Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10403 ⋅ Poprawnie: 205/285 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na tablicy zapisano liczby
(2^2)^{2^2} ,
2^{2^{2^2}} ,
\left(2^{2^2}\right)^2 ,
2^{(2^2)^2} .
Ile różnych liczb reprezentują te zapisy:
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10348 ⋅ Poprawnie: 164/185 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Zapisz wyrażenie
\left(\sqrt{5}+1\right)^4-\left(\sqrt{5}-1\right)^4
w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{Z} .
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10439 ⋅ Poprawnie: 489/668 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
9-(2x+1)^2 jest równe:
Odpowiedzi:
A. (2-2x)^2
B. (2-2x)(4+2x)
C. (2-2x)(3+2x)
D. 9-4x^2
Zadanie 4. 1 pkt ⋅ Numer: pp-10418 ⋅ Poprawnie: 130/174 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczbę
(-6)^3\cdot (\sqrt{6})^{-4}
pomnożono przez
3 .
Wartość tak otrzymanego wyrażenia:
Odpowiedzi:
A. zmniejszyła sie o 12
B. zmniejszyła sie o 0
C. zwiększyła się o 6
D. zmniejszyła sie o 6
Zadanie 5. 1 pkt ⋅ Numer: pp-10260 ⋅ Poprawnie: 103/122 [84%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia
w=\log_{\sqrt{3}}{81}-\log_{3}{27}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
m+n\sqrt{10} , gdzie
m,n\in\mathbb{Z} , spełnia równanie
3x-12=\sqrt{10}x-1 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Wiedząc, że
x+y=\sqrt{2} i
x^2+y^2=11 oblicz
xy .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{3^{-2}-3\cdot \left(1\right)^{-2}}
{5-\left(\frac{1}{3}\right)^{-1}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20131 ⋅ Poprawnie: 43/121 [35%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane są liczby
x=\log{3} ,
y=\log{2} . Logarytm dziesiętny z liczby
72 jest równy
m\cdot x+n\cdot y .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20834 ⋅ Poprawnie: 139/183 [75%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\log_{2}{18}+2\log_{2}{2\sqrt{3}}-3\log_{2}{3}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
70 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
91 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« « Autobus jechał ze średnią prędkością
60 km/h przez
\frac{5}{6} całej trasy. Pozostałą część trasy pokonał ze
średnią prędkością
80 km/h.
Oblicz średnią prędkość tego autobusu na całej trasie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż