Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 367/948 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 11.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{1}{2}x^6-11 T/N : f(x)=\frac{1}{2}\left(x^3-22\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 260/431 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 16 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (-1,2) B. (2,3)
C. \left(-2,-\frac{3}{2}\right) D. \langle 1,2)
Zadanie 4.  1 pkt ⋅ Numer: pp-10692 ⋅ Poprawnie: 126/168 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\log{(x^2+64)} jest zbiór:
Odpowiedzi:
A. \mathbb{R} B. (-8;8)
C. \mathbb{R}-\{-8;8\} D. (-\infty;-8)\cup(8;+\infty)
Zadanie 5.  1 pkt ⋅ Numer: pp-10714 ⋅ Poprawnie: 295/393 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f każdej liczbie naturalnej ze zbioru \{ 16,20,25,27\} przyporządkowuje resztę z dzielenia tej liczby przez 4.

Zbiorem wartości tej funkcji jest zbiór:

Odpowiedzi:
A. \{0,1,2\} B. \{1,2,3\}
C. \{0,2,3\} D. \{0,1,3\}
Zadanie 6.  1 pkt ⋅ Numer: pp-10717 ⋅ Poprawnie: 187/246 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej resztę z dzielenia tej liczby przez 8.

Oblicz wartość wyrażenia \frac{f(29)}{f(35)}.

Odpowiedź:
\frac{f(m)}{f(n)}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11390 ⋅ Poprawnie: 168/213 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do zbioru wartości funkcji f(x)=3-|x|, gdzie x\in\mathbb{N} należy liczba:
Odpowiedzi:
A. \frac{1}{2} B. 6
C. 0 D. 7
Zadanie 8.  1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 46/68 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz największą wartość funkcji określonej wzorem f(x)=\frac{6}{5}x+\frac{4}{5} w przedziale \langle -3,1\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 409/674 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x-5\text{, dla } x\in(-\infty, 0\rangle \\ 1-6x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 508/905 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji h:

« Jaką długość ma najdłuższy przedział, w którym funkcja h jest nierosnąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm