Podgląd testu : lo2@sp-04-funkcje-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja
f liczbie rzeczywistej
x przypisuje
sześcian zwiększonej o
11 liczby
x .
Funkcja f może być opisana wzorem:
Odpowiedzi:
T/N : f(x)=x^3+11
T/N : f(x)=11x^3
Zadanie 2. 1 pkt ⋅ Numer: pp-10752 ⋅ Poprawnie: 357/577 [61%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wykres funkcji
y=\frac{14}{x} zawiera punkt o współrzędnych:
Odpowiedzi:
A. \left(-7\sqrt{2}, -\sqrt{2}\right)
B. \left(-7,2\right)
C. \left(-\sqrt{7}, -2\sqrt{2}\right)
D. \left(\sqrt{14},-\sqrt{14}\right)
Zadanie 3. 1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=(m-8)x+8 należy punkt
S=(-5,38) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 325/515 [63%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
Dziedziną funkcji
g(x)=\sqrt{6-\frac{6x-5}{2}}
jest pewien przedział.
Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 2
B. +\infty
C. 5
D. 12
E. -\infty
F. 11
Zadanie 5. 1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/237 [53%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dana jest funkcja określona wzorem
g(x)=-\frac{14-2x}{x} .
Połowę liczby
g\left(\sqrt{2}\right) zapisz
w postaci
\frac{m+n\sqrt{k}}{p} ,
gdzie
m,n,k,p\in\mathbb{Z} .
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10728 ⋅ Poprawnie: 471/596 [79%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Podaj największą wartość tej funkcji.
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 498/586 [84%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x) .
Wyznacz największą wartość funkcji f w przedziale
\langle -2, 1\rangle .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 46/68 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz największą wartość funkcji określonej wzorem
f(x)=-\frac{5}{6}x-\frac{6}{5}
w przedziale
\langle -4,3\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11391 ⋅ Poprawnie: 159/227 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz najmniejsze miejsce zerowe funkcji określonej wzorem
f(x)=\frac{x^2+6x}{|x+6|} .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
(1 pkt)
Na rysunku pokazano wykres funkcji określonej wzorem
y=f(x) :
Wskaż zdanie fałszywe:
Odpowiedzi:
A. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna
B. ZW_{f}=\langle -2, 3\rangle
C. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
D. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
E. D_{f}=\langle -5, 4\rangle
F. funkcja f nie jest różnowartościowa
Rozwiąż