Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 517/751 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 21 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=x^3+21 T/N : f(x)=3(x^3+21)
Zadanie 2.  1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 318/421 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt B=(8,y) należy do wykresu funkcji f(x)=\frac{1-x^2}{x+6}.

Wyznacz y.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 396/915 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \left(-2,-\frac{3}{2}\right) B. (2,3)
C. (-1,2) D. \langle 1,2)
Zadanie 4.  1 pkt ⋅ Numer: pp-10693 ⋅ Poprawnie: 123/152 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Do dziedziny funkcji f(x)=\log(169-x^2) należy liczba:
Odpowiedzi:
A. -\sqrt{168} B. \sqrt{171}
C. 15 D. -\sqrt{170}
Zadanie 5.  1 pkt ⋅ Numer: pp-10718 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest przedział \langle -3,8). Natomiast zbiorem wartości funkcji y=-2\cdot f(x) jest pewien inny przedział, w którym min jest najmniejszą liczbą całkowitą, a max największą liczbą całkowitą.

Podaj liczby min i max.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10759 ⋅ Poprawnie: 141/218 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f przyporządkowuje dowolnej liczbie całkowitej n ostatnią cyfrę 4-ej potęgi liczby n.

Ile elementów należy do zbioru wartości tej funkcji?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10762 ⋅ Poprawnie: 249/299 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Podaj największą wartość funkcji f, której wykres pokazano na rysunku:
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{2}{5}x^2+4, w przedziale \langle 1,2\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10741 ⋅ Poprawnie: 599/937 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby -15 i 15 są miejscami zerowymi funkcji:
Odpowiedzi:
A. f(x)=\frac{1}{450}x^2-\frac{1}{2} B. f(x)=x^2-30x+225
C. f(x)=\frac{(x-15)(x+15)}{x^2-225} D. f(x)=x(x+15)
Zadanie 10.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 202/559 [36%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm