Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10412 ⋅ Poprawnie: 101/124 [81%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Zapisz wartość wyrażenia 4.8\cdot 10^{19}-2.7\cdot 10^{18} w postaci m\cdot 10^c, gdzie m\in\langle 1,10) i c\in\mathbb{Z}.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10362 ⋅ Poprawnie: 120/174 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia w=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+\frac{2}{\sqrt{3}+2} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11500 ⋅ Poprawnie: 791/1026 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wartość wyrażenia: \left(\sqrt{45}-7\sqrt{5}\right)^2 w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
a\sqrt{b}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10426 ⋅ Poprawnie: 44/107 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba \left(100^2+100^{\frac{1}{2}}\right)\cdot 100^{-2} jest większa od liczby \frac{1}{100^{2}} o p\%.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11658 ⋅ Poprawnie: 94/133 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zmieszano c=21 kilogramów cukierków czekoladowych w cenie 13.20 złotych za kilogram oraz m=25 kilogramów cukierków marcepanowych w cenie 22.40 złotych za kilogram.

Ile złotych kosztuje kilogram tej mieszanki?

Odpowiedź:
cena=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 343^3\cdot 2x-7^9=5\cdot 7^{10}x+2\cdot 7^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20196 ⋅ Poprawnie: 45/72 [62%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach zapisanych w odwrotnej kolejności jest podzielna przez 3.

Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\frac{1}{17^2}\cdot \sqrt[3]{17^3}\cdot 17^{\frac{1}{2}}}{\sqrt{17}\cdot 17^{-2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20138 ⋅ Poprawnie: 93/163 [57%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz średnią arytmetyczną liczb \log_{4}{327680}, -\log_{4}{5} i 2.
Odpowiedź:
\overline{x}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2\log{\frac{1}{3}}+\log{3}}{\log{15}-\log{5}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 66 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 88 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2}, b=4\cdot 2^{-2}+9\cdot 3^{-1}, c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1} oraz dwie nierówności: (1-x)^2\leqslant (x-1)(x+1)-2 oraz \frac{1}{4}x+3\geqslant \frac{3}{2}x-2.

Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych dwóch liczb.

Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm