Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10413 ⋅ Poprawnie: 120/140 [85%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że
a=15^{36} oraz
b=3^{37}\cdot 125^{12} .
Zatem:
Odpowiedzi:
A. a > b
B. a=b
C. a=2\cdot b
D. b > a
Zadanie 2. 1 pkt ⋅ Numer: pp-10368 ⋅ Poprawnie: 549/654 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : \sqrt[3]{-343}=-7
T/N : \sqrt{343}=7\sqrt{7}
T/N : \sqrt[3]{1715}=7\sqrt[3]{7}
Zadanie 3. 1 pkt ⋅ Numer: pp-10442 ⋅ Poprawnie: 345/477 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Dla każdej liczby rzeczywistej
x wyrażenie
49x^2-84x+36 jest równe:
Odpowiedzi:
A. (49x+6)(7x-6)
B. (7x-6)(7x-6)
C. (7x+6)(7x-6)
D. (7x-6)(x+6)
Zadanie 4. 1 pkt ⋅ Numer: pp-10329 ⋅ Poprawnie: 267/326 [81%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wyrażenie
w=\frac{10}{\sqrt{11}-1}-\frac{10}{\sqrt{11}+1}
w najprostszej postaci
m\sqrt{n} , gdzie
m,n\in\mathbb{N} .
Odpowiedź:
w=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10311 ⋅ Poprawnie: 120/130 [92%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Rozwiązaniem równania
7^{7x}=25 jest:
Odpowiedzi:
A. 7\log_{7}{5}
B. \frac{2}{7}\log_{7}{5}
C. 7\log_{7}{5}
D. \frac{9}{5}\log_{7}{5}
Zadanie 6. 2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dana jest liczba
p=5^{13}+4\cdot 5^{12}-3\cdot 5^{11}
.
Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę
p .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największą nieparzystą liczbę pierwszą, która dzieli
p .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Wiedząc, że
x+y=2\sqrt{2} i
x^2+y^2=8 oblicz
xy .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Oblicz wartość wyrażenia
w=\frac{\frac{1}{5^2}\cdot \sqrt[3]{5^3}\cdot 5^{\frac{1}{2}}}{\sqrt{5}\cdot 5^{-2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Dane są liczby:
a=\log_{3}{16}-3\log_{3}{2} oraz
b=6\log_{3}{6}-\log_{3}{18} .
Zapisz wyrażenie b-a w postaci
y+\log_{3}{x} . Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartośc wyrażenia
w=\frac{\log_{4}{256}+\log_{4}{1}}{2}\cdot \left(\frac{1}{4^2}\right)^{-2}}
.
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
60 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
120 km/h.
Jaka była średnia prędkość autobusu na całej trasie?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Wiedząc, że
\frac{1}{\log_{a}{9}}=5 ,
3\log_{2}{\frac{1}{2}}=b oraz
2\log_{c}{9}=4 oblicz
\frac{\sqrt{b^2\cdot a}}{c} .
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}=
(wpisz liczbę całkowitą)
Rozwiąż