Dane są liczby x=7+\sqrt{13} i
y=8-\sqrt{13}.
Zapisz iloraz \frac{x}{y} w najprostszej nieskracalnej postaci
\frac{m+n\sqrt{k}}{p}, gdzie
m,n,k\in\mathbb{Z} i p\in\mathbb{N_{+}}.
Odpowiedź:
\frac{x}{y}=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-10394 ⋅ Poprawnie: 67/139 [48%]
(1 pkt)
Wykaż, że dla każdych liczb całkowitych x i
y, wyrażenie
50x^2+36y^2+60xy+70x+49
można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki
a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi
(niektóre z nich mogą być równe zero).
Podaj mniejszą z liczb
a_1 i a_2.
Odpowiedź:
min(a_1,a_2)=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
(1 pkt)
Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%]
Średni wiek zawodnika n osobowej drużyny piłkarskiej jest równy 30 lat.
Trener tej drużyny ma 47 lat, a średni wiek zawodników drużyny wraz z trenerem
jest równy 31 lat.
Wyznacz liczbę n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%]
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2},
b=4\cdot 2^{-2}+9\cdot 3^{-1},
c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1}
oraz dwie nierówności:
(1-x)^2\leqslant (x-1)(x+1)-2 oraz
\frac{1}{4}x+3\geqslant \frac{3}{2}x-2.
Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych
dwóch liczb.
Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat