Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10431 ⋅ Poprawnie: 533/568 [93%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{2^{8}\cdot 3^{7}\cdot 7^{8}}{21^{7}\cdot 2^{7}} .
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10372 ⋅ Poprawnie: 332/381 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{\sqrt[5]{-7^5}\cdot 7^{-1}} {49}\cdot 7^2 .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10472 ⋅ Poprawnie: 444/604 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dla a=2\sqrt{2} i b=\sqrt{32} oblicz wartość wyrażenia w=(b-a)^2.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10392 ⋅ Poprawnie: 164/231 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie 2^{20}\cdot 4^{40} w postaci potęgi p^k, gdzie p,k\in\mathbb{Z} i p jest kwadratem liczby pierwszej.

Podaj wykładnik k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10307 ⋅ Poprawnie: 254/282 [90%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{2}{40}-\log_{2}{5}+\log_{4}{1} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=13^{13}+4\cdot 13^{12}-3\cdot 13^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 52/396 [13%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Wykaż, że dla każdych liczb całkowitych x i y, wyrażenie 61x^2+4y^2+20xy+84x+49 można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi (niektóre z nich mogą być równe zero).

Podaj mniejszą z liczb a_1 i a_2.

Odpowiedź:
min(a_1,a_2)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 301/412 [73%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\frac{1}{11^3}\cdot \sqrt[3]{3^3}\cdot 3^{\frac{1}{2}}} {(3^3)^{\frac{1}{3}}\cdot 11^{-3}\cdot \sqrt{3}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20138 ⋅ Poprawnie: 93/163 [57%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz średnią arytmetyczną liczb \log_{4}{512}, -\log_{4}{8} i 2.
Odpowiedź:
\overline{x}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20834 ⋅ Poprawnie: 139/183 [75%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\log_{2}{72}+2\log_{2}{2\sqrt{6}}-3\log_{2}{6} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 125/155 [80%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Średni wiek zawodnika n osobowej drużyny piłkarskiej jest równy 23 lat. Trener tej drużyny ma 48 lat, a średni wiek zawodników drużyny wraz z trenerem jest równy 24 lat.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{8}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{8}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm