Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10410 ⋅ Poprawnie: 276/320 [86%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wyrażenie
81^{11}+2\cdot 81^4-9^9+7\cdot 9^8
w postaci potęgi o podstawie
9 .
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10362 ⋅ Poprawnie: 120/174 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
w=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+\frac{2}{\sqrt{3}+2}
.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10437 ⋅ Poprawnie: 311/362 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz o ile wartość wyrażenia
(x+12)^2 jest większa od
wartości wyrażenia
x^2+24x .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11527 ⋅ Poprawnie: 280/356 [78%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz wartość wyrażenia
w=0,25\cdot 2^{5}\cdot \frac{\sqrt{72}\cdot \sqrt{48}}{\sqrt{6}} .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10289 ⋅ Poprawnie: 238/287 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba
\log_{12}{(\log_{12}{9}+\log_{12}{16})} jest równa:
Odpowiedzi:
A. \log_{12}(\log_{12}{25})
B. \log_{12}{2}
C. 1
D. \log_{24}{9}\cdot\log_{24}{16}
Zadanie 6. 2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
m+n\sqrt{3} , gdzie
m,n\in\mathbb{Z} , spełnia równanie
2x-26=\sqrt{3}x-1 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 83/145 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozłóż na czynniki wyrażenie
64-a^2+2ab-b^2
.
Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią
jest 4\cdot 13=52 .
Odpowiedź:
m\cdot n=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 284/394 [72%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{\frac{1}{2^3}\cdot \sqrt[3]{3^3}\cdot 3^{\frac{1}{2}}}
{(3^3)^{\frac{1}{3}}\cdot 2^{-3}\cdot \sqrt{3}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Dane są liczby:
a=\log_{3}{16}-3\log_{3}{2} oraz
b=5\log_{3}{6}-\log_{3}{18} .
Zapisz wyrażenie b-a w postaci
y+\log_{3}{x} . Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20136 ⋅ Poprawnie: 190/234 [81%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{\log{2}+\log{3}}{\log{18}-\log{3}} .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
84 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
63 km/h.
Jaka była średnia prędkość autobusu na całej trasie?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Wiedząc, że
\frac{1}{\log_{a}{8}}=5 ,
3\log_{2}{\frac{1}{2}}=b oraz
2\log_{c}{8}=4 oblicz
\frac{\sqrt{b^2\cdot a}}{c} .
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}=
(wpisz liczbę całkowitą)
Rozwiąż