Podgląd testu : lo2@sp-04-funkcje-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 518/753 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja
f liczbie rzeczywistej
x przypisuje
sześcian zwiększonej o
2 liczby
x .
Funkcja f może być opisana wzorem:
Odpowiedzi:
T/N : f(x)=x^3+2
T/N : f(x)=2x^3
Zadanie 2. 1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 200/338 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji
f(x)=(m-1)x+m^2-13 należy punkt
P=(0,3) .
Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 396/917 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. \langle 2,4)
B. \langle 1,2)
C. (-1,2)
D. (-3,-2)
Zadanie 4. 1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 385/759 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji
f(x)=\frac{x+3}{\sqrt{2-x}}
i rozwiązanie zapisz w postaci sumy przedziałów. Liczba
x_1
jest najmniejszm z końców liczbowych tych przedziałów, a liczba
x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.
Podaj liczby x_1 i x_2 .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 120/160 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Funkcja
f przyporządkowuje każdej liczbie naturalnej
większej od
1 resztę z dzielenia tej liczby przez
23 .
Spośród liczb:
f(75) , f(89) ,
f(103) , f(109) największą
jest:
Odpowiedzi:
A. f(89)
B. f(75)
C. f(109)
D. f(103)
Zadanie 6. 1 pkt ⋅ Numer: pp-10747 ⋅ Poprawnie: 141/210 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Funkcja
f opisana jest wzorem:
f(x)=2020(3x-4)^{2020}+1 .
Oblicz f(1) .
Odpowiedź:
f(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11390 ⋅ Poprawnie: 167/211 [79%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Do zbioru wartości funkcji
f(x)=-8-|x| , gdzie
x\in\mathbb{N} należy liczba:
Odpowiedzi:
A. -12
B. -2
C. -6
D. \frac{3}{5}
Zadanie 8. 1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 54/88 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=-\frac{6}{5}x-\frac{6}{5}
w przedziale
\langle -6,6\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11391 ⋅ Poprawnie: 158/226 [69%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz najmniejsze miejsce zerowe funkcji określonej wzorem
f(x)=\frac{x^2+2x}{|x+2|} .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 183/389 [47%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Funkcja
f opisana jest wzorem:
f(x)=x^2 .
Wówczas:
Odpowiedzi:
T/N : funkcja ta jest monotoniczna
T/N : iloczyn x\cdot f(x) jest liczba dodatnią
T/N : f\left(2\sqrt{2}\right)=4\sqrt{2}
T/N : ZW_f=\left(0,+\infty\right)
Rozwiąż