Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10410 ⋅ Poprawnie: 276/320 [86%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie 81^{11}+2\cdot 81^4-9^9+7\cdot 9^8 w postaci potęgi o podstawie 9.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10362 ⋅ Poprawnie: 120/174 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia w=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+\frac{2}{\sqrt{3}+2} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10437 ⋅ Poprawnie: 311/362 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz o ile wartość wyrażenia (x+12)^2 jest większa od wartości wyrażenia x^2+24x.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11527 ⋅ Poprawnie: 280/356 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz wartość wyrażenia w=0,25\cdot 2^{5}\cdot \frac{\sqrt{72}\cdot \sqrt{48}}{\sqrt{6}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10289 ⋅ Poprawnie: 238/287 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba \log_{12}{(\log_{12}{9}+\log_{12}{16})} jest równa:
Odpowiedzi:
A. \log_{12}(\log_{12}{25}) B. \log_{12}{2}
C. 1 D. \log_{24}{9}\cdot\log_{24}{16}
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{3}, gdzie m,n\in\mathbb{Z}, spełnia równanie 2x-26=\sqrt{3}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 83/145 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Rozłóż na czynniki wyrażenie 64-a^2+2ab-b^2 .

Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią jest 4\cdot 13=52.

Odpowiedź:
m\cdot n= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 284/394 [72%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\frac{1}{2^3}\cdot \sqrt[3]{3^3}\cdot 3^{\frac{1}{2}}} {(3^3)^{\frac{1}{3}}\cdot 2^{-3}\cdot \sqrt{3}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Dane są liczby: a=\log_{3}{16}-3\log_{3}{2} oraz b=5\log_{3}{6}-\log_{3}{18}.

Zapisz wyrażenie b-a w postaci y+\log_{3}{x}. Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20136 ⋅ Poprawnie: 190/234 [81%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\log{2}+\log{3}}{\log{18}-\log{3}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 84 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 63 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{8}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{8}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm