Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 367/948 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 7.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{x^3-7}{2} T/N : f(x)=0,5\frac{x^4}{x}-7
Zadanie 2.  1 pkt ⋅ Numer: pp-10752 ⋅ Poprawnie: 357/577 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji y=\frac{21}{x} zawiera punkt o współrzędnych:
Odpowiedzi:
A. \left(\sqrt{21},-\sqrt{21}\right) B. \left(-\sqrt{3}, -7\sqrt{7}\right)
C. \left(-3,7\right) D. \left(-3\sqrt{7}, -\sqrt{7}\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-2)x-7 należy punkt S=(-2,-9).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 386/763 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\frac{x+3}{\sqrt{6-x}} i rozwiązanie zapisz w postaci sumy przedziałów. Liczba x_1 jest najmniejszm z końców liczbowych tych przedziałów, a liczba x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/237 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{14-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10743 ⋅ Poprawnie: 58/100 [58%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dziedziną funkcji g(x)=\frac{2x-12}{|6-x|} jest zbiór (6,+\infty).

Zatem:

Odpowiedzi:
A. ZW_{g}=\{-2,2\} B. ZW_{g}=\mathbb{R}-\{-2\}
C. ZW_{g}=\mathbb{R}-\{2\} D. ZW_{g}=\{2\}
Zadanie 7.  1 pkt ⋅ Numer: pp-10762 ⋅ Poprawnie: 251/300 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Podaj największą wartość funkcji f, której wykres pokazano na rysunku:
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 46/68 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz największą wartość funkcji określonej wzorem f(x)=\frac{5}{2}x-\frac{3}{2} w przedziale \langle -3,5\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji f(x)=\sqrt{20}(x-2)-7.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 508/905 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji h:

Jaką długość ma najdłuższy przedział, w którym funkcja h jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm