Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 191/241 [79%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wartość wyrażenia
64^{27}+64^{27}+64^{27}+64^{27}
w postaci potęgi
p^k , gdzie
p,k\in\mathbb{N} i
p jest liczbą pierwszą.
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10354 ⋅ Poprawnie: 257/310 [82%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
w=
\frac{2+\sqrt{98}-\sqrt{32}+\sqrt{242}}{7\sqrt{2}+1}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10445 ⋅ Poprawnie: 536/747 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
\left(6-\sqrt{2}\right)^2+4\left(3-\sqrt{2}\right)
w najprostszej postaci
m+n\sqrt{k} , gdzie
m,n,k\in\mathbb{Z} .
Odpowiedź:
m+n\sqrt{k}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11589 ⋅ Poprawnie: 12/25 [48%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Oblicz wartość wyrażenia
\frac{\sqrt[3]{-\frac{1}{8}}\cdot 4^{-\frac{1}{4}}}{\frac{1}{4}}
.
Odpowiedź:
w=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10313 ⋅ Poprawnie: 152/208 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Wartości wyrażenia
\log_{5x-6}{(x^2+2)}
nie można obliczyć gdy:
Odpowiedzi:
A. x=\frac{8}{5}
B. x=\frac{11}{5}
C. x=\frac{13}{10}
D. x=\frac{7}{5}
Zadanie 6. 2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiaż równanie
343^3\cdot 2x-7^9=2\cdot 7^{10}x+2\cdot 7^9
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 83/145 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozłóż na czynniki wyrażenie
64-a^2+2ab-b^2
.
Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią
jest 4\cdot 13=52 .
Odpowiedź:
m\cdot n=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/281 [64%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{6^{-2}-3\cdot \left(2\right)^{-2}}
{5-\left(\frac{1}{6}\right)^{-1}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Podaj największą z liczb
a ,
b ,
c jeśli
\log_{a}{\frac{1}{9}}=-1 ,
\log_{2,5}{b}=2 i
c=\log_{\sqrt{2}}{2} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{2\log{\frac{1}{8}}+\log{16}}{\log{28}-\log{7}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 125/155 [80%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Średni wiek zawodnika
n osobowej drużyny piłkarskiej jest równy
28 lat.
Trener tej drużyny ma
52 lat, a średni wiek zawodników drużyny wraz z trenerem
jest równy
29 lat.
Wyznacz liczbę n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Dane są liczby:
a=2+\left(-\frac{2}{3}\right)^{-2} ,
b=4\cdot 2^{-2}+9\cdot 3^{-1} ,
c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1}
oraz dwie nierówności:
(1-x)^2\leqslant (x-1)(x+1)-2 oraz
\frac{1}{4}x+3\geqslant \frac{3}{2}x-2 .
Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych
dwóch liczb.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż