Podgląd testu : lo2@sp-04-funkcje-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja
f liczbie rzeczywistej
x przypisuje
sześcian zwiększonej o
3 liczby
x .
Funkcja f może być opisana wzorem:
Odpowiedzi:
T/N : f(x)=3(x^3+3)
T/N : f(x)=x^3+3
Zadanie 2. 1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 322/425 [75%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
B=(-7,y) należy do wykresu funkcji
f(x)=\frac{1-x^2}{x+5} .
Wyznacz y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. (2,3)
B. \langle 2,4)
C. (-3,-2)
D. (-1,2)
Zadanie 4. 1 pkt ⋅ Numer: pp-10692 ⋅ Poprawnie: 126/168 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji
f określonej wzorem
f(x)=\log{(x^2+4)}
jest zbiór:
Odpowiedzi:
A. \mathbb{R}
B. (-\infty;-2)\cup(2;+\infty)
C. \mathbb{R}-\{-2;2\}
D. (-2;2)
Zadanie 5. 1 pkt ⋅ Numer: pp-10718 ⋅ Poprawnie: 35/89 [39%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
y=f(x) jest przedział
\langle -3,8) .
Natomiast zbiorem wartości funkcji
y=-5\cdot f(x) jest pewien inny przedział,
w którym
min jest najmniejszą liczbą całkowitą, a
max największą liczbą całkowitą.
Podaj liczby min i max .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-10740 ⋅ Poprawnie: 99/127 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja
f opisana jest wzorem
f(x)=\frac{1+3x}{x-1} dla pewnego argumentu
przyjmuje wartość
\sqrt{10} .
Argumentem tym jest:
Odpowiedzi:
A. \sqrt{10}-1
B. 10+\sqrt{10}
C. \frac{\sqrt{10}+1}{\sqrt{10}-3}
D. \left(\sqrt{10}+1\right)^2
Zadanie 7. 1 pkt ⋅ Numer: pp-10709 ⋅ Poprawnie: 78/89 [87%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{2x^3}{x^6+4} dla każdej liczby rzeczywistej
x .
Oblicz wartość funkcji f\left(-\sqrt[3]{2}\right) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 37/56 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=-\frac{5}{4}x^2-4 ,
w przedziale
\langle -6,-3\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 326/865 [37%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rysunek przedstawia wykres funkcji
f :
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(x) \lessdot 0 dla x > 0
T/N : dziedziną funkcji jest przedział (-5,6)
Zadanie 10. 1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 508/905 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
h :
Jaką długość ma najdłuższy przedział, w którym funkcja h niemalejąca?
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż