Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10413 ⋅ Poprawnie: 120/140 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że a=14^{27} oraz b=2^{28}\cdot 343^{9}.

Zatem:

Odpowiedzi:
A. a > b B. b > a
C. a=b D. a=2\cdot b
Zadanie 2.  1 pkt ⋅ Numer: pp-10342 ⋅ Poprawnie: 538/674 [79%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczbę 4\sqrt{2}-\left(1+2\sqrt{2}\right)^2 zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, zaś c\in\mathbb{N}.
Odpowiedź:
a+b\sqrt{c}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10454 ⋅ Poprawnie: 102/133 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyrażenie \left(\sqrt{36n}-\sqrt{n}\right)^2 można zapisać w postaci p\cdot n.

Podaj wartość współczynnika p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10390 ⋅ Poprawnie: 270/386 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczbą wymierną jest liczba:
Odpowiedzi:
A. 4^{\frac{1}{4}} B. 4^{\frac{2}{3}}
C. 4^{\frac{3}{2}} D. 4^{\frac{3}{4}}
Zadanie 5.  1 pkt ⋅ Numer: pp-10309 ⋅ Poprawnie: 426/502 [84%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : \log_{2}{16}=2+\log_{2}{8} T/N : \log_{2}{16}=2+\log_{2}{4}
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{5}, gdzie m,n\in\mathbb{Z}, spełnia równanie 2x-23=\sqrt{5}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 51/395 [12%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Wykaż, że dla każdych liczb całkowitych x i y, wyrażenie 13x^2+4y^2+12xy+36x+81 można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi (niektóre z nich mogą być równe zero).

Podaj mniejszą z liczb a_1 i a_2.

Odpowiedź:
min(a_1,a_2)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 364/500 [72%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\frac{1}{3^2}\cdot \sqrt[3]{3^3}\cdot 3^{\frac{1}{2}}}{\sqrt{3}\cdot 3^{-2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Dane są liczby: a=\log_{3}{16}-3\log_{3}{2} oraz b=3\log_{3}{6}-\log_{3}{18}.

Zapisz wyrażenie b-a w postaci y+\log_{3}{x}. Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20142 ⋅ Poprawnie: 121/163 [74%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{2}{4}-\log_{2}{1}}{2^{4}\cdot 2^4} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 103/136 [75%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Średni wiek zawodnika n osobowej drużyny piłkarskiej jest równy 24 lat. Trener tej drużyny ma 46 lat, a średni wiek zawodników drużyny wraz z trenerem jest równy 25 lat.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « « Autobus jechał ze średnią prędkością 60 km/h przez \frac{1}{4} całej trasy. Pozostałą część trasy pokonał ze średnią prędkością 80 km/h.

Oblicz średnią prędkość tego autobusu na całej trasie.

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm