Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 2 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=x^3+2 T/N : f(x)=(x+2)^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 676/971 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Do wykresu funkcji f(x)=\frac{a}{x+7} należy punkt A=\left(-2,-\frac{1}{5}\right).

Wyznacz wartość parametru a.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \langle 2,4) B. \langle 1,2)
C. (-1,2) D. (-3,-2)
Zadanie 4.  1 pkt ⋅ Numer: pp-10682 ⋅ Poprawnie: 674/827 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\frac{x-4}{x^2-2x} może być zbiór:
Odpowiedzi:
A. \mathbb{R}-\{-2,0\} B. \mathbb{R}
C. \mathbb{R}-\{-2,2\} D. \mathbb{R}-\{0,2\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 215/295 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{-6x+8}{x} dla każdej liczby rzeczywistej x\neq 0. Oblicz wartość funkcji f\left(\sqrt{2}\right). Wynik zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, c\in\mathbb{N} i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10748 ⋅ Poprawnie: 106/127 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\sqrt[3]{-1+5x}.

Wówczas f(x-4) jest równa:

Odpowiedzi:
A. \sqrt[3]{5x-6} B. \sqrt[3]{5x-21}
C. \sqrt[3]{-5x-5} D. \sqrt[3]{-1+5x}-4
Zadanie 7.  1 pkt ⋅ Numer: pp-10711 ⋅ Poprawnie: 214/281 [76%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=2\sqrt{x} dla x\in\{1,4,9,16,25\}.

Do zbioru wartości tej funkcji nie należy liczba:

Odpowiedzi:
A. 8 B. 6
C. 3 D. 4
Zadanie 8.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 55/90 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=6x-1 w przedziale \langle -6,5\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 136/259 [52%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=\sqrt{-x}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f przyjmuje tylko wartości ujemne T/N : D_f=\mathbb{R}
T/N : funkcja przyjmuje wartość \frac{3}{\sqrt{3}}  
Zadanie 10.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 184/392 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : funkcja ta jest monotoniczna T/N : iloczyn x\cdot f(x) jest liczba dodatnią
T/N : f\left(-3\sqrt{2}\right)=-18 T/N : D_f=\left\langle 0,+\infty\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm