Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-4x+2 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right)
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
T/N : miejscem zerowym tej funkcji jest liczba -\frac{1}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Punkty
A=(1,7) i
B=(2,6) należą do prostej
k .
Prosta
l symetryczna do prostej
k względem początku układu współrzędnych
ma równanie
y=ax+b .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 196/379 [51%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x) :
Wskaż wzór funkcji, której wykres jest symetryczny do tego wykresu względem osi
Oy :
Odpowiedzi:
A. y=\frac{1}{\sqrt{3}}x+1
B. y=-\frac{\sqrt{3}}{3}x+1
C. y=\sqrt{3}x+1
D. y=-\sqrt{3}x+1
Zadanie 4. 1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 278/546 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja liniowa
f(x)=(m+2)x-(m+1)^2+47 jest malejąca
i jej wykres przecina oś rzędnych w punkcie
P=(0,-97) .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja liniowa określona wzorem
g(x)=(\sqrt{13}+\sqrt{8})x-5
.
Miejscem zerowym funkcji
g jest liczba
\frac{\sqrt{8}-\sqrt{13}}{......} .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcje liniowe określone wzorami
f(x)=-\frac{3}{7}x-5 oraz
g(x)=mx+2 mają wspólne miejsce zerowe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkty o współrzędnych
(500,700) oraz
(600,-100) należą do wykresu funkcji liniowej
y=mx+n .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : z treści wynika, że n=0
T/N : z treści wynika, że m > 0
T/N : z treści wynika, że n \lessdot 0
Zadanie 8. 1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Wyznacz te wartości parametru
m , dla których funkcja liniowa
f(x)=(13-m^2)x-5 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba
p jest najmniejszym z końców liczbowych tych przedziałów,
a liczba
q jest ilością liczb całkowitych należących do
rozwiązania.
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%]
Rozwiąż
Podpunkt 9.1 (0.8 pkt)
Funkcja liniowa określona wzorem
f(x)=7+5x-12mx jest malejąca, wtedy i tylko wtedy,
gdy liczba
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 3
B. +\infty
C. -7
D. 5
E. -\infty
F. -2
Zadanie 10. 1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%]
Rozwiąż
Podpunkt 10.1 (0.8 pkt)
Wykres funkcji liniowej
f(x)=2x-6a przecina oś
Oy powyżej punktu
(0,8)
wtedy i tylko wtedy, gdy parametr
a należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. -\infty
C. -5
D. 4
E. 1
F. -8
Zadanie 11. 1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Dana jest funkcja
f(x)=ax+b . Warunek
f(x) \lessdot 0 spełnia każde
x dodatnie,
a warunek
f(x) > 0 spełnia każde
x ujemne.
Wynika z tego, że:
Odpowiedzi:
A. a=0
B. a > 0
C. a=0 \wedge b \lessdot 0
D. a \lessdot 0 \wedge b=0
Zadanie 12. 1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykresy funkcji liniowych opisanych wzorami
f(x)=4x+\frac{5}{4} i
g(x)=6 opisują proste:
Odpowiedzi:
A. równoległe i różne
B. pokrywające się
C. przecinające się pod kątem o mierze 90^{\circ}
D. przecinające się pod kątem różnym od 90^{\circ}
Zadanie 13. 1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%]
Rozwiąż
Podpunkt 13.1 (0.8 pkt)
Nierówności
\left(6+\sqrt{37}\right)\left(\sqrt{37}-6\right)x > 2x-4
oraz
(1-3x)^2+3x\leqslant (3x+1)^2-5x+4 są spełnione
przez każdą liczbę z pewnego przedziału.
Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2
B. 4
C. -\infty
D. 0
Zadanie 14. 1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji
y=-\frac{3}{4}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{7}{3},-\frac{19}{4}\right)
B. \left(\frac{10}{3},-\frac{9}{2}\right)
C. \left(\frac{4}{3},-5\right)
D. \left(\frac{1}{3},-\frac{5}{4}\right)
Zadanie 15. 1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
«« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od
12 . Do jej wykresu należy punkt
\left(6,\frac{5}{2}\right) .
Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż