Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10398 ⋅ Poprawnie: 701/858 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyrażenie \frac{\left(\left(9^2\right)^3\right)^2} {3} jest równe:
Odpowiedzi:
A. 3^{9} B. 3\cdot 3^{22}
C. 3^{11} D. 3^{9}
Zadanie 2.  1 pkt ⋅ Numer: pp-10374 ⋅ Poprawnie: 214/302 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie \sqrt[3]{13\sqrt{13}} w najprostszej postaci \sqrt[m]{p^n}, gdzie m,n,p\in\mathbb{N}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11526 ⋅ Poprawnie: 83/174 [47%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dane są liczby: a=\frac{3+2\sqrt{2}}{2} i b=\frac{3-2\sqrt{2}}{4}. Oblicz \frac{b}{a}.
Odpowiedź:
\frac{b}{a}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10407 ⋅ Poprawnie: 303/442 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wartość wyrażenia \left(\frac{3}{11}\right)^{46}\cdot \left(\frac{11}{3}\right)^{43} w postaci potęgi o podstawie \frac{11}{3}.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10277 ⋅ Poprawnie: 438/442 [99%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że c=\log_{3}{8}. Wtedy:
Odpowiedzi:
A. c^3=8 B. 3^8=c
C. c^8=3 D. 3^c=8
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=17^{13}+4\cdot 17^{12}-3\cdot 17^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 52/396 [13%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Wykaż, że dla każdych liczb całkowitych x i y, wyrażenie 34x^2+36y^2+36xy+60x+36 można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi (niektóre z nich mogą być równe zero).

Podaj mniejszą z liczb a_1 i a_2.

Odpowiedź:
min(a_1,a_2)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\frac{1}{17^2}\cdot \sqrt[3]{17^3}\cdot 17^{\frac{1}{2}}}{\sqrt{17}\cdot 17^{-2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Dane są liczby: a=\log_{3}{16}-3\log_{3}{2} oraz b=3\log_{3}{6}-\log_{3}{18}.

Zapisz wyrażenie b-a w postaci y+\log_{3}{x}. Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz wartośc wyrażenia w=\log_{2}{2\sqrt{70}}+\log_{2}{\sqrt{70}}-\log_{2}{35} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 67/111 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 72 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 90 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x i y spełniają układ równań: \begin{cases} -\log_{2}{\frac{1}{25}}=2x \\ y+\log_{2}{\frac{4}{5}}=2 \end{cases} .

Oblicz x-y.

Odpowiedź:
x-y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm