Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 18 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=18x^3 T/N : f(x)=(x+18)^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10701 ⋅ Poprawnie: 197/472 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=-2 i f(1)=0.

Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi Oy.

Funkcja g jest określona wzorem:

Odpowiedzi:
A. g(x)=2x-2 B. g(x)=2x+2
C. g(x)=-2x+2 D. g(x)=-2x-2
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \left(-2,-\frac{3}{2}\right) B. (-3,-2)
C. \langle 1,2) D. (2,3)
Zadanie 4.  1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 638/894 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{-x-15} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10745 ⋅ Poprawnie: 164/247 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą.

Spośród liczb: f(65), f(66), f(68), f(69) największa to:

Odpowiedzi:
A. f(69) B. f(65)
C. f(66) D. f(68)
Zadanie 6.  1 pkt ⋅ Numer: pp-10716 ⋅ Poprawnie: 72/134 [53%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f, określona dla wszystkich liczb całkowitych dodatnich, przyporządkowuje liczbie n ostatnią cyfrę jej sześcianu, a zbiór wartości funkcji f zawiera k elementów.

Wyznacz k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 498/586 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x).

Wyznacz największą wartość funkcji f w przedziale \langle -1, 3\rangle.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{1}{4}x^2+4, w przedziale \langle -6,-2\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10706 ⋅ Poprawnie: 751/959 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba -5 jest miejscem zerowym funkcji f(x)=(2m-1)x+5.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna B. funkcja f nie jest różnowartościowa
C. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach D. D_{f}=\langle -5, 4\rangle
E. ZW_{f}=\langle -2, 3\rangle F. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm