Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10420 ⋅ Poprawnie: 131/161 [81%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wartość wyrażenia
32^{23}-8^{38}
w postaci potęgi
p^k , gdzie
p,k\in\mathbb{Z}
i
p jest liczbą pierwszą.
Podaj wykładnik k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10326 ⋅ Poprawnie: 208/260 [80%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz wyrażenie
\frac{\sqrt{27}}{\sqrt[3]{81}}
w najprostszej postaci
\sqrt[m]{p} , gdzie
m,p\in\mathbb{N} .
Podaj liczby m i p .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11500 ⋅ Poprawnie: 790/1026 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wartość wyrażenia:
\left(\sqrt{12}-7\sqrt{3}\right)^2
w najprostszej postaci
a\sqrt{b} ,
gdzie
a,b\in\mathbb{Z} .
Odpowiedź:
a\sqrt{b}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11590 ⋅ Poprawnie: 25/30 [83%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Oblicz wartość wyrażenia
\sqrt[3]{27^{-1}}\cdot \frac{1}{27}^0
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10297 ⋅ Poprawnie: 239/283 [84%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz wartość logarytmu
w=
\log_{\sqrt{3}}{(81\sqrt{3})}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 75/175 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dana jest liczba
p=17^{13}+4\cdot 17^{12}-3\cdot 17^{11}
.
Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę
p .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największą nieparzystą liczbę pierwszą, która dzieli
p .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 79/142 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozłóż na czynniki wyrażenie
16-a^2+2ab-b^2
.
Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią
jest 4\cdot 13=52 .
Odpowiedź:
m\cdot n=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 275/383 [71%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{\frac{1}{5^3}\cdot \sqrt[3]{2^3}\cdot 2^{\frac{1}{2}}}
{(2^3)^{\frac{1}{3}}\cdot 5^{-3}\cdot \sqrt{2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
xyz , jeśli wiadomo, że
\log_{3}{x}=4 ,
y=\log{\frac{1}{1000}} i
z=\log_{0,05}{20} .
Odpowiedź:
x\cdot y\cdot z=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{2\log{\frac{1}{10}}+\log{20}}{\log{20}-\log{4}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
90 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
126 km/h.
Jaka była średnia prędkość autobusu na całej trasie?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« « Autobus jechał ze średnią prędkością
60 km/h przez
\frac{1}{2} całej trasy. Pozostałą część trasy pokonał ze
średnią prędkością
80 km/h.
Oblicz średnią prędkość tego autobusu na całej trasie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż