Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 260/431 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt M o rzędnej równej 16 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10684 ⋅ Poprawnie: 163/245 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dla którego z podanych zbiorów liczb naturalnych wyrażenie \frac{\sqrt{x-8}}{x-10} ma sens liczbowy:
Odpowiedzi:
A. \{7,8,11\} B. \{9,10,14\}
C. \{8,11\} D. \{0,8,13\}
Zadanie 3.  1 pkt ⋅ Numer: pp-10756 ⋅ Poprawnie: 47/87 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Funkcja f określona dla wszystkich liczb całkowitych dodatnich, przyporządkowuje liczbie n ostatnią cyfrę jej czwartej potęgi.

Ile liczb zawiera zbiór wartości funkcji f?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 508/905 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji h:

Jaką długość ma najdłuższy przedział, w którym funkcja h jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10746 ⋅ Poprawnie: 169/368 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=|x|-13, dla x\in\mathbb{C}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji nie ma punktów wspólnych z osią Oy T/N : wartości tej funkcji są liczbami naturalnymi
T/N : dla pewnego argumentu funkcja ta przyjmuje wartość 5  
Zadanie 6.  2 pkt ⋅ Numer: pp-20773 ⋅ Poprawnie: 93/227 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest funkcja f(x)=\frac{1}{x}, gdzie x\in\left(-\frac{5}{8}, -\frac{2}{15}\right).

Podaj najmniejszą liczbę całkowitą, która należy do zbioru wartości tej funkcji.

Odpowiedź:
min_{\in\mathbb{Z},\in ZW_f}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą liczbę całkowitą, która należy do zbioru wartości tej funkcji.
Odpowiedź:
max_{\in\mathbb{Z},\in ZW_f }= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20771 ⋅ Poprawnie: 211/583 [36%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz dziedzinę funkcji: f(x)=\frac{\sqrt{x+16}}{\sqrt{19-x}} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile liczb całkowitych jedno lub dwucyfrowych należy do dziedziny tej funkcji.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20294 ⋅ Poprawnie: 74/214 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest łamana o kolejnych wierzchołkach A=(-4,5), B=(3,-3-2m) i C=(5,-2-3m), która jest wykresem funkcji f.

Wyznacz te wartości m, dla których funkcja f ma dwa miejsca zerowe. Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
l=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm