Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 191/241 [79%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wartość wyrażenia
64^{15}+64^{15}+64^{15}+64^{15}
w postaci potęgi
p^k , gdzie
p,k\in\mathbb{N} i
p jest liczbą pierwszą.
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10345 ⋅ Poprawnie: 192/218 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
w=
\frac{7}{\sqrt{5}-1}-\frac{7}{1+\sqrt{5}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10465 ⋅ Poprawnie: 148/175 [84%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wartość wyrażenia
(m+4)^2 jest większa od wartości
wyrażenia
m^2+16 o:
Odpowiedzi:
A. 8m
B. 8
C. 16m^2
D. 16m
Zadanie 4. 1 pkt ⋅ Numer: pp-10426 ⋅ Poprawnie: 44/107 [41%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczba
\left(9^2+9^{\frac{1}{2}}\right)\cdot 9^{-2}
jest większa od liczby
\frac{1}{9^{2}} o
p\% .
Wyznacz p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10296 ⋅ Poprawnie: 82/109 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dla
n=7 oblicz wartość wyrażenia
w=
\log_{8}{(9n+1)}+\log_{3}{3^7}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiaż równanie
27^3\cdot 2x-3^9=2\cdot 3^{10}x+2\cdot 3^9
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20835 ⋅ Poprawnie: 63/227 [27%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Doprowadź wyrażenie
\left(x-2y\right)^2-\left(2x+y\right)\left(y-2x\right)-\left(3x-2y\right)^2-4xy
do najprostszej postaci, a następnie oblicz jego wartość dla
x=2\sqrt{5} i
y=1-2\sqrt{5} .
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 301/412 [73%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{\frac{1}{3^3}\cdot \sqrt[3]{2^3}\cdot 2^{\frac{1}{2}}}
{(2^3)^{\frac{1}{3}}\cdot 3^{-3}\cdot \sqrt{2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
xyz , jeśli wiadomo, że
\log_{2}{x}=2 ,
y=\log{\frac{1}{1000}} i
z=\log_{0,05}{20} .
Odpowiedź:
x\cdot y\cdot z=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz wartośc wyrażenia
w=\log_{2}{4\sqrt{15}}+\log_{2}{2\sqrt{15}}-\log_{2}{30}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
105 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
112 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Liczby
x i
y spełniają
układ równań:
\begin{cases}
-\log_{2}{\frac{1}{25}}=2x \\
y+\log_{2}{\frac{4}{5}}=2
\end{cases}
.
Oblicz x-y .
Odpowiedź:
x-y=
(wpisz liczbę całkowitą)
Rozwiąż