Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10403 ⋅ Poprawnie: 207/287 [72%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na tablicy zapisano liczby
(2^2)^{2^2} ,
2^{2^{2^2}} ,
\left(2^{2^2}\right)^2 ,
2^{(2^2)^2} .
Ile różnych liczb reprezentują te zapisy:
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10342 ⋅ Poprawnie: 538/674 [79%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczbę
4\sqrt{3}-\left(1+2\sqrt{3}\right)^2
zapisz w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{Z} , zaś
c\in\mathbb{N} .
Odpowiedź:
a+b\sqrt{c}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10460 ⋅ Poprawnie: 166/216 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Jeżeli \frac{a}{a+b}=\frac{c}{d} i
b\neq 0 , to \frac{a}{b}
jest równe:
Odpowiedzi:
A. \frac{d}{c-d}
B. \frac{c}{d-c}
C. \frac{d-c}{c}
D. -1
Zadanie 4. 1 pkt ⋅ Numer: pp-10329 ⋅ Poprawnie: 267/326 [81%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wyrażenie
w=\frac{4}{\sqrt{5}-1}-\frac{4}{\sqrt{5}+1}
w najprostszej postaci
m\sqrt{n} , gdzie
m,n\in\mathbb{N} .
Odpowiedź:
w=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10277 ⋅ Poprawnie: 438/442 [99%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wiadomo, że
c=\log_{4}{7} . Wtedy:
Odpowiedzi:
A. 4^7=c
B. c^4=7
C. 4^c=7
D. c^7=4
Zadanie 6. 2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 112/173 [64%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiaż równanie
27^3\cdot 2x-3^9=5\cdot 3^{10}x+2\cdot 3^9
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/120 [16%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest
podzielna przez potęgę dwójki różną od jedności.
Podaj największą potęgę dwójki, która dzieli taką różnicę.
Odpowiedź:
2^k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/282 [63%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{3^{-2}-3\cdot \left(1\right)^{-2}}
{5-\left(\frac{1}{3}\right)^{-1}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
xyz , jeśli wiadomo, że
\log_{3}{x}=4 ,
y=\log{\frac{1}{100}} i
z=\log_{0,05}{20} .
Odpowiedź:
x\cdot y\cdot z=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20142 ⋅ Poprawnie: 121/164 [73%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartośc wyrażenia
w=\frac{\log_{3}{27}-\log_{3}{1}}{3^{-3}\cdot 3^4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 67/111 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
126 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
63 km/h.
Jaka była średnia prędkość autobusu na całej trasie?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« « Autobus jechał ze średnią prędkością
60 km/h przez
\frac{1}{2} całej trasy. Pozostałą część trasy pokonał ze
średnią prędkością
80 km/h.
Oblicz średnią prędkość tego autobusu na całej trasie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż