Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10420 ⋅ Poprawnie: 131/161 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wartość wyrażenia 32^{23}-8^{38} w postaci potęgi p^k, gdzie p,k\in\mathbb{Z} i p jest liczbą pierwszą.

Podaj wykładnik k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10326 ⋅ Poprawnie: 208/260 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt{27}}{\sqrt[3]{81}} w najprostszej postaci \sqrt[m]{p}, gdzie m,p\in\mathbb{N}.

Podaj liczby m i p.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
p= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11500 ⋅ Poprawnie: 790/1026 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wartość wyrażenia: \left(\sqrt{12}-7\sqrt{3}\right)^2 w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
a\sqrt{b}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11590 ⋅ Poprawnie: 25/30 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oblicz wartość wyrażenia \sqrt[3]{27^{-1}}\cdot \frac{1}{27}^0 .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10297 ⋅ Poprawnie: 239/283 [84%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oblicz wartość logarytmu w= \log_{\sqrt{3}}{(81\sqrt{3})} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 75/175 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=17^{13}+4\cdot 17^{12}-3\cdot 17^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 79/142 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Rozłóż na czynniki wyrażenie 16-a^2+2ab-b^2 .

Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią jest 4\cdot 13=52.

Odpowiedź:
m\cdot n= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 275/383 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\frac{1}{5^3}\cdot \sqrt[3]{2^3}\cdot 2^{\frac{1}{2}}} {(2^3)^{\frac{1}{3}}\cdot 5^{-3}\cdot \sqrt{2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz xyz, jeśli wiadomo, że \log_{3}{x}=4, y=\log{\frac{1}{1000}} i z=\log_{0,05}{20}.
Odpowiedź:
x\cdot y\cdot z= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2\log{\frac{1}{10}}+\log{20}}{\log{20}-\log{4}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 90 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 126 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « « Autobus jechał ze średnią prędkością 60 km/h przez \frac{1}{2} całej trasy. Pozostałą część trasy pokonał ze średnią prędkością 80 km/h.

Oblicz średnią prędkość tego autobusu na całej trasie.

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm