Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/390 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 274/459 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału \langle -1,5\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10940 ⋅ Poprawnie: 40/66 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wykres funkcji liniowej h(x)=(p-9)x-4 przechodzi przez punkt S, którego obie współrzędne są nieparzyste.

Liczba p może być równa:

Odpowiedzi:
A. 3 B. 8
C. 1 D. 9
E. -5 F. 5
Zadanie 4.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/493 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=-\frac{8}{9}+\frac{5}{9}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/706 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-\frac{5}{6}-\frac{7}{8}x.

Wyznacz miejsce zerowe tej funkcji.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Miejsce zerowe funkcji liniowej określonej wzorem f(x)=2x-7m jest większe od 2 dla każdej liczby m należącej do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,q) B. (p,+\infty)
C. (p,q) D. \langle p,q\rangle
E. \langle p,+\infty) F. (-\infty,q\rangle
Podpunkt 6.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja określona wzorem f(x)=\left(m^2-5m\right)x+5 spełnia warunek f(-6)=f(6).

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{9}\right)x+81 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 585/920 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja f określona jest wzorem f(x)=(\sqrt{2}m+8)x+1 dla każdej liczby rzeczywistej x.

Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:

Odpowiedzi:
A. m\in\left\langle 4\sqrt{2},+\infty\right) B. m\in\left(-\infty,-4\sqrt{2}\right\rangle
C. m\in\left\langle -4\sqrt{2},+\infty\right) D. m\in\left(-\infty,4\sqrt{2}\right\rangle
Zadanie 10.  1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=-\frac{6}{7}x+3. Jeśli argument funkcji f wzrośnie o 2, to wartość tej funkcji:
Odpowiedzi:
A. wzrośnie o \frac{18}{7} B. wzrośnie o \frac{12}{7}
C. zmaleje o \frac{6}{7} D. zmaleje o \frac{12}{7}
Zadanie 11.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=12.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-10884 ⋅ Poprawnie: 141/181 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=2^{14}x+2^{26}.

Prosta będąca wykresem funkcji f nie przechodzi przez ćwiartkę układu:

Odpowiedzi:
A. pierwszą B. czwartą
C. trzecią D. drugą
Zadanie 13.  1 pkt ⋅ Numer: pp-10929 ⋅ Poprawnie: 57/99 [57%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Wykres funkcji liniowej określonej wzorem y=\frac{1}{10}(x-6)+4m-1 przecina dodatnią półoś Oy wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2 B. -7
C. +\infty D. 0
E. -\infty F. 3
Zadanie 14.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, -4\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 Rozwiąż nierówność -\frac{1}{2}x\leqslant -\frac{5}{6}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2 B. -5
C. -4 D. +\infty
E. -3 F. -\infty


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm