Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10411 ⋅ Poprawnie: 99/126 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia w=\frac{100^{n-2}}{2^{2n-3}\cdot 5^{2n}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10341 ⋅ Poprawnie: 394/516 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Niech k=4-\sqrt{2}, zaś m=4-2\sqrt{2}. Zapisz wartość wyrażenia k^2-6m w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10451 ⋅ Poprawnie: 221/324 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiorem rozwiązań nierówności x^2+26x\geqslant -169 jest:
Odpowiedzi:
A. \langle 13,+\infty) B. (-\infty, -13\rangle\cup\langle 0,+\infty)
C. \mathbb{R} D. \emptyset
Zadanie 4.  1 pkt ⋅ Numer: pp-10393 ⋅ Poprawnie: 138/351 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Zapisz odwrotność liczby 5\sqrt{5}\cdot \left(\frac{1}{125}\right)^{-\frac{4}{3}} w postaci potęgi p^k, gdzie k\in\mathbb{W} i p jest liczbą pierwszą.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10259 ⋅ Poprawnie: 361/426 [84%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{2}{12}+\log_{2}{5}-\log_{2}{15}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=17^{13}+4\cdot 17^{12}-3\cdot 17^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 51/395 [12%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Wykaż, że dla każdych liczb całkowitych x i y, wyrażenie 72x^2+16y^2+48xy+36x+9 można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi (niektóre z nich mogą być równe zero).

Podaj mniejszą z liczb a_1 i a_2.

Odpowiedź:
min(a_1,a_2)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{7^{-2}-3\cdot \left(\frac{7}{3}\right)^{-2}} {5-\left(\frac{1}{7}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20140 ⋅ Poprawnie: 124/175 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartośc wyrażenia w= \frac{\log{4}+\log{9}} {\log{108}-\log{3}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2\log{\frac{1}{10}}+\log{10}}{\log{70}-\log{7}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 125/155 [80%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Średni wiek zawodnika n osobowej drużyny piłkarskiej jest równy 29 lat. Trener tej drużyny ma 54 lat, a średni wiek zawodników drużyny wraz z trenerem jest równy 30 lat.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{9}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{9}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm