Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 342/914 [37%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 4.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=0,5\frac{x^4}{x}-4 T/N : f(x)=\frac{x^3-4}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-10752 ⋅ Poprawnie: 304/531 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji y=\frac{65}{x} zawiera punkt o współrzędnych:
Odpowiedzi:
A. \left(\sqrt{65},-\sqrt{65}\right) B. \left(-5,13\right)
C. \left(-5\sqrt{13}, -\sqrt{13}\right) D. \left(-\sqrt{5}, -13\sqrt{13}\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 385/903 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (2,3) B. \langle 2,4)
C. (-3,-2) D. (-1,2)
Zadanie 4.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 84/174 [48%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+4}\sqrt{x-9} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10702 ⋅ Poprawnie: 142/202 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{2x^3}{x^4+4} dla każdej liczby rzeczywistej x. Zapisz liczbę f\left(-\sqrt{11}\right) w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}, gdzie a\in\mathbb{Z} i b,c\in\mathbb{N}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10747 ⋅ Poprawnie: 138/207 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=2032(4x+3)^{2032}+1.

Oblicz f(-1).

Odpowiedź:
f(x)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10763 ⋅ Poprawnie: 115/161 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do wykresu funkcji f(x)=ax+\frac{1}{2} określonej dla x\neq -1 należy punkt A=(-2,3).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-4x+\frac{1}{3} w przedziale \langle -3,5\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 203/368 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji f(x)=\sqrt{52}(x-5)+4.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : f\left(3\sqrt{3}\right)=27 T/N : f\left(-4\sqrt{3}\right)=-48
T/N : ZW_f=\left(0,+\infty\right) T/N : iloczyn x\cdot f(x) jest liczba dodatnią


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm