Podgląd testu : lo2@sp-04-funkcje-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 367/948 [38%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Funkcja
f każdej liczbie rzeczywistej
przypisuje połowę sześcianu tej liczby, pomniejszoną o 4.
Funkcję f opisuje wzór:
Odpowiedzi:
T/N : f(x)=\frac{1}{2}x^6-4
T/N : f(x)=\frac{1}{2}\left(x^3-8\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-10701 ⋅ Poprawnie: 197/472 [41%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Na rysunku przedstawiony jest fragment wykresu funkcji liniowej
f , przy czym
f(0)=-2 i
f(1)=0 .
Wykres funkcji g jest symetryczny do wykresu funkcji
f względem początku układu współrzędnych.
Funkcja g jest określona wzorem:
Odpowiedzi:
A. g(x)=-2x-2
B. g(x)=2x-2
C. g(x)=2x+2
D. g(x)=-2x+2
Zadanie 3. 1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=(m-5)x-6 należy punkt
S=(5,-21) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10692 ⋅ Poprawnie: 126/168 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji
f określonej wzorem
f(x)=\log{(x^2+16)}
jest zbiór:
Odpowiedzi:
A. (-\infty;-4)\cup(4;+\infty)
B. (-4;4)
C. \mathbb{R}-\{-4;4\}
D. \mathbb{R}
Zadanie 5. 1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 215/295 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f jest określona wzorem
f(x)=\frac{5x+6}{x} dla każdej liczby rzeczywistej
x\neq 0 . Oblicz wartość funkcji
f\left(\sqrt{2}\right) .
Wynik zapisz w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{Z} ,
c\in\mathbb{N}
i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10764 ⋅ Poprawnie: 543/716 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji
y=f(x) ,
określonej dla
x\in\langle -4, 4\rangle .
Zbiór wszystkich argumentów, dla których funkcja f
przyjmuje wartości niedodatnie, to zbiór:
Odpowiedzi:
A. (-4,-3)\cup(0,3)\cup(3,4)
B. \langle -4,-3\rangle \cup \langle 0,4\rangle
C. (-2,1)\cup(3,4)
D. \langle 0,3) \cup (3,4\rangle
Zadanie 7. 1 pkt ⋅ Numer: pp-10756 ⋅ Poprawnie: 47/87 [54%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Funkcja
f określona dla wszystkich liczb
całkowitych dodatnich, przyporządkowuje liczbie
n
ostatnią cyfrę jej czwartej potęgi.
Ile liczb zawiera zbiór wartości funkcji f ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 37/56 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=-\frac{5}{6}x^2-2 ,
w przedziale
\langle -3,-2\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 205/370 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz miejsce zerowe funkcji
f(x)=\sqrt{48}(x-5)-6 .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 709/1322 [53%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
f .
Jaką długość ma najdłuższy przedział, w którym funkcja f jest rosnąca?
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż