Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 191/241 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wartość wyrażenia 64^{15}+64^{15}+64^{15}+64^{15} w postaci potęgi p^k, gdzie p,k\in\mathbb{N} i p jest liczbą pierwszą.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10345 ⋅ Poprawnie: 192/218 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{7}{\sqrt{5}-1}-\frac{7}{1+\sqrt{5}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10465 ⋅ Poprawnie: 148/175 [84%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wartość wyrażenia (m+4)^2 jest większa od wartości wyrażenia m^2+16 o:
Odpowiedzi:
A. 8m B. 8
C. 16m^2 D. 16m
Zadanie 4.  1 pkt ⋅ Numer: pp-10426 ⋅ Poprawnie: 44/107 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba \left(9^2+9^{\frac{1}{2}}\right)\cdot 9^{-2} jest większa od liczby \frac{1}{9^{2}} o p\%.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10296 ⋅ Poprawnie: 82/109 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla n=7 oblicz wartość wyrażenia w= \log_{8}{(9n+1)}+\log_{3}{3^7} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 27^3\cdot 2x-3^9=2\cdot 3^{10}x+2\cdot 3^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20835 ⋅ Poprawnie: 63/227 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Doprowadź wyrażenie \left(x-2y\right)^2-\left(2x+y\right)\left(y-2x\right)-\left(3x-2y\right)^2-4xy do najprostszej postaci, a następnie oblicz jego wartość dla x=2\sqrt{5} i y=1-2\sqrt{5}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 301/412 [73%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\frac{1}{3^3}\cdot \sqrt[3]{2^3}\cdot 2^{\frac{1}{2}}} {(2^3)^{\frac{1}{3}}\cdot 3^{-3}\cdot \sqrt{2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz xyz, jeśli wiadomo, że \log_{2}{x}=2, y=\log{\frac{1}{1000}} i z=\log_{0,05}{20}.
Odpowiedź:
x\cdot y\cdot z= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz wartośc wyrażenia w=\log_{2}{4\sqrt{15}}+\log_{2}{2\sqrt{15}}-\log_{2}{30} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 105 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 112 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x i y spełniają układ równań: \begin{cases} -\log_{2}{\frac{1}{25}}=2x \\ y+\log_{2}{\frac{4}{5}}=2 \end{cases} .

Oblicz x-y.

Odpowiedź:
x-y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm