Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 512/746 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 4 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=3(x^3+4) T/N : f(x)=(x+4)^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 240/412 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 6 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 272/400 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-6)x+7 należy punkt S=(-4,15).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10682 ⋅ Poprawnie: 659/819 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\frac{x-4}{x^2-3x} może być zbiór:
Odpowiedzi:
A. \mathbb{R}-\{-3,0\} B. \mathbb{R}-\{0,3\}
C. \mathbb{R} D. \mathbb{R}-\{-3,3\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10722 ⋅ Poprawnie: 429/764 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(6) > f(-2) T/N : f(2)\lessdot f(7)
T/N : f(2) > f(7)  
Zadanie 6.  1 pkt ⋅ Numer: pp-10728 ⋅ Poprawnie: 453/576 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji y=f(x).

Podaj największą wartość tej funkcji.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10762 ⋅ Poprawnie: 248/298 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Podaj największą wartość funkcji f, której wykres pokazano na rysunku:
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{5}{4}x^2+2, w przedziale \langle 2,4\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 363/633 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x+7\text{, dla } x\in(-\infty, 0\rangle \\ 1-6x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 688/1285 [53%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaką długość ma najdłuższy przedział, w którym funkcja f jest rosnąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm