Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10411 ⋅ Poprawnie: 99/126 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia w=\frac{100^{n-1}}{2^{2n-2}\cdot 5^{2n}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11586 ⋅ Poprawnie: 155/173 [89%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Która równość jest prawdziwa:
Odpowiedzi:
A. -9^2=(-9)^2 B. 9^3=(-9)^3
C. -\sqrt[3]{9}=\sqrt[3]{-9} D. \sqrt{(-9)^2}=-9
Zadanie 3.  1 pkt ⋅ Numer: pp-10447 ⋅ Poprawnie: 193/253 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie \frac{x-16y}{\sqrt{x}+4\sqrt{y}} jest równe:
Odpowiedzi:
A. \sqrt{x}-4\sqrt{y} B. \sqrt{x}+4\sqrt{y}
C. \sqrt{x-4y} D. \sqrt{x+4y}
Zadanie 4.  1 pkt ⋅ Numer: pp-10426 ⋅ Poprawnie: 44/107 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba \left(16^2+16^{\frac{1}{2}}\right)\cdot 16^{-2} jest większa od liczby \frac{1}{16^{2}} o p\%.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10284 ⋅ Poprawnie: 121/155 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że x=2+\log_{6}{2}. Wówczas x=\log_{6}{m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 27^3\cdot 2x-3^9=2\cdot 3^{10}x+2\cdot 3^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 52/396 [13%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Wykaż, że dla każdych liczb całkowitych x i y, wyrażenie 40x^2+36y^2+24xy+60x+25 można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi (niektóre z nich mogą być równe zero).

Podaj mniejszą z liczb a_1 i a_2.

Odpowiedź:
min(a_1,a_2)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\frac{1}{5^2}\cdot \sqrt[3]{5^3}\cdot 5^{\frac{1}{2}}}{\sqrt{5}\cdot 5^{-2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20138 ⋅ Poprawnie: 93/163 [57%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz średnią arytmetyczną liczb \log_{2}{40}, -\log_{2}{5} i 2.
Odpowiedź:
\overline{x}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20136 ⋅ Poprawnie: 190/234 [81%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\log{11}+\log{5}}{\log{275}-\log{5}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 67/111 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 135 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 90 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « « Autobus jechał ze średnią prędkością 60 km/h przez \frac{3}{8} całej trasy. Pozostałą część trasy pokonał ze średnią prędkością 80 km/h.

Oblicz średnią prędkość tego autobusu na całej trasie.

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm