Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10381 ⋅ Poprawnie: 259/301 [86%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie 2^{47}\cdot 4^{141} w postaci potęgi p^k o całkowitym wykładniku i podstawie, która jest liczbą pierwszą.

Podaj podstawę i wykładnik tej potęgi.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10325 ⋅ Poprawnie: 164/241 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz część ułamkową liczby, która jest równa wartości wyrażenia \sqrt{\frac{25}{3}}+\sqrt{\frac{3}{25}} .
Odpowiedź:
u= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10454 ⋅ Poprawnie: 100/131 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyrażenie \left(\sqrt{25n}-\sqrt{n}\right)^2 można zapisać w postaci p\cdot n.

Podaj wartość współczynnika p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11527 ⋅ Poprawnie: 275/351 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz wartość wyrażenia w=0,25\cdot 2^{3}\cdot \frac{\sqrt{72}\cdot \sqrt{75}}{\sqrt{6}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10242 ⋅ Poprawnie: 244/302 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba \log{196} jest równa:
Odpowiedzi:
A. 2\log{14}-\log{1} B. \log{23}-2\log{3}
C. \log{4}-\log{49} D. 2\log{2}-7\log{7}
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 107/166 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 27^3\cdot 2x-3^9=5\cdot 3^{10}x+2\cdot 3^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20196 ⋅ Poprawnie: 44/71 [61%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach zapisanych w odwrotnej kolejności jest podzielna przez 3.

Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 175/272 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20131 ⋅ Poprawnie: 40/114 [35%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są liczby x=\log{5}, y=\log{3}. Logarytm dziesiętny z liczby 675 jest równy m\cdot x+n\cdot y.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{2}{16}+\log_{2}{1}}{\sqrt{2}}\cdot \left(\frac{1}{2^2}\right)^{-2}} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 65/109 [59%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 60 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 100 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « « Autobus jechał ze średnią prędkością 60 km/h przez \frac{2}{9} całej trasy. Pozostałą część trasy pokonał ze średnią prędkością 80 km/h.

Oblicz średnią prędkość tego autobusu na całej trasie.

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm