Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10395 ⋅ Poprawnie: 215/329 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Połowa liczby 4^{2025} jest równa:
Odpowiedzi:
A. 2^{2025} B. 4\cdot 2^{1012}
C. 2\cdot 4^{2024} D. 2^{2024}
Zadanie 2.  1 pkt ⋅ Numer: pp-10371 ⋅ Poprawnie: 399/480 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyrażenie w=2\sqrt{48}-\sqrt{75} zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{Z}.
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10452 ⋅ Poprawnie: 403/687 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Zapisz wyrażenie \left(\sqrt{12}-1\right)^2+(\sqrt{6}-1)(\sqrt{6}+1) w najprostszej postaci m+n\sqrt{k}, gdzie m,n,k\in\mathbb{Z}.
Odpowiedź:
m+n\sqrt{k}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10386 ⋅ Poprawnie: 375/572 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dla każdej dodatniej liczby a iloraz \frac{a^{-2.4}}{a^{1.2}} można zapisać w postaci \left(\frac{1}{a}\right)^m.

Podaj wykładnik m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11584 ⋅ Poprawnie: 89/111 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{2} \left[ \log_{4}{\left(\log_{5}{625}\right)} \right] .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=5^{13}+4\cdot 5^{12}-3\cdot 5^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Wiedząc, że x+y=\sqrt{6} i x^2+y^2=5 oblicz xy.
Odpowiedź:
x\cdot y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 288/399 [72%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\frac{1}{3^3}\cdot \sqrt[3]{2^3}\cdot 2^{\frac{1}{2}}} {(2^3)^{\frac{1}{3}}\cdot 3^{-3}\cdot \sqrt{2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz xyz, jeśli wiadomo, że \log_{2}{x}=2, y=\log{\frac{1}{10000}} i z=\log_{0,05}{20}.
Odpowiedź:
x\cdot y\cdot z= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2\log{\frac{1}{6}}+\log{4}}{\log{45}-\log{5}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 125/155 [80%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Średni wiek zawodnika n osobowej drużyny piłkarskiej jest równy 27 lat. Trener tej drużyny ma 44 lat, a średni wiek zawodników drużyny wraz z trenerem jest równy 28 lat.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2}, b=4\cdot 2^{-2}+9\cdot 3^{-1}, c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1} oraz dwie nierówności: (1-x)^2\leqslant (x-1)(x+1)-2 oraz \frac{1}{4}x+3\geqslant \frac{3}{2}x-2.

Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych dwóch liczb.

Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm