Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10425 ⋅ Poprawnie: 181/243 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wartość wyrażenia \frac{550\cdot 25^{146}+3\cdot 25^{147}}{25^{145}} w postaci potęgi p^k, gdzie p,k\in\mathbb{Z} i p jest liczbą pierwszą.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10353 ⋅ Poprawnie: 552/830 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Oblicz wartość wyrażenia w=\frac{\sqrt{27}+\sqrt{75}}{\sqrt{3}}. Wynik zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{N}.
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11500 ⋅ Poprawnie: 790/1026 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wartość wyrażenia: \left(\sqrt{48}-7\sqrt{3}\right)^2 w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
a\sqrt{b}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10400 ⋅ Poprawnie: 291/386 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie \left(\sqrt[3]{25}\cdot 5^{-2}\right)^{21} w postaci potęgi o podstawie 5.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10317 ⋅ Poprawnie: 82/96 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prawdziwa jest równość:
Odpowiedzi:
A. \log_{5}{4}=625 B. \log_{\frac{1}{5}}{125}=-3
C. \left(-\frac{5}{6}\right)^{-1}=\frac{6}{5} D. 2\log{1000}+\log{0.001}=6
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{6}, gdzie m,n\in\mathbb{Z}, spełnia równanie 3x-10=\sqrt{6}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 (2 pkt) O liczbie n wiadomo, że jest podzielna przez 5. Wykaż, że liczba dodatnia m=n^3-25n jest podzielna przez 6.

Podaj największą potęgę liczby 5, która dzieli liczbę dodatnią m.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{4^{-2}-3\cdot \left(\frac{4}{3}\right)^{-2}} {5-\left(\frac{1}{4}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz xyz, jeśli wiadomo, że \log_{3}{x}=4, y=\log{\frac{1}{10000}} i z=\log_{0,05}{20}.
Odpowiedź:
x\cdot y\cdot z= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz wartośc wyrażenia w=\log_{2}{2\sqrt{70}}+\log_{2}{\sqrt{70}}-\log_{2}{35} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 63 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 84 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{5}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{5}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm