Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 508/743 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 14 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=14x^3 T/N : f(x)=(x+14)^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 217/391 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 16 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10730 ⋅ Poprawnie: 1006/1383 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji y=f(x), określonej dla x\in\langle -4,4\rangle.

Zbiór wszystkich argumentów, dla których funkcja f przyjmuje wartości niedodatnie, to zbiór:

Odpowiedzi:
A. \langle -4,-3\rangle\cup \langle 0,4\rangle B. \langle 0,3)\cup (3,4\rangle
C. (-4,-3)\cup(0,3)\cup(3,4) D. (-2,1)\cup(3,4)
Zadanie 4.  1 pkt ⋅ Numer: pp-10693 ⋅ Poprawnie: 94/133 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Do dziedziny funkcji f(x)=\log(100-x^2) należy liczba:
Odpowiedzi:
A. 12 B. -\sqrt{99}
C. -\sqrt{101} D. \sqrt{102}
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 124/232 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{18-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10724 ⋅ Poprawnie: 540/834 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x). Rozwiązaniem nierówności f(x)\geqslant 2 jest przedział:
Odpowiedzi:
A. \left( -3,2\right\rangle B. \left\langle -3,2\right\rangle
C. \left\langle -3,6\right\rangle D. \left( -3,6\right\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 497/585 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x).

Wyznacz największą wartość funkcji f w przedziale \langle -2, 2\rangle.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 35/54 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{3}{5}x^2-1, w przedziale \langle -4,-2\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10746 ⋅ Poprawnie: 166/364 [45%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=|x|-13, dla x\in\mathbb{C}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji nie ma punktów wspólnych z osią Oy T/N : dla pewnego argumentu funkcja ta przyjmuje wartość -8
T/N : miejscem zerowym tej funkcji jest punkt (13,0)  
Zadanie 10.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 85/439 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. ZW_{f}=\langle -2, 3\rangle B. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
C. funkcja f nie jest różnowartościowa D. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
E. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna F. D_{f}=\langle -5, 4\rangle


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm