Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10422 ⋅ Poprawnie: 191/207 [92%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Liczbę
16^{76} otrzymamy podnosząc liczbę
4^4 do potęgi
k .
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10342 ⋅ Poprawnie: 538/674 [79%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczbę
4\sqrt{31}-\left(1+2\sqrt{31}\right)^2
zapisz w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{Z} , zaś
c\in\mathbb{N} .
Odpowiedź:
a+b\sqrt{c}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10468 ⋅ Poprawnie: 345/441 [78%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wiedząc, że
x=\sqrt{300} i
y=\sqrt{12} , oblicz wartość wyrażenia
w=(y-x)^2 .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10433 ⋅ Poprawnie: 607/826 [73%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wyrażenie
\frac{4^{12}\cdot 5^{10}}
{20^{10}}
w postaci potęgi
p^k o całkowitym wykładniku i podstawie, która
jest liczbą pierwszą.
Podaj podstawę i wykładnik tej potęgi.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10288 ⋅ Poprawnie: 311/371 [83%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba
\log{10} jest równa:
Odpowiedzi:
A. \log{25}-\log{10}
B. \log{5}\cdot \log{2}
C. \frac{\log{40}}{\log{4}}
D. \log{5}+\log{2}
Zadanie 6. 2 pkt ⋅ Numer: pp-20832 ⋅ Poprawnie: 111/172 [64%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiaż równanie
125^3\cdot 2x-5^9=5\cdot 5^{10}x+2\cdot 5^9
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20196 ⋅ Poprawnie: 45/72 [62%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach
zapisanych w odwrotnej kolejności jest podzielna przez
3 .
Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 364/500 [72%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Oblicz wartość wyrażenia
w=\frac{\frac{1}{11^2}\cdot \sqrt[3]{11^3}\cdot 11^{\frac{1}{2}}}{\sqrt{11}\cdot 11^{-2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20131 ⋅ Poprawnie: 42/120 [35%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane są liczby
x=\log{5} ,
y=\log{7} . Logarytm dziesiętny z liczby
6125 jest równy
m\cdot x+n\cdot y .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz wartośc wyrażenia
w=\log_{2}{2\sqrt{66}}+\log_{2}{\sqrt{66}}-\log_{2}{33}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
132 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
66 km/h.
Jaka była średnia prędkość autobusu na całej trasie?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Liczby
x i
y spełniają
układ równań:
\begin{cases}
-\log_{2}{\frac{1}{121}}=2x \\
y+\log_{2}{\frac{4}{11}}=2
\end{cases}
.
Oblicz x-y .
Odpowiedź:
x-y=
(wpisz liczbę całkowitą)
Rozwiąż