Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10431 ⋅ Poprawnie: 523/557 [93%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\frac{2^{6}\cdot 3^{10}\cdot 7^{11}}{21^{10}\cdot 2^{4}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10333 ⋅ Poprawnie: 74/141 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Liczbą niewymierną nie jest długość przekątnej kwadratu, o boku długości:
Odpowiedzi:
A. 1+\sqrt{32}
B. \sqrt{8}-\frac{1}{\sqrt{8}}
C. \sqrt{12}
D. 121
Zadanie 3. 1 pkt ⋅ Numer: pp-11500 ⋅ Poprawnie: 790/1026 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wartość wyrażenia:
\left(\sqrt{8}-7\sqrt{2}\right)^2
w najprostszej postaci
a\sqrt{b} ,
gdzie
a,b\in\mathbb{Z} .
Odpowiedź:
a\sqrt{b}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11403 ⋅ Poprawnie: 236/339 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla każdej dodatniej liczby
a wyrażenie
\frac{a^{-0,5}}{a^{-1,0}}:\frac{a^{1,0}}{a^{0,5}}\cdot a^{-1,5}
mozna zapisać w postaci potęgi o podstawie
a .
Podaj wykładnik tej potęgi.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10275 ⋅ Poprawnie: 205/223 [91%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia
w=\log_{2}{8}+\log_{2}{1} .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiaż równanie
27^3\cdot 2x-3^9=2\cdot 3^{10}x+2\cdot 3^9
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
(2 pkt)
O liczbie
n wiadomo, że jest podzielna przez
2 .
Wykaż, że liczba dodatnia
m=n^3-4n jest podzielna przez
6 .
Podaj największą potęgę liczby 2 , która dzieli liczbę dodatnią
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}}
{5-\left(\frac{1}{2}\right)^{-1}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Dane są liczby:
a=\log_{3}{16}-3\log_{3}{2} oraz
b=3\log_{3}{6}-\log_{3}{18} .
Zapisz wyrażenie b-a w postaci
y+\log_{3}{x} . Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20834 ⋅ Poprawnie: 139/183 [75%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\log_{3}{147}+2\log_{3}{3\sqrt{7}}-3\log_{3}{7}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
70 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
91 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Wiedząc, że
\frac{1}{\log_{a}{3}}=5 ,
3\log_{2}{\frac{1}{2}}=b oraz
2\log_{c}{3}=4 oblicz
\frac{\sqrt{b^2\cdot a}}{c} .
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}=
(wpisz liczbę całkowitą)
Rozwiąż