Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-5x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2) T/N : do wykresu tej funkcji należy punkt P=\left(\frac{2}{3},-\frac{4}{3}\right)
T/N : miejscem zerowym tej funkcji jest liczba -\frac{2}{5}  
Zadanie 2.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x-4)-4. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 105/164 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t+7), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 278/546 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f(x)=(m+2)x-(m+1)^2+67 jest malejąca i jej wykres przecina oś rzędnych w punkcie P=(0,-33).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{13}+\sqrt{12})x-1 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{12}-\sqrt{13}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba 8 jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(169-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-4\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 234/442 [52%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(10-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{5} B. +\infty
C. -\infty D. -\frac{1}{10}
E. -\frac{1}{5} F. \frac{1}{10}
Zadanie 10.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-9a przecina oś Oy powyżej punktu (0,4) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -4 B. -2
C. +\infty D. -\infty
E. -8 F. -5
Zadanie 11.  1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wykres funkcji liniowej y=2^{19}x+2^{18} przechodzi przez ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, III i IV B. I, II i III
C. I, II i IV D. II, III, IV
Zadanie 12.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(-\frac{1}{5}-\frac{\sqrt{3}}{6}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -\frac{2}{15}
C. \frac{3}{5} D. \frac{2}{15}
E. +\infty F. -\frac{4}{5}
Zadanie 13.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=\frac{2}{3}+\frac{4}{9}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -4
C. +\infty D. 5
E. 3 F. -2
Zadanie 14.  1 pkt ⋅ Numer: pp-10938 ⋅ Poprawnie: 121/181 [66%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej określonej wzorem g(x)=49-2x:
Odpowiedzi:
A. dla m\in\mathbb{R} B. dla m\in\emptyset
C. tylko dla m=5 D. tylko dla m=-5
E. tylko dla m=-10 F. dla m\in\{-5,5\}
Zadanie 15.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=-\frac{10}{9}x+2.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -9 B. 10
C. -\infty D. +\infty
E. 9 F. -10


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm