Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10425 ⋅ Poprawnie: 181/243 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wartość wyrażenia
\frac{550\cdot 25^{146}+3\cdot 25^{147}}{25^{145}}
w postaci potęgi
p^k , gdzie
p,k\in\mathbb{Z} i
p
jest liczbą pierwszą.
Podaj wykładnik k tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10353 ⋅ Poprawnie: 552/830 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Oblicz wartość wyrażenia
w=\frac{\sqrt{27}+\sqrt{75}}{\sqrt{3}} . Wynik zapisz w najprostszej postaci
m\sqrt{n} , gdzie
m,n\in\mathbb{N} .
Odpowiedź:
w=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11500 ⋅ Poprawnie: 790/1026 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wartość wyrażenia:
\left(\sqrt{48}-7\sqrt{3}\right)^2
w najprostszej postaci
a\sqrt{b} ,
gdzie
a,b\in\mathbb{Z} .
Odpowiedź:
a\sqrt{b}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10400 ⋅ Poprawnie: 291/386 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wyrażenie
\left(\sqrt[3]{25}\cdot 5^{-2}\right)^{21}
w postaci potęgi o podstawie
5 .
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10317 ⋅ Poprawnie: 82/96 [85%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
A. \log_{5}{4}=625
B. \log_{\frac{1}{5}}{125}=-3
C. \left(-\frac{5}{6}\right)^{-1}=\frac{6}{5}
D. 2\log{1000}+\log{0.001}=6
Zadanie 6. 2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
m+n\sqrt{6} , gdzie
m,n\in\mathbb{Z} , spełnia równanie
3x-10=\sqrt{6}x-1 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
(2 pkt)
O liczbie
n wiadomo, że jest podzielna przez
5 .
Wykaż, że liczba dodatnia
m=n^3-25n jest podzielna przez
6 .
Podaj największą potęgę liczby 5 , która dzieli liczbę dodatnią
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{4^{-2}-3\cdot \left(\frac{4}{3}\right)^{-2}}
{5-\left(\frac{1}{4}\right)^{-1}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
xyz , jeśli wiadomo, że
\log_{3}{x}=4 ,
y=\log{\frac{1}{10000}} i
z=\log_{0,05}{20} .
Odpowiedź:
x\cdot y\cdot z=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz wartośc wyrażenia
w=\log_{2}{2\sqrt{70}}+\log_{2}{\sqrt{70}}-\log_{2}{35}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
63 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
84 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Wiedząc, że
\frac{1}{\log_{a}{5}}=5 ,
3\log_{2}{\frac{1}{2}}=b oraz
2\log_{c}{5}=4 oblicz
\frac{\sqrt{b^2\cdot a}}{c} .
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}=
(wpisz liczbę całkowitą)
Rozwiąż