Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 191/241 [79%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wartość wyrażenia
64^{12}+64^{12}+64^{12}+64^{12}
w postaci potęgi
p^k , gdzie
p,k\in\mathbb{N} i
p jest liczbą pierwszą.
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10342 ⋅ Poprawnie: 538/674 [79%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczbę
4\sqrt{2}-\left(1+2\sqrt{2}\right)^2
zapisz w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{Z} , zaś
c\in\mathbb{N} .
Odpowiedź:
a+b\sqrt{c}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10455 ⋅ Poprawnie: 424/498 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
w=1000001^2-999999^2 .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10394 ⋅ Poprawnie: 67/139 [48%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wyrażenie
\left(x^{-1}y\right)^{11} w postaci
potęgi o podstawie
\frac{x}{y} .
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10236 ⋅ Poprawnie: 232/275 [84%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia
w=\log_{2}{2}-\log_{2}{8}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiaż równanie
27^3\cdot 2x-3^9=3\cdot 3^{10}x+2\cdot 3^9
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20197 ⋅ Poprawnie: 94/210 [44%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Liczba
n przy dzieleniu przez
5 daje resztę
1 .
Oblicz resztę z dzielenia podwojonego kwadratu liczby
n przez 10 .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}}
{5-\left(\frac{1}{2}\right)^{-1}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
xyz , jeśli wiadomo, że
\log_{2}{x}=3 ,
y=\log{\frac{1}{10000}} i
z=\log_{0,05}{20} .
Odpowiedź:
x\cdot y\cdot z=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{2\log{\frac{1}{7}}+\log{7}}{\log{28}-\log{4}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
63 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
77 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Wiedząc, że
\frac{1}{\log_{a}{3}}=5 ,
3\log_{2}{\frac{1}{2}}=b oraz
2\log_{c}{3}=4 oblicz
\frac{\sqrt{b^2\cdot a}}{c} .
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}=
(wpisz liczbę całkowitą)
Rozwiąż