Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-4x oblicz h\left(\frac{3\sqrt{3}-2}{4}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest złożona T/N : liczba ta jest pierwsza
Zadanie 2.  1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 189/332 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji liniowej f należą punkty A=(2, 0) i B=(0,1). Wykres funkcji liniowej g określonej wzorem g(x)=mx+n jest symetryczny do wykresu funkcji f względem osi Ox.

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-4,-8) i Q=(7,-1).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/492 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=-\frac{2}{3}+\frac{7}{3}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 67/119 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=4\sqrt{2}x-\frac{\sqrt{14}}{2} jest liczba \frac{\sqrt{2\cdot 14}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Miejsce zerowe funkcji liniowej określonej wzorem f(x)=2x-3m jest większe od 2 dla każdej liczby m należącej do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (p,+\infty)
C. \langle p,q\rangle D. (-\infty,q\rangle
E. (-\infty,q) F. (p,q)
Podpunkt 6.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 119/192 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=\frac{4}{2x-2} T/N : y=\frac{\sqrt{2}}{10}x
T/N : y=-4x^2  
Zadanie 8.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-3(m^2-2)x+4 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\infty, -\frac{\sqrt{6}}{3}\right)\cup\left(\frac{\sqrt{6}}{3}, +\infty\right) B. m\in\left(-\sqrt{2},\sqrt{2}\right)
C. m\in\left(-\infty, -\frac{\sqrt{6}}{2}\right)\cup\left(\frac{\sqrt{6}}{2}, +\infty\right) D. m\in\left(-\infty, -\sqrt{2}\right)\cup\left(\sqrt{2}, +\infty\right)
E. m\in\left(-\infty, -2\right)\cup\left(2, +\infty\right) F. m\in\left(-2,2\right)
Zadanie 9.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/345 [60%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-4+8m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4 B. -3
C. -2 D. +\infty
E. -8 F. -\infty
Zadanie 10.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{7}{2}m-4\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -11 B. +\infty
C. -2 D. -7
E. -3 F. -\infty
Zadanie 11.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x ujemne, a warunek f(x) > 0 spełnia każde x dodatnie.

Wynika z tego, że:

Odpowiedzi:
A. a\lessdot 0 B. a=0
C. a=0 \wedge b > 0 D. a > 0 \wedge b=0
Zadanie 12.  1 pkt ⋅ Numer: pp-10921 ⋅ Poprawnie: 196/343 [57%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wykresy funkcji f(x)=-4x-mx-3 i y=-8x+7 nie mają punktów wspólnych.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Nierówności \left(4+\sqrt{17}\right)\left(\sqrt{17}-4\right)x > 2x-4 oraz (-6-3x)^2+3x\leqslant (3x-6)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0 B. -\infty
C. -4 D. +\infty
Zadanie 14.  1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 66/91 [72%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m+3 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10934 ⋅ Poprawnie: 84/157 [53%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 O funkcji f określonej wzorem f(x)=\frac{-6-m}{m-12}x+3 wiadomo, że f(-1)=0.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm