Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 557/823 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(-2)=-3, a jej wykres zawiera punkt (-4,4).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(-2,-3) i B=(-4,4) określona jest równaniem 7x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 198/382 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór tej funkcji:
Odpowiedzi:
A. y=-\sqrt{2}x+1 B. y=-\frac{\sqrt{2}}{2}x+1
C. y=\sqrt{2}x+1 D. y=\frac{1}{\sqrt{2}}x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 504/649 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba ......... jest miejscem zerowym funkcji określonej wzorem f(x)=\frac{3}{2}x-\frac{7}{10}.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 74/128 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=9\sqrt{3}x-\frac{\sqrt{21}}{2} jest liczba \frac{\sqrt{3\cdot 21}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{4}{3}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(144-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 116/208 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja liniowa y=ax+b ma dodatnie miejsce zerowe, a jej wykres przecina oś Oy powyżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a \lessdot 0 \wedge b > 0 B. a \lessdot 0 \wedge b \lessdot 0
C. a > 0 \wedge b > 0 D. a > 0 \wedge b \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 244/365 [66%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=10+8x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. 0
C. 6 D. +\infty
E. -1 F. 4
Zadanie 10.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{79}-9}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b \lessdot 0 B. a > 0 \wedge b > 0
C. a \lessdot 0 \wedge b < 0 D. a \lessdot 0 \wedge b > 0
Zadanie 11.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x ujemne, a warunek f(x) > 0 spełnia każde x dodatnie.

Wynika z tego, że:

Odpowiedzi:
A. a=0 \wedge b > 0 B. a=0
C. a\lessdot 0 D. a > 0 \wedge b=0
Zadanie 12.  1 pkt ⋅ Numer: pp-10908 ⋅ Poprawnie: 92/134 [68%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja liniowa f(x)=(2-m)x+(m+1)^2-13 jest rosnąca i jej wykres przecina oś rzędnych w punkcie P=(0,23).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Nierówności \left(8+\sqrt{65}\right)\left(\sqrt{65}-8\right)x > 2x-4 oraz (-2-3x)^2+3x\leqslant (3x-2)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -4 B. 0
C. +\infty D. -\infty
Zadanie 14.  1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 68/92 [73%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m-4 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Trójkąt o bokach długości 5, 2p-5, p-4 jest równoramienny.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm