Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 512/746 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 16 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=(x+16)^3 T/N : f(x)=x^3+16
Zadanie 2.  1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 198/336 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji f(x)=(m-1)x+m^2-15 należy punkt P=(0,1).

Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 394/911 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \langle 1,2) B. (2,3)
C. \left(-2,-\frac{3}{2}\right) D. (-3,-2)
Zadanie 4.  1 pkt ⋅ Numer: pp-10684 ⋅ Poprawnie: 159/241 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla którego z podanych zbiorów liczb naturalnych wyrażenie \frac{\sqrt{x-9}}{x-11} ma sens liczbowy:
Odpowiedzi:
A. \{10,11,15\} B. \{8,9,12\}
C. \{9,12\} D. \{0,9,14\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10758 ⋅ Poprawnie: 174/286 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dla argumentu x=\frac{1}{\sqrt{11}-1} oblicz wartość funkcji określonej wzorem f(x)=-2x+4 i zapisz wynik w najprostszej postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.

Podaj liczby m, n, k i p.

Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10727 ⋅ Poprawnie: 463/696 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji f:

Zbiorem wartości funkcji g określonej wzorem g(x)=f(x)+2 jest zbiór:

Odpowiedzi:
A. \left\langle -2,\frac{41}{8}\right\rangle B. \left\langle -1,\frac{49}{8}\right\rangle
C. \left\langle 0,\frac{57}{8}\right\rangle D. \left\langle -3,\frac{33}{8}\right\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-10710 ⋅ Poprawnie: 91/135 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\sqrt[3]{x}-\frac{1}{\sqrt[3]{x^2}}.

Wtedy liczba f(-13) jest równa:

Odpowiedzi:
A. -\frac{13}{14}\sqrt[3]{13} B. -\frac{14}{13}\sqrt[3]{13}
C. -\frac{13}{14}\sqrt[3]{169} D. -\frac{14}{13}\sqrt[3]{169}
Zadanie 8.  1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 41/62 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{2}{3}x+\frac{3}{4} w przedziale \langle -4,5\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 309/840 [36%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rysunek przedstawia wykres funkcji f:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(x) \lessdot 0 dla x > 0 T/N : funkcja ta ma dwa miejsca zerowe
Zadanie 10.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 202/559 [36%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm