Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 191/241 [79%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wartość wyrażenia
64^{26}+64^{26}+64^{26}+64^{26}
w postaci potęgi
p^k , gdzie
p,k\in\mathbb{N} i
p jest liczbą pierwszą.
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10355 ⋅ Poprawnie: 175/217 [80%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
w=
\sqrt{15\cdot 225+21\cdot 225}-\sqrt{221^2-220^2}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10466 ⋅ Poprawnie: 199/213 [93%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Równość
\left(3\sqrt{2}-a\right)^2=43-30\sqrt{2}
zachodzi, gdy:
Odpowiedzi:
A. a=6
B. a=4
C. a=5\sqrt{2}
D. a=5
Zadanie 4. 1 pkt ⋅ Numer: pp-10402 ⋅ Poprawnie: 148/210 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz wartość wyrażenia
w=7^{\frac{12}{11}}\cdot 5^{-\frac{10}{11}}\cdot \frac{1}{\sqrt[22]{1225}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10235 ⋅ Poprawnie: 546/571 [95%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba
\frac{\log_{4}{64}}
{\log_{3}{243}}
jest równa:
Odpowiedzi:
A. \frac{3}{10}
B. \frac{3}{5}
C. \log_{486}{64}
D. \frac{9}{10}
Zadanie 6. 2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiaż równanie
343^3\cdot 2x-7^9=3\cdot 7^{10}x+2\cdot 7^9
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/119 [16%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest
podzielna przez potęgę dwójki różną od jedności.
Podaj największą potęgę dwójki, która dzieli taką różnicę.
Odpowiedź:
2^k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 301/412 [73%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{\frac{1}{5^3}\cdot \sqrt[3]{11^3}\cdot 11^{\frac{1}{2}}}
{(11^3)^{\frac{1}{3}}\cdot 5^{-3}\cdot \sqrt{11}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Podaj największą z liczb
a ,
b ,
c jeśli
\log_{a}{\frac{1}{8}}=-1 ,
\log_{2,5}{b}=2 i
c=\log_{\sqrt{2}}{2} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20142 ⋅ Poprawnie: 121/163 [74%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartośc wyrażenia
w=\frac{\log_{4}{256}-\log_{4}{1}}{4^{0}\cdot 4^0}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
90 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
135 km/h.
Jaka była średnia prędkość autobusu na całej trasie?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« « Autobus jechał ze średnią prędkością
60 km/h przez
\frac{5}{8} całej trasy. Pozostałą część trasy pokonał ze
średnią prędkością
80 km/h.
Oblicz średnią prędkość tego autobusu na całej trasie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż