Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10389 ⋅ Poprawnie: 242/269 [89%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz wartość wyrażenia w=\frac{9^{8}\cdot 4^{9}}{36^{8}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10368 ⋅ Poprawnie: 561/668 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : \sqrt[3]{189}=3\sqrt[3]{3} T/N : \sqrt[3]{-27}=-3
T/N : \sqrt{(-3)^2}=3  
Zadanie 3.  1 pkt ⋅ Numer: pp-10454 ⋅ Poprawnie: 102/133 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyrażenie \left(\sqrt{121n}-\sqrt{n}\right)^2 można zapisać w postaci p\cdot n.

Podaj wartość współczynnika p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10390 ⋅ Poprawnie: 270/386 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczbą wymierną jest liczba:
Odpowiedzi:
A. 9^{\frac{3}{4}} B. 9^{\frac{3}{2}}
C. 9^{\frac{1}{4}} D. 9^{\frac{2}{3}}
Zadanie 5.  1 pkt ⋅ Numer: pp-10297 ⋅ Poprawnie: 240/285 [84%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oblicz wartość logarytmu w= \log_{\sqrt{3}}{(27\sqrt{3})} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 343^3\cdot 2x-7^9=2\cdot 7^{10}x+2\cdot 7^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/119 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest podzielna przez potęgę dwójki różną od jedności.

Podaj największą potęgę dwójki, która dzieli taką różnicę.

Odpowiedź:
2^k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 301/412 [73%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\frac{1}{7^3}\cdot \sqrt[3]{3^3}\cdot 3^{\frac{1}{2}}} {(3^3)^{\frac{1}{3}}\cdot 7^{-3}\cdot \sqrt{3}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz xyz, jeśli wiadomo, że \log_{4}{x}=2, y=\log{\frac{1}{10000}} i z=\log_{0,05}{20}.
Odpowiedź:
x\cdot y\cdot z= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20136 ⋅ Poprawnie: 190/234 [81%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\log{7}+\log{3}}{\log{63}-\log{3}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 105 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 112 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{7}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{7}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm