Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 191/241 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wartość wyrażenia 64^{30}+64^{30}+64^{30}+64^{30} w postaci potęgi p^k, gdzie p,k\in\mathbb{N} i p jest kwadratem liczby pierwszej.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10360 ⋅ Poprawnie: 367/433 [84%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie \sqrt{10\sqrt[3]{4\sqrt{256}}} w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10463 ⋅ Poprawnie: 290/418 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wyrażenie 25-(4x-1)^2 jest równe:
Odpowiedzi:
A. (5-4x)(x-1) B. (6-4x)(4x+4)
C. (4+4x)(4-6x) D. 24-16x^2
Zadanie 4.  1 pkt ⋅ Numer: pp-10407 ⋅ Poprawnie: 303/442 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wartość wyrażenia \left(\frac{3}{13}\right)^{53}\cdot \left(\frac{13}{3}\right)^{51} w postaci potęgi o podstawie \frac{13}{3}.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10255 ⋅ Poprawnie: 92/155 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\left(\log_{\sqrt{10}}{10\sqrt{10}}\right)^{6} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{10}, gdzie m,n\in\mathbb{Z}, spełnia równanie 3x-22=\sqrt{10}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 (2 pkt) O liczbie n wiadomo, że jest podzielna przez 10. Wykaż, że liczba dodatnia m=n^3-100n jest podzielna przez 6.

Podaj największą potęgę liczby 10, która dzieli liczbę dodatnią m.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 276/384 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\frac{1}{11^3}\cdot \sqrt[3]{5^3}\cdot 5^{\frac{1}{2}}} {(5^3)^{\frac{1}{3}}\cdot 11^{-3}\cdot \sqrt{5}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Podaj największą z liczb a, b, c jeśli \log_{a}{\frac{1}{10}}=-1, \log_{2,5}{b}=2 i c=\log_{\sqrt{2}}{2}.
Odpowiedź:
max(a,b,c)=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2\log{\frac{1}{10}}+\log{4}}{\log{125}-\log{5}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 72 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 90 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{9}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{9}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm