Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 517/751 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 11 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=x^3+11 T/N : f(x)=11x^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10701 ⋅ Poprawnie: 196/471 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=-2 i f(1)=0.

Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi Ox.

Funkcja g jest określona wzorem:

Odpowiedzi:
A. g(x)=-2x-2 B. g(x)=2x+2
C. g(x)=-2x+2 D. g(x)=2x-2
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 272/401 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m+8)x+4 należy punkt S=(-5,-21).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 321/512 [62%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Dziedziną funkcji g(x)=\sqrt{6-\frac{6x-9}{2}} jest pewien przedział.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -3
C. -4 D. -6
E. +\infty F. 12
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/235 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{14-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10716 ⋅ Poprawnie: 71/132 [53%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f, określona dla wszystkich liczb całkowitych dodatnich, przyporządkowuje liczbie n ostatnią cyfrę jej kwadratu, a zbiór wartości funkcji f zawiera k elementów.

Wyznacz k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10763 ⋅ Poprawnie: 115/161 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do wykresu funkcji f(x)=ax+\frac{3}{4} określonej dla x\neq -1 należy punkt A=(-2,3).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 36/56 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=\frac{3}{2}x^2+1, w przedziale \langle -6,-3\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11391 ⋅ Poprawnie: 157/225 [69%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz najmniejsze miejsce zerowe funkcji określonej wzorem f(x)=\frac{x^2+6x}{|x+6|}.
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 90/466 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle B. ZW_{f}=\langle -2, 3\rangle
C. funkcja f ma ujemne miejsce zerowe D. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
E. D_{f}=\langle -5, 4\rangle F. funkcja f nie jest różnowartościowa


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm