Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 367/948 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 5.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{1}{2}x^6-5 T/N : f(x)=0,5\frac{x^4}{x}-5
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 260/431 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 8 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-4)x+1 należy punkt S=(2,-19).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 105/208 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+4}\sqrt{x-7} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/237 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{10-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10729 ⋅ Poprawnie: 855/1364 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Zbiorem wartości funkcji, której wykres pokazano na rysunku jest:
Odpowiedzi:
A. \langle -1,4) B. (-1,4)-\{2\}
C. \langle -1,4\rangle D. \langle -1,2)\cup(2,4\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-10709 ⋅ Poprawnie: 78/89 [87%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{2x^3}{x^6+3} dla każdej liczby rzeczywistej x.

Oblicz wartość funkcji f\left(-\sqrt[3]{4}\right).

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 37/56 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{5}{4}x^2-4, w przedziale \langle -3,-1\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 136/259 [52%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=\sqrt{x}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : D_f=\mathbb{R} T/N : funkcja f przyjmuje tylko wartości dodatnie
T/N : funkcja przyjmuje wartość \frac{10}{\sqrt{10}}  
Zadanie 10.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 184/392 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : ZW_f=\left(0,+\infty\right) T/N : f\left(6\sqrt{6}\right)=36\sqrt{6}
T/N : f\left(-7\sqrt{6}\right)=-294 T/N : funkcja ta jest monotoniczna


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm