Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 342/914 [37%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 13.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{x^3-13}{2} T/N : f(x)=0,5\frac{x^4}{x}-13
Zadanie 2.  1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 196/334 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji f(x)=(m-1)x+m^2-1 należy punkt P=(0,15).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10725 ⋅ Poprawnie: 314/559 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku jest przedstawiony wykres funkcji y=f(x).

Podaj najmniejszą wartość całkowitą m, dla której liczba rozwiązań równania f(x)=m jest równa 4.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10688 ⋅ Poprawnie: 351/509 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą należącą do dziedziny funkcji określonej wzorem f(x)=\sqrt{30-\frac{1}{3}x} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 124/232 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{20-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10727 ⋅ Poprawnie: 463/696 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji f:

Zbiorem wartości funkcji g określonej wzorem g(x)=f(x)+2 jest zbiór:

Odpowiedzi:
A. \left\langle -2,\frac{41}{8}\right\rangle B. \left\langle -4,\frac{25}{8}\right\rangle
C. \left\langle -1,\frac{49}{8}\right\rangle D. \left\langle 0,\frac{57}{8}\right\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-10710 ⋅ Poprawnie: 91/135 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\sqrt[3]{x}-\frac{1}{\sqrt[3]{x^2}}.

Wtedy liczba f(-13) jest równa:

Odpowiedzi:
A. -\frac{14}{13}\sqrt[3]{169} B. -\frac{14}{13}\sqrt[3]{13}
C. -\frac{13}{14}\sqrt[3]{13} D. -\frac{13}{14}\sqrt[3]{169}
Zadanie 8.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 35/54 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=\frac{5}{6}x^2+6, w przedziale \langle 5,6\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10706 ⋅ Poprawnie: 724/933 [77%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba 10 jest miejscem zerowym funkcji f(x)=(2m-1)x-10.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : iloczyn x\cdot f(x) jest liczba dodatnią T/N : funkcja ta jest monotoniczna
T/N : D_f=\left\langle 0,+\infty\right) T/N : ZW_f=\left(0,+\infty\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm