Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 191/241 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wartość wyrażenia 64^{12}+64^{12}+64^{12}+64^{12} w postaci potęgi p^k, gdzie p,k\in\mathbb{N} i p jest liczbą pierwszą.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10342 ⋅ Poprawnie: 538/674 [79%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczbę 4\sqrt{2}-\left(1+2\sqrt{2}\right)^2 zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, zaś c\in\mathbb{N}.
Odpowiedź:
a+b\sqrt{c}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10455 ⋅ Poprawnie: 424/498 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia w=1000001^2-999999^2.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10394 ⋅ Poprawnie: 67/139 [48%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie \left(x^{-1}y\right)^{11} w postaci potęgi o podstawie \frac{x}{y}.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10236 ⋅ Poprawnie: 232/275 [84%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{2}{2}-\log_{2}{8} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 27^3\cdot 2x-3^9=3\cdot 3^{10}x+2\cdot 3^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20197 ⋅ Poprawnie: 94/210 [44%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Liczba n przy dzieleniu przez 5 daje resztę 1.

Oblicz resztę z dzielenia podwojonego kwadratu liczby n przez 10.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz xyz, jeśli wiadomo, że \log_{2}{x}=3, y=\log{\frac{1}{10000}} i z=\log_{0,05}{20}.
Odpowiedź:
x\cdot y\cdot z= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2\log{\frac{1}{7}}+\log{7}}{\log{28}-\log{4}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 63 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 77 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{3}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{3}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm