Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10412 ⋅ Poprawnie: 100/123 [81%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Zapisz wartość wyrażenia 4.9\cdot 10^{19}-2.2\cdot 10^{18} w postaci m\cdot 10^c, gdzie m\in\langle 1,10) i c\in\mathbb{Z}.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10354 ⋅ Poprawnie: 257/310 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{5+\sqrt{200}-\sqrt{18}+\sqrt{128}}{3\sqrt{2}+1} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10334 ⋅ Poprawnie: 130/232 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie w=11\sqrt{2}-\frac{\sqrt{2}+1}{\sqrt{2}-1} w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10377 ⋅ Poprawnie: 483/590 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie 3^{\frac{8}{3}}\cdot \sqrt[3]{9^2} w postaci potęgi o podstawie 3.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10306 ⋅ Poprawnie: 99/132 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Liczba \frac{\log_{7}{1715}+\log_{7}{5}} {\log_{7}{245}-\log_{7}{5}} jest równa:
Odpowiedzi:
A. \frac{2+\log_{7}{25}}{4} B. \frac{3+\log_{7}{5}}{2}
C. \frac{3+\log_{7}{25}}{2} D. \frac{1+\log_{7}{5}}{2}
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 343^3\cdot 2x-7^9=5\cdot 7^{10}x+2\cdot 7^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/118 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest podzielna przez potęgę dwójki różną od jedności.

Podaj największą potęgę dwójki, która dzieli taką różnicę.

Odpowiedź:
2^k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{7^{-2}-3\cdot \left(\frac{7}{3}\right)^{-2}} {5-\left(\frac{1}{7}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20140 ⋅ Poprawnie: 124/175 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartośc wyrażenia w= \frac{\log{2}+\log{9}} {\log{54}-\log{3}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{4}{256}+\log_{4}{1}}{2}\cdot \left(\frac{1}{4^2}\right)^{-2}} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 118/148 [79%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Średni wiek zawodnika n osobowej drużyny piłkarskiej jest równy 31 lat. Trener tej drużyny ma 47 lat, a średni wiek zawodników drużyny wraz z trenerem jest równy 32 lat.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 115/181 [63%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2}, b=4\cdot 2^{-2}+9\cdot 3^{-1}, c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1} oraz dwie nierówności: (1-x)^2\leqslant (x-1)(x+1)-2 oraz \frac{1}{4}x+3\geqslant \frac{3}{2}x-2.

Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych dwóch liczb.

Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm