Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 513/747 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 4 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=(x+4)^3 T/N : f(x)=4x^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10701 ⋅ Poprawnie: 194/470 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=-2 i f(1)=0.

Wykres funkcji g jest symetryczny do wykresu funkcji f względem początku układu współrzędnych.

Funkcja g jest określona wzorem:

Odpowiedzi:
A. g(x)=-2x+2 B. g(x)=2x+2
C. g(x)=2x-2 D. g(x)=-2x-2
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 272/400 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-6)x-1 należy punkt S=(3,-16).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 480/762 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\frac{1}{x+3} T/N : f(x)=\frac{1}{x^2+2}
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 124/233 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{8-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10759 ⋅ Poprawnie: 139/216 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f przyporządkowuje dowolnej liczbie całkowitej n ostatnią cyfrę 2-ej potęgi liczby n.

Ile elementów należy do zbioru wartości tej funkcji?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 497/585 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x).

Wyznacz największą wartość funkcji f w przedziale \langle -1, 1\rangle.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{5}{3}x+\frac{1}{4} w przedziale \langle -1,3\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10706 ⋅ Poprawnie: 749/957 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba -1 jest miejscem zerowym funkcji f(x)=(2m-1)x+5.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 85/439 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. ZW_{f}=\langle -2, 3\rangle B. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
C. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach D. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna
E. D_{f}=\langle -5, 4\rangle F. funkcja f ma ujemne miejsce zerowe


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm