Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 190/239 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wartość wyrażenia 64^{13}+64^{13}+64^{13}+64^{13} w postaci potęgi p^k, gdzie p,k\in\mathbb{N} i p jest kwadratem liczby pierwszej.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11586 ⋅ Poprawnie: 153/171 [89%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Która równość jest prawdziwa:
Odpowiedzi:
A. -\sqrt[3]{4}=\sqrt[3]{-4} B. \sqrt{(-4)^2}=-4
C. -4^2=(-4)^2 D. 4^3=(-4)^3
Zadanie 3.  1 pkt ⋅ Numer: pp-10465 ⋅ Poprawnie: 148/175 [84%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wartość wyrażenia (m+2)^2 jest większa od wartości wyrażenia m^2+4 o:
Odpowiedzi:
A. 4m B. 8m^2
C. 4 D. 8m
Zadanie 4.  1 pkt ⋅ Numer: pp-10408 ⋅ Poprawnie: 919/1486 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przedstaw wyrażenie \frac{\left(\frac{1}{3}\right)^{-4}\cdot 3^3\cdot \sqrt{3}} {3^{19}} w postaci potęgi o podstawie 3.

Podaj wykładnik tej potęgi.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10260 ⋅ Poprawnie: 102/121 [84%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{\sqrt{2}}{32}-\log_{2}{8} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 110/170 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiaż równanie 27^3\cdot 2x-3^9=5\cdot 3^{10}x+2\cdot 3^9 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/118 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest podzielna przez potęgę dwójki różną od jedności.

Podaj największą potęgę dwójki, która dzieli taką różnicę.

Odpowiedź:
2^k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/279 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Dane są liczby: a=\log_{3}{16}-3\log_{3}{2} oraz b=3\log_{3}{6}-\log_{3}{18}.

Zapisz wyrażenie b-a w postaci y+\log_{3}{x}. Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 143/200 [71%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz wartośc wyrażenia w=\log_{2}{2\sqrt{42}}+\log_{2}{\sqrt{42}}-\log_{2}{21} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 90 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 72 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x i y spełniają układ równań: \begin{cases} -\log_{2}{\frac{1}{9}}=2x \\ y+\log_{2}{\frac{4}{3}}=2 \end{cases} .

Oblicz x-y.

Odpowiedź:
x-y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm