Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10381 ⋅ Poprawnie: 270/313 [86%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie 11^{31}\cdot 121^{93} w postaci potęgi p^k o całkowitym wykładniku i podstawie, która jest liczbą pierwszą.

Podaj podstawę i wykładnik tej potęgi.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10357 ⋅ Poprawnie: 198/307 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Zapisz wyrażenie 5^{14}\sqrt[3]{625} w postaci 25^p.

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10334 ⋅ Poprawnie: 131/233 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie w=11\sqrt{2}-\frac{\sqrt{2}+1}{\sqrt{2}-1} w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10423 ⋅ Poprawnie: 223/310 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz potęgę 5^{\frac{13}{3}} w postaci a\sqrt[3]{5}.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11584 ⋅ Poprawnie: 89/111 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{2} \left[ \log_{2}{\left(\log_{6}{36}\right)} \right] .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{7}, gdzie m,n\in\mathbb{Z}, spełnia równanie 3x-27=\sqrt{7}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/119 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest podzielna przez potęgę dwójki różną od jedności.

Podaj największą potęgę dwójki, która dzieli taką różnicę.

Odpowiedź:
2^k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{6^{-2}-3\cdot \left(2\right)^{-2}} {5-\left(\frac{1}{6}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Podaj największą z liczb a, b, c jeśli \log_{a}{\frac{1}{9}}=-1, \log_{2,5}{b}=2 i c=\log_{\sqrt{2}}{2}.
Odpowiedź:
max(a,b,c)=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20834 ⋅ Poprawnie: 139/183 [75%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\log_{4}{144}+2\log_{4}{4\sqrt{6}}-3\log_{4}{6} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 104 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 65 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{8}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{8}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm