Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10395 ⋅ Poprawnie: 215/329 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Połowa liczby
4^{2025} jest równa:
Odpowiedzi:
A. 2^{2025}
B. 4\cdot 2^{1012}
C. 2\cdot 4^{2024}
D. 2^{2024}
Zadanie 2. 1 pkt ⋅ Numer: pp-10371 ⋅ Poprawnie: 399/480 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyrażenie
w=2\sqrt{48}-\sqrt{75}
zapisz w najprostszej postaci
m\sqrt{n} , gdzie
m,n\in\mathbb{Z} .
Odpowiedź:
w=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10452 ⋅ Poprawnie: 403/687 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Zapisz wyrażenie
\left(\sqrt{12}-1\right)^2+(\sqrt{6}-1)(\sqrt{6}+1)
w najprostszej postaci
m+n\sqrt{k} , gdzie
m,n,k\in\mathbb{Z} .
Odpowiedź:
m+n\sqrt{k}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10386 ⋅ Poprawnie: 375/572 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dla każdej dodatniej liczby
a iloraz
\frac{a^{-2.4}}{a^{1.2}} można zapisać w postaci
\left(\frac{1}{a}\right)^m .
Podaj wykładnik m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11584 ⋅ Poprawnie: 89/111 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia
w=\log_{2}
\left[
\log_{4}{\left(\log_{5}{625}\right)}
\right]
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dana jest liczba
p=5^{13}+4\cdot 5^{12}-3\cdot 5^{11}
.
Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę
p .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największą nieparzystą liczbę pierwszą, która dzieli
p .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Wiedząc, że
x+y=\sqrt{6} i
x^2+y^2=5 oblicz
xy .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 288/399 [72%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{\frac{1}{3^3}\cdot \sqrt[3]{2^3}\cdot 2^{\frac{1}{2}}}
{(2^3)^{\frac{1}{3}}\cdot 3^{-3}\cdot \sqrt{2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
xyz , jeśli wiadomo, że
\log_{2}{x}=2 ,
y=\log{\frac{1}{10000}} i
z=\log_{0,05}{20} .
Odpowiedź:
x\cdot y\cdot z=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{2\log{\frac{1}{6}}+\log{4}}{\log{45}-\log{5}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 125/155 [80%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Średni wiek zawodnika
n osobowej drużyny piłkarskiej jest równy
27 lat.
Trener tej drużyny ma
44 lat, a średni wiek zawodników drużyny wraz z trenerem
jest równy
28 lat.
Wyznacz liczbę n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Dane są liczby:
a=2+\left(-\frac{2}{3}\right)^{-2} ,
b=4\cdot 2^{-2}+9\cdot 3^{-1} ,
c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1}
oraz dwie nierówności:
(1-x)^2\leqslant (x-1)(x+1)-2 oraz
\frac{1}{4}x+3\geqslant \frac{3}{2}x-2 .
Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych
dwóch liczb.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż