
 Bok kwadratu ABCD ma długość równą 16. Punkt S jest środkiem boku BC tego kwadratu. Na odcinku AS leży punkt P taki, że odcinek BP jest prostopadły do odcinka AS.

Oblicz długość odcinka BP.

Odpowiedź:
|BP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 21.  2 pkt ⋅ Numer: pp-21113 ⋅ Poprawnie: 253/441 [57%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y) dany jest okrąg \mathcal{O} o równaniu (x+7)^2+(y+5)^2=221.

Oceń prawdziwość poniższych stwierdzeń.

Odpowiedzi:
T/N : promień okręgu \mathcal{O} jest równy \sqrt{221} T/N : do okręgu \mathcal{O} należy punkt o współrzędnych (3,7)
Podpunkt 21.2 (1 pkt)
 okrąg \mathcal{K} jest obrazem okręgu \mathcal{O} w symetrii środkowej względem początku układu współrzędnych.

okrąg \mathcal{K} jest określony równaniem:

Odpowiedzi:
A. (x+7)^2-(y+5)^2=\sqrt{221}. B. (x-7)^2+(y-5)^2=221.
C. (x-7)^2+(y+5)^2=221. D. (x+7)^2+(y-5)^2=221.
Zadanie 22.  4 pkt ⋅ Numer: pp-30414 ⋅ Poprawnie: 84/353 [23%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są punkty A=(2,-10) oraz B=(-6,2). Symetralna odcinka AB przecina oś Ox układu współrzędnych w punkcie P=(x_P, y_P).

Oblicz współrzędne punktu P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 22.2 (2 pkt)
 Oblicz długość odcinka AP.
Odpowiedź:
|AP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 23.  1 pkt ⋅ Numer: pp-12018 ⋅ Poprawnie: 329/404 [81%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Ostrosłup prawidłowy ma k=2028 ścian bocznych.

Liczba wszystkich krawędzi tego ostrosłupa jest równa:

Odpowiedzi:
A. 4057 B. 8116
C. 8112 D. 6084
E. 4056 F. 6088
Zadanie 24.  1 pkt ⋅ Numer: pp-12019 ⋅ Poprawnie: 237/364 [65%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna ściany sześcianu ma długość 6\sqrt{2}. Objętość tego sześcianu jest równa:
Odpowiedzi:
A. 108\sqrt{2} B. 216\sqrt{2}
C. 216 D. 18\sqrt{2}
E. 72 F. 432
Zadanie 25.  1 pkt ⋅ Numer: pp-12020 ⋅ Poprawnie: 247/364 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 12. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \alpha takim, że \tan\alpha=3 (zobacz rysunek).

Wysokość tego graniastosłupa jest równa:

Odpowiedzi:
A. 18\sqrt{2} B. 144\sqrt{2}
C. 9\sqrt{2} D. 36
E. 36\sqrt{2} F. 72\sqrt{2}
Zadanie 26.  1 pkt ⋅ Numer: pp-12021 ⋅ Poprawnie: 446/574 [77%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę, przy czym m=17.

Średnia arytmetyczna ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy, zaokrąglona do dwóch miejsc po przecinku, jest równa:

Odpowiedzi:
A. 2.75 B. 3.05
C. 3.15 D. 2.95
E. 2.65 F. 2.85
Zadanie 27.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 507/573 [88%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich liczb naturalnych czterocyfrowych nieparzystych, w których zapisie dziesiętnym występują tylko cyfry 1, 3, 7 jest:
Odpowiedzi:
A. 66 B. 70
C. 67 D. 80
E. 81 F. 82
Zadanie 28.  1 pkt ⋅ Numer: pp-12023 ⋅ Poprawnie: 413/495 [83%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 W pudełku znajdują się wyłącznie kule białe i czarne. Kul czarnych jest 22. Z tego pudełka w sposób losowy wyciągamy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kulę czarną, jest równe \frac{11}{19}.

Liczba kul białych w pudełku, przed wyciągnięciem jednej kuli, była równa:

Odpowiedzi:
A. 21 B. 17
C. 11 D. 14
E. 16 F. 20
Zadanie 29.  2 pkt ⋅ Numer: pp-21114 ⋅ Poprawnie: 261/433 [60%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w pierwszym rzucie wypadnie nie mniejsza liczba oczek niż w drugim rzucie.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21115 ⋅ Poprawnie: 205/354 [57%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Właściciel sklepu z zabawkami przeprowadził lokalne badanie rynkowe dotyczące wpływu zmiany ceny zestawu klocków na liczbę kupujących ten produkt. Z badania wynika, że dzienny przychód P ze sprzedaży zestawów klocków, w zależności od kwoty obniżki ceny zestawu o x zł, wyraża się wzorem P(x)=(68-x)(20+x) gdzie x jest liczbą całkowitą spełniającą warunki x\geqslant 0 i x\leqslant 66.

Dzienny przychód ze sprzedaży zestawów klocków będzie największy, gdy liczba x będzie równa:

Odpowiedzi:
A. 30 B. 26
C. 28 D. 32
E. 16 F. 24
Podpunkt 30.2 (1 pkt)
 Dzienny przychód ze sprzedaży zestawów klocków będzie równy 1932 zł, gdy liczba x będzie równa:
Odpowiedzi:
A. 26 B. 20
C. 14 D. 18
E. 28 F. 32


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm