Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 508/743 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 8 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=(x+8)^3 T/N : f(x)=3(x^3+8)
Zadanie 2.  1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 196/334 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji f(x)=(m-1)x+m^2-6 należy punkt P=(0,10).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10733 ⋅ Poprawnie: 838/1002 [83%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji y=f(x).

Podaj największą wartość funkcji f w przedziale \langle -1,1\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10692 ⋅ Poprawnie: 118/160 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\log{(x^2+25)} jest zbiór:
Odpowiedzi:
A. \mathbb{R}-\{-5;5\} B. (-\infty;-5)\cup(5;+\infty)
C. (-5;5) D. \mathbb{R}
Zadanie 5.  1 pkt ⋅ Numer: pp-10722 ⋅ Poprawnie: 429/764 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(2)\lessdot f(7) T/N : f(1)\lessdot f(5)
T/N : f(3) > f(-4)  
Zadanie 6.  1 pkt ⋅ Numer: pp-10729 ⋅ Poprawnie: 845/1343 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Zbiorem wartości funkcji, której wykres pokazano na rysunku jest:
Odpowiedzi:
A. \langle -1,4\rangle B. (-1,4)-\{2\}
C. \langle -1,2)\cup(2,4\rangle D. \langle -1,4)
Zadanie 7.  1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 497/585 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x).

Wyznacz największą wartość funkcji f w przedziale \langle -2, 1\rangle.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{3}{2}x^2-6, w przedziale \langle -5,-2\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 128/192 [66%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja określona wzorem f(x)=|x^2-6|-6?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 85/439 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach B. funkcja f ma ujemne miejsce zerowe
C. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle D. ZW_{f}=\langle -2, 3\rangle
E. D_{f}=\langle -5, 4\rangle F. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm