Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10381 ⋅ Poprawnie: 270/313 [86%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wyrażenie
11^{31}\cdot 121^{93}
w postaci potęgi
p^k o całkowitym wykładniku i podstawie,
która jest liczbą pierwszą.
Podaj podstawę i wykładnik tej potęgi.
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10357 ⋅ Poprawnie: 198/307 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Zapisz wyrażenie
5^{14}\sqrt[3]{625}
w postaci
25^p .
Podaj p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10334 ⋅ Poprawnie: 131/233 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
w=11\sqrt{2}-\frac{\sqrt{2}+1}{\sqrt{2}-1}
w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b,c\in\mathbb{Z} .
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10423 ⋅ Poprawnie: 223/310 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz potęgę
5^{\frac{13}{3}}
w postaci
a\sqrt[3]{5} .
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11584 ⋅ Poprawnie: 89/111 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia
w=\log_{2}
\left[
\log_{2}{\left(\log_{6}{36}\right)}
\right]
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
m+n\sqrt{7} , gdzie
m,n\in\mathbb{Z} , spełnia równanie
3x-27=\sqrt{7}x-1 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/119 [16%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest
podzielna przez potęgę dwójki różną od jedności.
Podaj największą potęgę dwójki, która dzieli taką różnicę.
Odpowiedź:
2^k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{6^{-2}-3\cdot \left(2\right)^{-2}}
{5-\left(\frac{1}{6}\right)^{-1}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Podaj największą z liczb
a ,
b ,
c jeśli
\log_{a}{\frac{1}{9}}=-1 ,
\log_{2,5}{b}=2 i
c=\log_{\sqrt{2}}{2} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20834 ⋅ Poprawnie: 139/183 [75%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\log_{4}{144}+2\log_{4}{4\sqrt{6}}-3\log_{4}{6}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
104 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
65 km/h.
Jaka była średnia prędkość autobusu na całej trasie?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Wiedząc, że
\frac{1}{\log_{a}{8}}=5 ,
3\log_{2}{\frac{1}{2}}=b oraz
2\log_{c}{8}=4 oblicz
\frac{\sqrt{b^2\cdot a}}{c} .
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}=
(wpisz liczbę całkowitą)
Rozwiąż