Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10395 ⋅ Poprawnie: 208/321 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Połowa liczby
4^{2053} jest równa:
Odpowiedzi:
A. 2^{2052}
B. 4\cdot 2^{1026}
C. 2\cdot 4^{2052}
D. 2^{2053}
Zadanie 2. 1 pkt ⋅ Numer: pp-10324 ⋅ Poprawnie: 164/199 [82%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz wyrażenie
\frac{\sqrt[3]{9}\cdot \sqrt[3]{-81}}
{-27}
w postaci potęgi o podstawie, która jest liczbą pierwszą.
Podaj wykładnik k tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10439 ⋅ Poprawnie: 489/668 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
49-(6x+1)^2 jest równe:
Odpowiedzi:
A. (6-6x)(7+6x)
B. (6-6x)^2
C. 49-36x^2
D. (6-6x)(8+6x)
Zadanie 4. 1 pkt ⋅ Numer: pp-11403 ⋅ Poprawnie: 237/339 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla każdej dodatniej liczby
a wyrażenie
\frac{a^{-2,2}}{a^{-4,4}}:\frac{a^{4,4}}{a^{2,2}}\cdot a^{-8,8}
mozna zapisać w postaci potęgi o podstawie
a .
Podaj wykładnik tej potęgi.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10272 ⋅ Poprawnie: 1038/1339 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Przedstaw wyrażenie
2\log_{2}{6}-3\log_{2}{4}
w postaci
\log_{2}{b} .
Podaj b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dana jest liczba
p=7^{13}+4\cdot 7^{12}-3\cdot 7^{11}
.
Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę
p .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największą nieparzystą liczbę pierwszą, która dzieli
p .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20197 ⋅ Poprawnie: 95/211 [45%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Liczba
n przy dzieleniu przez
5 daje resztę
4 .
Oblicz resztę z dzielenia podwojonego kwadratu liczby
n przez 10 .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Oblicz wartość wyrażenia
w=\frac{\frac{1}{7^2}\cdot \sqrt[3]{7^3}\cdot 7^{\frac{1}{2}}}{\sqrt{7}\cdot 7^{-2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
xyz , jeśli wiadomo, że
\log_{5}{x}=3 ,
y=\log{\frac{1}{1000}} i
z=\log_{0,05}{20} .
Odpowiedź:
x\cdot y\cdot z=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz wartośc wyrażenia
w=\log_{2}{2\sqrt{42}}+\log_{2}{\sqrt{42}}-\log_{2}{21}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
110 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
99 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Dane są liczby:
a=2+\left(-\frac{2}{3}\right)^{-2} ,
b=4\cdot 2^{-2}+9\cdot 3^{-1} ,
c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1}
oraz dwie nierówności:
(1-x)^2\leqslant (x-1)(x+1)-2 oraz
\frac{1}{4}x+3\geqslant \frac{3}{2}x-2 .
Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych
dwóch liczb.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż