Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10398 ⋅ Poprawnie: 701/858 [81%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wyrażenie
\frac{\left(\left(4^2\right)^3\right)^2}
{2}
jest równe:
Odpowiedzi:
A. 2^{9}
B. 2^{11}
C. 2^{9}
D. 2\cdot 2^{22}
Zadanie 2. 1 pkt ⋅ Numer: pp-10345 ⋅ Poprawnie: 192/218 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
w=
\frac{4}{\sqrt{3}-1}-\frac{4}{1+\sqrt{3}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11553 ⋅ Poprawnie: 152/229 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest liczba
x=p-(\sqrt{5}-\sqrt{2})^2 , gdzie
p\in\mathbb{R} .
Liczba x jest wymierna, gdy:
Odpowiedzi:
T/N : p=-\sqrt{10}
T/N : p=10-2\sqrt{10}
T/N : p=5
Zadanie 4. 1 pkt ⋅ Numer: pp-10408 ⋅ Poprawnie: 975/1545 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przedstaw wyrażenie
\frac{\left(\frac{1}{3}\right)^{-4}\cdot 3^3\cdot \sqrt{3}}
{3^{9}}
w postaci potęgi o podstawie
3 .
Podaj wykładnik tej potęgi.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10306 ⋅ Poprawnie: 99/132 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Liczba
\frac{\log_{3}{54}+\log_{3}{2}}
{\log_{3}{18}-\log_{3}{2}}
jest równa:
Odpowiedzi:
A. \frac{3+\log_{3}{4}}{2}
B. \frac{2+\log_{3}{4}}{4}
C. \frac{3+\log_{3}{2}}{2}
D. \frac{1+\log_{3}{2}}{2}
Zadanie 6. 2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiaż równanie
27^3\cdot 2x-3^9=3\cdot 3^{10}x+2\cdot 3^9
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20197 ⋅ Poprawnie: 95/211 [45%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Liczba
n przy dzieleniu przez
5 daje resztę
1 .
Oblicz resztę z dzielenia podwojonego kwadratu liczby
n przez 10 .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 301/412 [73%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{\frac{1}{2^3}\cdot \sqrt[3]{5^3}\cdot 5^{\frac{1}{2}}}
{(5^3)^{\frac{1}{3}}\cdot 2^{-3}\cdot \sqrt{5}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20138 ⋅ Poprawnie: 93/163 [57%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz średnią arytmetyczną liczb
\log_{2}{128} ,
-\log_{2}{8} i
2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz wartośc wyrażenia
w=\log_{2}{4\sqrt{6}}+\log_{2}{2\sqrt{6}}-\log_{2}{12}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 125/155 [80%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Średni wiek zawodnika
n osobowej drużyny piłkarskiej jest równy
28 lat.
Trener tej drużyny ma
45 lat, a średni wiek zawodników drużyny wraz z trenerem
jest równy
29 lat.
Wyznacz liczbę n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Dane są liczby:
a=2+\left(-\frac{2}{3}\right)^{-2} ,
b=4\cdot 2^{-2}+9\cdot 3^{-1} ,
c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1}
oraz dwie nierówności:
(1-x)^2\leqslant (x-1)(x+1)-2 oraz
\frac{1}{4}x+3\geqslant \frac{3}{2}x-2 .
Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych
dwóch liczb.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż