Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 508/743 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 21 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=(x+21)^3 T/N : f(x)=21x^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10752 ⋅ Poprawnie: 309/536 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji y=\frac{39}{x} zawiera punkt o współrzędnych:
Odpowiedzi:
A. \left(-\sqrt{13}, -3\sqrt{3}\right) B. \left(\sqrt{39},-\sqrt{39}\right)
C. \left(-13,3\right) D. \left(-13\sqrt{3}, -\sqrt{3}\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-11731 ⋅ Poprawnie: 40/65 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku jest przedstawiony wykres funkcji y=f(x).

Podaj najmniejszą wartość całkowitą m, dla której liczba rozwiązań równania f(x)=m jest równa 3.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 283/473 [59%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Dziedziną funkcji g(x)=\sqrt{11-\frac{11x-10}{2}} jest pewien przedział.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 5 B. 0
C. +\infty D. -1
E. -\infty F. 1
Zadanie 5.  1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 102/143 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 resztę z dzielenia tej liczby przez 23.

Spośród liczb: f(88), f(99), f(114), f(127) największą jest:

Odpowiedzi:
A. f(99) B. f(88)
C. f(127) D. f(114)
Zadanie 6.  1 pkt ⋅ Numer: pp-10764 ⋅ Poprawnie: 516/689 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji y=f(x), określonej dla x\in\langle -4, 4\rangle.

Zbiór wszystkich argumentów, dla których funkcja f przyjmuje wartości niedodatnie, to zbiór:

Odpowiedzi:
A. (-4,-3)\cup(0,3)\cup(3,4) B. \langle -4,-3\rangle \cup \langle 0,4\rangle
C. \langle 0,3) \cup (3,4\rangle D. (-2,1)\cup(3,4)
Zadanie 7.  1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 497/585 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x).

Wyznacz największą wartość funkcji f w przedziale \langle -1, 3\rangle.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{6}{5}x^2-2, w przedziale \langle 2,5\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 109/236 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=\sqrt{x}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja przyjmuje wartość \frac{31}{\sqrt{31}} T/N : funkcja f przyjmuje tylko wartości dodatnie
T/N : funkcja f przyjmuje tylko wartości ujemne  
Zadanie 10.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 688/1285 [53%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaką długośc ma najdłuższy przedział, w którym funkcja f jest niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm