Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10432 ⋅ Poprawnie: 222/371 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wyrażenie
3^{12}+9^{6}-3^{12}+9^{15}-3^{30}+9^{6}+3^{12}
w postaci potęgi o podstawie
3 .
Podaj wykładnik tej potęgi.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10369 ⋅ Poprawnie: 418/518 [80%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
\frac{\sqrt[7]{-128}\cdot 3^{-2}}{27}\cdot \left(-\frac{1}{3}\right)^{-3}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10440 ⋅ Poprawnie: 520/585 [88%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
w=(\sqrt{3}-\sqrt{14})^2+2\sqrt{42} .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10392 ⋅ Poprawnie: 164/231 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wyrażenie
3^{22}\cdot 9^{44}
w postaci potęgi
p^k , gdzie
p,k\in\mathbb{Z} i
p jest kwadratem liczby pierwszej.
Podaj wykładnik k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10228 ⋅ Poprawnie: 551/668 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia
w=
\log{100}-\log_{2}{2}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
m+n\sqrt{10} , gdzie
m,n\in\mathbb{Z} , spełnia równanie
3x-6=\sqrt{10}x-1 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 83/145 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozłóż na czynniki wyrażenie
9-a^2+2ab-b^2
.
Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią
jest 4\cdot 13=52 .
Odpowiedź:
m\cdot n=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Oblicz wartość wyrażenia
w=\frac{\frac{1}{5^2}\cdot \sqrt[3]{5^3}\cdot 5^{\frac{1}{2}}}{\sqrt{5}\cdot 5^{-2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Dane są liczby:
a=\log_{3}{16}-3\log_{3}{2} oraz
b=3\log_{3}{6}-\log_{3}{18} .
Zapisz wyrażenie b-a w postaci
y+\log_{3}{x} . Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20834 ⋅ Poprawnie: 139/183 [75%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\log_{2}{18}+2\log_{2}{2\sqrt{3}}-3\log_{2}{3}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
135 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
120 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« « Autobus jechał ze średnią prędkością
60 km/h przez
\frac{1}{2} całej trasy. Pozostałą część trasy pokonał ze
średnią prędkością
80 km/h.
Oblicz średnią prędkość tego autobusu na całej trasie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż