Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 512/746 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 3 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=3(x^3+3) T/N : f(x)=(x+3)^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 621/917 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Do wykresu funkcji f(x)=\frac{a}{x-5} należy punkt A=\left(-2,\frac{8}{7}\right).

Wyznacz wartość parametru a.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 394/911 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (-1,2) B. (-3,-2)
C. \langle 2,4) D. (2,3)
Zadanie 4.  1 pkt ⋅ Numer: pp-10682 ⋅ Poprawnie: 618/786 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\frac{x-4}{x^2-2x} może być zbiór:
Odpowiedzi:
A. \mathbb{R}-\{-2,2\} B. \mathbb{R}-\{-2,0\}
C. \mathbb{R} D. \mathbb{R}-\{0,2\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 213/293 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{3x+4}{x} dla każdej liczby rzeczywistej x\neq 0. Oblicz wartość funkcji f\left(\sqrt{2}\right). Wynik zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, c\in\mathbb{N} i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10748 ⋅ Poprawnie: 102/122 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\sqrt[3]{-6-3x}.

Wówczas f(x-3) jest równa:

Odpowiedzi:
A. \sqrt[3]{3x-9} B. \sqrt[3]{-3x-3}
C. \sqrt[3]{-6-3x}-3 D. \sqrt[3]{-3x+3}
Zadanie 7.  1 pkt ⋅ Numer: pp-10711 ⋅ Poprawnie: 211/278 [75%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=2\sqrt{x} dla x\in\{1,4,9,16,25\}.

Do zbioru wartości tej funkcji nie należy liczba:

Odpowiedzi:
A. 10 B. 4
C. 8 D. 5
Zadanie 8.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 35/54 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{2}{5}x^2+5, w przedziale \langle -5,-1\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 363/633 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x-3\text{, dla } x\in(-\infty, 0\rangle \\ 1-8x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 500/888 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji h:

Jaką długość ma najdłuższy przedział, w którym funkcja h niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm