Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 342/913 [37%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 14.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{1}{2}x^6-14 T/N : f(x)=\frac{1}{2}\left(x^3-28\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 217/390 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 20 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10730 ⋅ Poprawnie: 1004/1379 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji y=f(x), określonej dla x\in\langle -4,4\rangle.

Zbiór wszystkich argumentów, dla których funkcja f przyjmuje wartości niedodatnie, to zbiór:

Odpowiedzi:
A. \langle -4,-3\rangle\cup \langle 0,4\rangle B. \langle 0,3)\cup (3,4\rangle
C. (-2,1)\cup(3,4) D. (-4,-3)\cup(0,3)\cup(3,4)
Zadanie 4.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 84/174 [48%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+10}\sqrt{x-9} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10722 ⋅ Poprawnie: 425/753 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(0) > f(7) T/N : f(3) > f(-3)
T/N : f(2)\lessdot f(5)  
Zadanie 6.  1 pkt ⋅ Numer: pp-10748 ⋅ Poprawnie: 102/122 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\sqrt[3]{5+3x}.

Wówczas f(x-2) jest równa:

Odpowiedzi:
A. \sqrt[3]{3x+2} B. \sqrt[3]{3x-1}
C. \sqrt[3]{5+3x}-2 D. \sqrt[3]{-3x+3}
Zadanie 7.  1 pkt ⋅ Numer: pp-10756 ⋅ Poprawnie: 46/86 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f określona dla wszystkich liczb całkowitych dodatnich, przyporządkowuje liczbie n ostatnią cyfrę jej czwartej potęgi.

Ile liczb zawiera zbiór wartości funkcji f?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{5}{3}x^2-2, w przedziale \langle -3,-2\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10736 ⋅ Poprawnie: 344/576 [59%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=2x+b ma takie samo miejsce zerowe, jakie ma funkcja g(x)=-3x+\frac{1}{2}.

Wyznacz wartość parametru b.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : ZW_f=\left(0,+\infty\right) T/N : f\left(16\sqrt{2}\right)=128\sqrt{2}
T/N : D_f=\left\langle 0,+\infty\right) T/N : f\left(-18\sqrt{2}\right)=-648


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm