Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-10398 ⋅ Poprawnie: 660/822 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyrażenie \frac{\left(\left(4^2\right)^3\right)^2} {2} jest równe:
Odpowiedzi:
A. 2^{9} B. 2^{9}
C. 2\cdot 2^{22} D. 2^{11}
Zadanie 2.  1 pkt ⋅ Numer: pp-10322 ⋅ Poprawnie: 296/322 [91%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \left( \frac{1} {\left(\sqrt[3]{8}+\sqrt[4]{81}+2\right)^0} \right)^2 .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10446 ⋅ Poprawnie: 428/741 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt{3}+5}{\sqrt{3}-5} w najprostszej postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.

Podaj liczby m, n, k i p.

Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10417 ⋅ Poprawnie: 215/375 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest liczba x=25^{-\frac{1}{2}}\cdot (-8)^{\frac{1}{3}} .

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10292 ⋅ Poprawnie: 343/409 [83%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że \log_{\frac{1}{2}}{x}=-1.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 51/395 [12%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Wykaż, że dla każdych liczb całkowitych x i y, wyrażenie 13x^2+9y^2+12xy+60x+100 można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi (niektóre z nich mogą być równe zero).

Podaj mniejszą z liczb a_1 i a_2.

Odpowiedź:
min(a_1,a_2)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{2}{4}+\log_{2}{1}}{\sqrt{2}}\cdot \left(\frac{1}{2^2}\right)^{-2}} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm