Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-7
Zadanie 1. 1 pkt ⋅ Numer: pp-10398 ⋅ Poprawnie: 671/829 [80%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wyrażenie
\frac{\left(\left(16^2\right)^3\right)^2}
{4}
jest równe:
Odpowiedzi:
A. 4^{11}
B. 4^{9}
C. 4^{9}
D. 4\cdot 4^{22}
Zadanie 2. 1 pkt ⋅ Numer: pp-10355 ⋅ Poprawnie: 175/217 [80%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
w=
\sqrt{11\cdot 289+25\cdot 289}-\sqrt{181^2-180^2}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11526 ⋅ Poprawnie: 83/174 [47%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dane są liczby:
a=\frac{5+2\sqrt{6}}{2}
i
b=\frac{5-2\sqrt{6}}{4} . Oblicz
\frac{b}{a} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10426 ⋅ Poprawnie: 44/107 [41%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczba
\left(36^2+36^{\frac{1}{2}}\right)\cdot 36^{-2}
jest większa od liczby
\frac{1}{36^{2}} o
p\% .
Wyznacz p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11185 ⋅ Poprawnie: 35/41 [85%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wiadomo, że
\log_{8}{11}=p i
\log_{8}{8}=q . Zapisz wyrażenie
\log_{8}{7744}
w postaci
x\cdot p+y\cdot q , gdzie
x,y\in\mathbb{Z} .
Podaj liczby x i y .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
m+n\sqrt{8} , gdzie
m,n\in\mathbb{Z} , spełnia równanie
3x-6=\sqrt{8}x-1 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20196 ⋅ Poprawnie: 45/72 [62%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach
zapisanych w odwrotnej kolejności jest podzielna przez
3 .
Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 364/500 [72%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Oblicz wartość wyrażenia
w=\frac{\frac{1}{13^2}\cdot \sqrt[3]{13^3}\cdot 13^{\frac{1}{2}}}{\sqrt{13}\cdot 13^{-2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
xyz , jeśli wiadomo, że
\log_{3}{x}=3 ,
y=\log{\frac{1}{10000}} i
z=\log_{0,05}{20} .
Odpowiedź:
x\cdot y\cdot z=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20135 ⋅ Poprawnie: 135/201 [67%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Oblicz wartość wyrażenia
w=\frac{2\log{\frac{1}{8}}+\log{2}}{\log{64}-\log{2}}
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 11. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
100 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
75 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Liczby
x i
y spełniają
układ równań:
\begin{cases}
-\log_{2}{\frac{1}{81}}=2x \\
y+\log_{2}{\frac{4}{9}}=2
\end{cases}
.
Oblicz x-y .
Odpowiedź:
x-y=
(wpisz liczbę całkowitą)
Rozwiąż