Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10398 ⋅ Poprawnie: 701/858 [81%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wyrażenie
\frac{\left(\left(9^2\right)^3\right)^2}
{3}
jest równe:
Odpowiedzi:
A. 3^{9}
B. 3^{9}
C. 3\cdot 3^{22}
D. 3^{11}
Zadanie 2. 1 pkt ⋅ Numer: pp-10354 ⋅ Poprawnie: 257/310 [82%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
w=
\frac{2+\sqrt{288}-\sqrt{72}+\sqrt{200}}{8\sqrt{2}+1}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10463 ⋅ Poprawnie: 290/418 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie 25-(4x-1)^2 jest równe:
Odpowiedzi:
A. (5-4x)(x-1)
B. 24-16x^2
C. (6-4x)(4x+4)
D. (4+4x)(4-6x)
Zadanie 4. 1 pkt ⋅ Numer: pp-10399 ⋅ Poprawnie: 198/251 [78%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wyrażenie
\frac{7^3\cdot 49}{\sqrt{7}}
w najprostszej postaci
m^k\cdot \sqrt{p} , gdzie
m,k,p\in\mathbb{Z}
i
p jest liczbą pierwszą.
Podaj liczby k i p .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10302 ⋅ Poprawnie: 146/190 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Równanie
x(2x-1)(x-3)(x^2+1)=0 spełnia liczba:
Odpowiedzi:
A. \log_{16}{4}
B. \log_{\frac{1}{4}}{64}
C. \log_{8}{8}
D. \log_{4}{\frac{1}{2}}
Zadanie 6. 2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
m+n\sqrt{10} , gdzie
m,n\in\mathbb{Z} , spełnia równanie
4x-13=\sqrt{10}x-1 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20197 ⋅ Poprawnie: 95/211 [45%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Liczba
n przy dzieleniu przez
5 daje resztę
2 .
Oblicz resztę z dzielenia podwojonego kwadratu liczby
n przez 10 .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Oblicz wartość wyrażenia
w=\frac{\frac{1}{7^2}\cdot \sqrt[3]{7^3}\cdot 7^{\frac{1}{2}}}{\sqrt{7}\cdot 7^{-2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20138 ⋅ Poprawnie: 93/163 [57%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz średnią arytmetyczną liczb
\log_{2}{320} ,
-\log_{2}{5} i
2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartośc wyrażenia
w=\frac{\log_{2}{16}+\log_{2}{1}}{\sqrt{2}}\cdot \left(\frac{1}{2^2}\right)^{-2}}
.
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
63 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
77 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Wiedząc, że
\frac{1}{\log_{a}{5}}=5 ,
3\log_{2}{\frac{1}{2}}=b oraz
2\log_{c}{5}=4 oblicz
\frac{\sqrt{b^2\cdot a}}{c} .
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}=
(wpisz liczbę całkowitą)
Rozwiąż