Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10422 ⋅ Poprawnie: 192/208 [92%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczbę 16^{52} otrzymamy podnosząc liczbę 4^4 do potęgi k.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10368 ⋅ Poprawnie: 561/668 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : \sqrt[3]{-27}=-3 T/N : \sqrt{27}=3\sqrt{3}
T/N : \sqrt{(-3)^2}=3  
Zadanie 3.  1 pkt ⋅ Numer: pp-11461 ⋅ Poprawnie: 27/38 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz liczbę odwrotną do liczby \sqrt{6+2\sqrt{5}}\cdot\sqrt{6-2\sqrt{5}}.
Odpowiedź:
\frac{m\sqrt{n}}{k}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10393 ⋅ Poprawnie: 138/351 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Zapisz odwrotność liczby 3\sqrt{3}\cdot \left(\frac{1}{27}\right)^{-\frac{4}{3}} w postaci potęgi p^k, gdzie k\in\mathbb{W} i p jest liczbą pierwszą.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10293 ⋅ Poprawnie: 192/246 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\frac{1}{2}\log_{2}{14}-\log_{2}{\sqrt{7}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 27^3\cdot 2x-3^9=3\cdot 3^{10}x+2\cdot 3^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 (2 pkt) O liczbie n wiadomo, że jest podzielna przez 3. Wykaż, że liczba dodatnia m=n^3-9n jest podzielna przez 6.

Podaj największą potęgę liczby 3, która dzieli liczbę dodatnią m.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20140 ⋅ Poprawnie: 124/175 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartośc wyrażenia w= \frac{\log{2}+\log{9}} {\log{54}-\log{3}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20136 ⋅ Poprawnie: 190/234 [81%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\log{3}+\log{5}}{\log{75}-\log{5}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 63 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 126 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « « Autobus jechał ze średnią prędkością 60 km/h przez \frac{3}{4} całej trasy. Pozostałą część trasy pokonał ze średnią prędkością 80 km/h.

Oblicz średnią prędkość tego autobusu na całej trasie.

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm