Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10434 ⋅ Poprawnie: 580/724 [80%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wyrażenie
\frac{5^{31}+5^{30}}
{5^{30}+5^{29}}
w postaci potęgi o podstawie
5^k .
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10352 ⋅ Poprawnie: 314/466 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Która z podanych liczb jest niewymierna:
Odpowiedzi:
A. \sqrt[3]{2}\cdot\sqrt[3]{864}
B. \frac{\sqrt{242}}{\sqrt{2}}
C. \left(5+\sqrt{2}\right)^2
D. 8^{\frac{2}{3}}
Zadanie 3. 1 pkt ⋅ Numer: pp-10440 ⋅ Poprawnie: 520/585 [88%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
w=(\sqrt{5}-\sqrt{3})^2+2\sqrt{15} .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10397 ⋅ Poprawnie: 652/994 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Zapisz iloczyn
32^{-11}\cdot \left(\frac{1}{8}\right)^{19}
w postaci
a^p , gdzie
a,p\in\mathbb{Z}
i
a jest liczbą pierwszą.
Podaj liczby a i p .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10292 ⋅ Poprawnie: 343/409 [83%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wiadomo, że
\log_{\frac{1}{3}}{x}=-1 .
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dana jest liczba
p=7^{13}+4\cdot 7^{12}-3\cdot 7^{11}
.
Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę
p .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największą nieparzystą liczbę pierwszą, która dzieli
p .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 83/145 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozłóż na czynniki wyrażenie
16-a^2+2ab-b^2
.
Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią
jest 4\cdot 13=52 .
Odpowiedź:
m\cdot n=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Oblicz wartość wyrażenia
w=\frac{\frac{1}{7^2}\cdot \sqrt[3]{7^3}\cdot 7^{\frac{1}{2}}}{\sqrt{7}\cdot 7^{-2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20131 ⋅ Poprawnie: 43/121 [35%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane są liczby
x=\log{2} ,
y=\log{3} . Logarytm dziesiętny z liczby
108 jest równy
m\cdot x+n\cdot y .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz wartośc wyrażenia
w=\log_{2}{2\sqrt{30}}+\log_{2}{\sqrt{30}}-\log_{2}{15}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 67/111 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
63 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
84 km/h.
Jaka była średnia prędkość autobusu na całej trasie?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« « Autobus jechał ze średnią prędkością
60 km/h przez
\frac{1}{2} całej trasy. Pozostałą część trasy pokonał ze
średnią prędkością
80 km/h.
Oblicz średnią prędkość tego autobusu na całej trasie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż