Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10403 ⋅ Poprawnie: 205/285 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Na tablicy zapisano liczby (2^2)^{2^2}, 2^{2^{2^2}}, \left(2^{2^2}\right)^2, 2^{(2^2)^2}. Ile różnych liczb reprezentują te zapisy:
Odpowiedzi:
A. 1 B. 4
C. 3 D. 2
Zadanie 2.  1 pkt ⋅ Numer: pp-10331 ⋅ Poprawnie: 486/635 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{\sqrt{12}}{\sqrt{27}-\sqrt{12}}. Wynik zapisz w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Odpowiedź:
a\sqrt{b}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10470 ⋅ Poprawnie: 518/1034 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz liczbę odwrotną do liczby 4+\sqrt{15}.
Odpowiedź:
m+n\sqrt{k}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10382 ⋅ Poprawnie: 189/212 [89%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie \frac{21^{30} \cdot 3^6} {7^{30}\cdot 3^{30}} \cdot \frac{1}{3} w postaci potęgi p^k o całkowitym wykładniku i podstawie, która jest liczbą pierwszą.

Podaj podstawę i wykładnik tej potęgi.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10277 ⋅ Poprawnie: 438/442 [99%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że c=\log_{2}{5}. Wtedy:
Odpowiedzi:
A. c^5=2 B. 2^5=c
C. 2^c=5 D. c^2=5
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 27^3\cdot 2x-3^9=4\cdot 3^{10}x+2\cdot 3^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Wiedząc, że x+y=2\sqrt{2} i x^2+y^2=16 oblicz xy.
Odpowiedź:
x\cdot y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Podaj największą z liczb a, b, c jeśli \log_{a}{\frac{1}{3}}=-1, \log_{2,5}{b}=2 i c=\log_{\sqrt{2}}{2}.
Odpowiedź:
max(a,b,c)=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{2}{8}+\log_{2}{1}}{\sqrt{2}}\cdot \left(\frac{1}{2^2}\right)^{-2}} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 70 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 126 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « « Autobus jechał ze średnią prędkością 60 km/h przez \frac{1}{3} całej trasy. Pozostałą część trasy pokonał ze średnią prędkością 80 km/h.

Oblicz średnią prędkość tego autobusu na całej trasie.

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm