Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 513/747 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 3 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=x^3+3 T/N : f(x)=3x^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10757 ⋅ Poprawnie: 487/768 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Do wykresu funkcji f należy punkt o współrzędnych (3,2) oraz f(6)=1.

Funkcja f opisana jest wzorem:

Odpowiedzi:
A. f(x)=\sqrt{-x+7} B. f(x)=5x^2
C. f(x)=-3x-2 D. f(x)=\frac{3}{x}
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 272/400 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-1)x-7 należy punkt S=(4,-31).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10682 ⋅ Poprawnie: 669/826 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\frac{x-4}{x^2-2x} może być zbiór:
Odpowiedzi:
A. \mathbb{R}-\{-2,2\} B. \mathbb{R}-\{0,2\}
C. \mathbb{R}-\{-2,0\} D. \mathbb{R}
Zadanie 5.  1 pkt ⋅ Numer: pp-10704 ⋅ Poprawnie: 264/392 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{2x}{x+1} dla x\neq -1.

Oblicz wartość funkcji f dla argumentu x=\sqrt{2}. Wynik zapisz w najprostszej nieskracalnej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b\in\mathbb{Z}, c,d\in\mathbb{N}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10727 ⋅ Poprawnie: 463/696 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji f:

Zbiorem wartości funkcji g określonej wzorem g(x)=f(x)-3 jest zbiór:

Odpowiedzi:
A. \left\langle -8,-\frac{7}{8}\right\rangle B. \left\langle -7,\frac{1}{8}\right\rangle
C. \left\langle -9,-\frac{15}{8}\right\rangle D. \left\langle -6,\frac{9}{8}\right\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-10753 ⋅ Poprawnie: 55/80 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Wartością funkcji dla argumentu naturalnego n jest ostatnia cyfra kwadratu liczby n zwiększona o 2. Wynika stąd, że zbiór wartości funkcji zawiera liczbę:
Odpowiedzi:
A. 4 B. 7
C. 9 D. 5
Zadanie 8.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{5}{6}x^2+1, w przedziale \langle -3,-1\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 128/192 [66%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja określona wzorem f(x)=|x^2-14|-14?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : D_f=\left\langle 0,+\infty\right) T/N : iloczyn x\cdot f(x) jest liczba dodatnią
T/N : f\left(-3\sqrt{2}\right)=-18 T/N : ZW_f=\left(0,+\infty\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm