Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 847/1225 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja liniowa określona wzorem f(x)=4x-8.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f rośnie w \mathbb{R} T/N : do jej wykresu należy punkt (-1,12)
T/N : wykres tej funkcji przecina oś rzędnych w punkcie (0,-8)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x-4)-2. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 105/164 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t-1), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/492 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=\frac{7}{6}+\frac{1}{9}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{14}+\sqrt{7})x-7 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{7}-\sqrt{14}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba -4 jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=\frac{1}{4}x-4 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,4\right) T/N : funkcja ta jest malejąca i P=\left(0,-1\right)
T/N : funkcja ta jest rosnąca i P=\left(0,1\right)  
Zadanie 8.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-3(m^2-7)x+4 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-7,7\right) B. m\in\left(-\infty, -7\right)\cup\left(7, +\infty\right)
C. m\in\left(-\infty, -\frac{\sqrt{21}}{3}\right)\cup\left(\frac{\sqrt{21}}{3}, +\infty\right) D. m\in\left(-\infty, -\sqrt{7}\right)\cup\left(\sqrt{7}, +\infty\right)
E. m\in\left(-\sqrt{7},\sqrt{7}\right) F. m\in\left(-\infty, -\frac{\sqrt{21}}{7}\right)\cup\left(\frac{\sqrt{21}}{7}, +\infty\right)
Zadanie 9.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-6a przecina oś Oy poniżej punktu (0,10) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 6 B. -4
C. -8 D. +\infty
E. -2 F. -\infty
Zadanie 10.  1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=-\frac{1}{7}x+3. Jeśli argument funkcji f wzrośnie o 5, to wartość tej funkcji:
Odpowiedzi:
A. zmaleje o \frac{5}{7} B. wzrośnie o \frac{5}{7}
C. wzrośnie o \frac{6}{7} D. zmaleje o \frac{6}{7}
Zadanie 11.  1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Do wykresu funkcji liniowej y=ax+b należą punkty (6, 0) i (0, -3).

Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")

Odpowiedzi:
T/N : a > 0 \wedge b \lessdot 0 T/N : a \lessdot 0 \wedge b < 0
T/N : a \lessdot 0 \wedge b > 0  
Zadanie 12.  1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dla której z podanych wartości m funkcja liniowa określona wzorem f(x)=-25x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=5 B. m=-2\sqrt{5}
C. m=-\frac{\sqrt{5}}{5} D. m=\sqrt{5}+1
Zadanie 13.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=-\frac{1}{6}+\frac{1}{10}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 11
C. 8 D. 1
E. -\infty F. 6
Zadanie 14.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji y=-\frac{8}{5}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{13}{8},-\frac{28}{5}\right) B. \left(\frac{5}{8},-5\right)
C. \left(\frac{21}{8},-\frac{31}{5}\right) D. \left(-\frac{3}{8},-\frac{2}{5}\right)
Zadanie 15.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 14. Do jej wykresu należy punkt \left(7,\frac{5}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm