Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 358/938 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 5.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=0,5\frac{x^4}{x}-5 T/N : f(x)=\frac{1}{2}\left(x^3-10\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-10757 ⋅ Poprawnie: 471/755 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Do wykresu funkcji f należy punkt o współrzędnych (-7,4) oraz f(5)=2.

Funkcja f opisana jest wzorem:

Odpowiedzi:
A. f(x)=-6x^2 B. f(x)=-4x+2
C. f(x)=\frac{-6}{x} D. f(x)=\sqrt{-x+9}
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 255/388 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-4)x-1 należy punkt S=(6,-25).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10688 ⋅ Poprawnie: 361/516 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą należącą do dziedziny funkcji określonej wzorem f(x)=\sqrt{30-\frac{2}{3}x} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10702 ⋅ Poprawnie: 142/202 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{2x^3}{x^4+3} dla każdej liczby rzeczywistej x. Zapisz liczbę f\left(-\sqrt{11}\right) w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}, gdzie a\in\mathbb{Z} i b,c\in\mathbb{N}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10759 ⋅ Poprawnie: 139/216 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f przyporządkowuje dowolnej liczbie całkowitej n ostatnią cyfrę 2-ej potęgi liczby n.

Ile elementów należy do zbioru wartości tej funkcji?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10753 ⋅ Poprawnie: 55/80 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Wartością funkcji dla argumentu naturalnego n jest ostatnia cyfra kwadratu liczby n zwiększona o 2. Wynika stąd, że zbiór wartości funkcji zawiera liczbę:
Odpowiedzi:
A. 5 B. 4
C. 7 D. 9
Zadanie 8.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{2}{5}x-4 w przedziale \langle -5,3\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 363/633 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x-1\text{, dla } x\in(-\infty, 0\rangle \\ 1+7x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 500/888 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji h:

Jaką długość ma najdłuższy przedział, w którym funkcja h niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm