Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-11459 ⋅ Poprawnie: 506/601 [84%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyznacz wartość wyrażenia w= \frac{9^{12}\cdot 3+6\cdot (9^2)^6} {\left(9^{12}:9^7\right)^3} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10350 ⋅ Poprawnie: 147/170 [86%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{(\sqrt{8}-\sqrt{2})^2}{(\sqrt{8}+\sqrt{2})^2} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10462 ⋅ Poprawnie: 180/215 [83%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wyrażenie \frac{1}{x-1}-\frac{1}{x+1} jest równe:
Odpowiedzi:
A. \frac{x}{(x-1)^2} B. \frac{2}{x^2-1}
C. \frac{x}{x^2-1} D. \frac{2}{(x+1)^2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11401 ⋅ Poprawnie: 76/110 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Zapisz wyrażenie 36^{58}\cdot \frac{1}{\sqrt{6}^{58}} w postaci \left(\sqrt{6^3}\right)^k.

Podaj wykładnik k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10276 ⋅ Poprawnie: 161/187 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{3}{\frac{1}{27}}-\log_{3}{27}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=17^{13}+4\cdot 17^{12}-3\cdot 17^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20835 ⋅ Poprawnie: 63/227 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Doprowadź wyrażenie \left(x-2y\right)^2-\left(2x+y\right)\left(y-2x\right)-\left(3x-2y\right)^2-4xy do najprostszej postaci, a następnie oblicz jego wartość dla x=4\sqrt{5} i y=1-6\sqrt{5}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\frac{1}{17^2}\cdot \sqrt[3]{17^3}\cdot 17^{\frac{1}{2}}}{\sqrt{17}\cdot 17^{-2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Dane są liczby: a=\log_{3}{16}-3\log_{3}{2} oraz b=5\log_{3}{6}-\log_{3}{18}.

Zapisz wyrażenie b-a w postaci y+\log_{3}{x}. Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20142 ⋅ Poprawnie: 121/163 [74%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{4}{256}-\log_{4}{1}}{4^{-1}\cdot 4^-4} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 69 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 138 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2}, b=4\cdot 2^{-2}+9\cdot 3^{-1}, c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1} oraz dwie nierówności: (1-x)^2\leqslant (x-1)(x+1)-2 oraz \frac{1}{4}x+3\geqslant \frac{3}{2}x-2.

Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych dwóch liczb.

Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm