Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7

Zadanie 1.  1 pkt ⋅ Numer: pp-10424 ⋅ Poprawnie: 411/470 [87%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{88\cdot 11^{146}+3\cdot 11^{147}}{11^{145}} .
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10352 ⋅ Poprawnie: 314/466 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Która z podanych liczb jest niewymierna:
Odpowiedzi:
A. 8^{\frac{2}{3}} B. \frac{\sqrt{500}}{\sqrt{5}}
C. \sqrt[3]{2}\cdot\sqrt[3]{864} D. \left(1+\sqrt{7}\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-10465 ⋅ Poprawnie: 148/175 [84%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wartość wyrażenia (m+11)^2 jest większa od wartości wyrażenia m^2+121 o:
Odpowiedzi:
A. 22 B. 44m^2
C. 22m D. 44m
Zadanie 4.  1 pkt ⋅ Numer: pp-10408 ⋅ Poprawnie: 929/1493 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przedstaw wyrażenie \frac{\left(\frac{1}{3}\right)^{-15}\cdot 3^3\cdot \sqrt{3}} {3^{5}} w postaci potęgi o podstawie 3.

Podaj wykładnik tej potęgi.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10295 ⋅ Poprawnie: 163/174 [93%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{18}{54}+\log_{18}{6}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 76/176 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=5^{13}+4\cdot 5^{12}-3\cdot 5^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Wiedząc, że x+y=2\sqrt{2} i x^2+y^2=16 oblicz xy.
Odpowiedź:
x\cdot y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Dane są liczby: a=\log_{3}{16}-3\log_{3}{2} oraz b=5\log_{3}{6}-\log_{3}{18}.

Zapisz wyrażenie b-a w postaci y+\log_{3}{x}. Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20132 ⋅ Poprawnie: 217/343 [63%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Oblicz wartość wyrażenia w=343^{\log_{7}{5}}+\left(\frac{1}{7}\right)^{\log_{7}{2}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 69 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 92 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x i y spełniają układ równań: \begin{cases} -\log_{2}{\frac{1}{169}}=2x \\ y+\log_{2}{\frac{4}{13}}=2 \end{cases} .

Oblicz x-y.

Odpowiedź:
x-y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm