Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10432 ⋅ Poprawnie: 222/371 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie 3^{12}+9^{6}-3^{12}+9^{8}-3^{16}+9^{6}+3^{12} w postaci potęgi o podstawie 3.

Podaj wykładnik tej potęgi.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10373 ⋅ Poprawnie: 315/370 [85%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia \sqrt[3]{-8^{-1}}\cdot 16^{\frac{3}{4}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10455 ⋅ Poprawnie: 425/500 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia w=1000001^2-999999^2.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10429 ⋅ Poprawnie: 147/199 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Najmniejszą z liczb a=4^{-\frac{1}{2}}, b=0.0001^{\frac{1}{4}}, c=0.0004^{\frac{1}{2}}, d=100^{-\frac{3}{2}} jest:
Odpowiedzi:
A. c B. a
C. b D. d
Zadanie 5.  1 pkt ⋅ Numer: pp-11185 ⋅ Poprawnie: 35/41 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że \log_{9}{15}=p i \log_{9}{11}=q. Zapisz wyrażenie \log_{9}{27225} w postaci x\cdot p+y\cdot q, gdzie x,y\in\mathbb{Z}.

Podaj liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{10}, gdzie m,n\in\mathbb{Z}, spełnia równanie 3x-23=\sqrt{10}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/119 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest podzielna przez potęgę dwójki różną od jedności.

Podaj największą potęgę dwójki, która dzieli taką różnicę.

Odpowiedź:
2^k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20138 ⋅ Poprawnie: 93/163 [57%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz średnią arytmetyczną liczb \log_{2}{48}, -\log_{2}{3} i 2.
Odpowiedź:
\overline{x}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20834 ⋅ Poprawnie: 139/183 [75%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\log_{3}{12}+2\log_{3}{3\sqrt{2}}-3\log_{3}{2} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 125/155 [80%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Średni wiek zawodnika n osobowej drużyny piłkarskiej jest równy 24 lat. Trener tej drużyny ma 40 lat, a średni wiek zawodników drużyny wraz z trenerem jest równy 25 lat.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2}, b=4\cdot 2^{-2}+9\cdot 3^{-1}, c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1} oraz dwie nierówności: (1-x)^2\leqslant (x-1)(x+1)-2 oraz \frac{1}{4}x+3\geqslant \frac{3}{2}x-2.

Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych dwóch liczb.

Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm