Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 20 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=3(x^3+20) T/N : f(x)=(x+20)^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 256/428 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 22 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m+7)x+8 należy punkt S=(-6,-22).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10689 ⋅ Poprawnie: 337/509 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f(x)=\frac{x}{\sqrt{64+x^2}}+(2-x)^2 jest:
Odpowiedzi:
A. (-\infty;-8)\cup(8;+\infty) B. \mathbb{R}
C. \mathbb{R}-\{-8\} D. \mathbb{R}-\{8\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10721 ⋅ Poprawnie: 218/401 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : \left[f(-4)\right]^2 < f(4) T/N : f(5) > \frac{1}{f(-2)}
Zadanie 6.  1 pkt ⋅ Numer: pp-10717 ⋅ Poprawnie: 187/246 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej resztę z dzielenia tej liczby przez 6.

Oblicz wartość wyrażenia \frac{f(23)}{f(28)}.

Odpowiedź:
\frac{f(m)}{f(n)}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10711 ⋅ Poprawnie: 214/281 [76%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=2\sqrt{x} dla x\in\{1,4,9,16,25,36,49,64,81\}.

Do zbioru wartości tej funkcji nie należy liczba:

Odpowiedzi:
A. 10 B. 6
C. 12 D. 16
E. 3 F. 18
Zadanie 8.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 38/59 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=\frac{5}{4}x^2-6, w przedziale \langle -3,-2\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10741 ⋅ Poprawnie: 603/941 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby -14 i 14 są miejscami zerowymi funkcji:
Odpowiedzi:
A. f(x)=\frac{(x-14)(x+14)}{x^2-196} B. f(x)=x(x+14)
C. f(x)=x^2-28x+196 D. f(x)=\frac{1}{392}x^2-\frac{1}{2}
Zadanie 10.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 91/468 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna B. D_{f}=\langle -5, 4\rangle
C. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle D. funkcja f nie jest różnowartościowa
E. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach F. ZW_{f}=\langle -2, 3\rangle


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm