Podgląd testu : lo2@sp-04-funkcje-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja
f liczbie rzeczywistej
x przypisuje
sześcian zwiększonej o
15 liczby
x .
Funkcja f może być opisana wzorem:
Odpowiedzi:
T/N : f(x)=(x+15)^3
T/N : f(x)=3(x^3+15)
Zadanie 2. 1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 204/342 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji
f(x)=(m-1)x+m^2-13 należy punkt
P=(0,12) .
Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=(m-5)x-4 należy punkt
S=(4,-36) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 386/763 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji
f(x)=\frac{x+3}{\sqrt{8-x}}
i rozwiązanie zapisz w postaci sumy przedziałów. Liczba
x_1
jest najmniejszm z końców liczbowych tych przedziałów, a liczba
x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.
Podaj liczby x_1 i x_2 .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10714 ⋅ Poprawnie: 295/393 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f każdej liczbie naturalnej ze zbioru
\{
13,15,17,20\} przyporządkowuje resztę z dzielenia
tej liczby przez
4 .
Zbiorem wartości tej funkcji jest zbiór:
Odpowiedzi:
A. \{0,2,3\}
B. \{1,2,3\}
C. \{0,1,2\}
D. \{0,1,3\}
Zadanie 6. 1 pkt ⋅ Numer: pp-10747 ⋅ Poprawnie: 141/210 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Funkcja
f opisana jest wzorem:
f(x)=2022(2x+1)^{2022}-1 .
Oblicz f(-1) .
Odpowiedź:
f(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11390 ⋅ Poprawnie: 168/213 [78%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Do zbioru wartości funkcji
f(x)=3-|x| , gdzie
x\in\mathbb{N} należy liczba:
Odpowiedzi:
A. 5
B. 8
C. \frac{1}{4}
D. 1
Zadanie 8. 1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 55/90 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=-\frac{2}{3}x-1
w przedziale
\langle -2,2\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 205/370 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz miejsce zerowe funkcji
f(x)=\sqrt{28}(x+3)-3 .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
(1 pkt)
Na rysunku pokazano wykres funkcji określonej wzorem
y=f(x) :
Wskaż zdanie fałszywe:
Odpowiedzi:
A. D_{f}=\langle -5, 4\rangle
B. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna
C. ZW_{f}=\langle -2, 3\rangle
D. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
E. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
F. funkcja f ma ujemne miejsce zerowe
Rozwiąż