Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 514/748 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 4 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=x^3+4 T/N : f(x)=(x+4)^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 244/416 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 6 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 396/913 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \langle 1,2) B. (-1,2)
C. \langle 2,4) D. (2,3)
Zadanie 4.  1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 637/893 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{-x-5} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10721 ⋅ Poprawnie: 218/399 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : \frac{1}{f(1)} > f(4) T/N : f(3) > \left[f(3)\right]^2
Zadanie 6.  1 pkt ⋅ Numer: pp-10724 ⋅ Poprawnie: 542/836 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x). Rozwiązaniem nierówności f(x)\geqslant 0 jest przedział:
Odpowiedzi:
A. \langle -4,6\rangle B. \left\langle -\frac{7}{2},6\right\rangle
C. \left\langle -\frac{5}{2},0\right\rangle D. \left\langle -3,6\right\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-11390 ⋅ Poprawnie: 167/211 [79%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do zbioru wartości funkcji f(x)=-6-|x|, gdzie x\in\mathbb{N} należy liczba:
Odpowiedzi:
A. \frac{1}{5} B. -8
C. 0 D. -3
Zadanie 8.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 35/54 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=\frac{1}{3}x^2+5, w przedziale \langle -4,-1\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 128/192 [66%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja określona wzorem f(x)=|x^2-12|-12?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 202/559 [36%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest malejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm