Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 200/338 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji f(x)=(m-1)x+m^2-8 należy punkt P=(0,8).

Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 102/202 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+9}\sqrt{x-4} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10717 ⋅ Poprawnie: 186/244 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej resztę z dzielenia tej liczby przez 8.

Oblicz wartość wyrażenia \frac{f(29)}{f(30)}.

Odpowiedź:
\frac{f(m)}{f(n)}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{2}{3}x^2-3, w przedziale \langle 1,3\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10706 ⋅ Poprawnie: 749/957 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba -5 jest miejscem zerowym funkcji f(x)=(2m-1)x+5.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20773 ⋅ Poprawnie: 93/227 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest funkcja f(x)=\frac{1}{x}, gdzie x\in\left(-\frac{5}{7}, -\frac{2}{9}\right).

Podaj najmniejszą liczbę całkowitą, która należy do zbioru wartości tej funkcji.

Odpowiedź:
min_{\in\mathbb{Z},\in ZW_f}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą liczbę całkowitą, która należy do zbioru wartości tej funkcji.
Odpowiedź:
max_{\in\mathbb{Z},\in ZW_f }= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20771 ⋅ Poprawnie: 211/583 [36%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz dziedzinę funkcji: f(x)=\frac{\sqrt{x+17}}{\sqrt{12-x}} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile liczb całkowitych jedno lub dwucyfrowych należy do dziedziny tej funkcji.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20294 ⋅ Poprawnie: 73/212 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest łamana o kolejnych wierzchołkach A=(-4,5), B=(3,-7-2m) i C=(5,-8-3m), która jest wykresem funkcji f.

Wyznacz te wartości m, dla których funkcja f ma dwa miejsca zerowe. Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
l=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm