Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10814 ⋅ Poprawnie: 266/525 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Na rysunku przedstawiono wykres prostej:
Prosta symetryczna do tej prostej względem osi
Oy
określona jest równaniem
ax+by=4 .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Punkty
A=(-1,3) i
B=(4,-2) należą do prostej
k .
Prosta
l symetryczna do prostej
k względem początku układu współrzędnych
ma równanie
y=ax+b .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do prostej o równaniu
y=ax+b
należą punkty
P=(-7,-3) i
Q=(8,5) .
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/492 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz miejsce zerowe funkcji określonej wzorem
f(x)=\frac{8}{15}+\frac{7}{5}x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/705 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-\frac{1}{6}+\frac{5}{7}x .
Wyznacz miejsce zerowe tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykres funkcji
g(x)=(m-9)x+15 przecina oś
Ox w punkcie o odciętej równej
\frac{\log_{2}{8}}{3^0} .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja określona wzorem
f(x)=\left(m^2-7m\right)x+5
spełnia warunek
f(-3)=f(3) .
Wyznacz najmniejsze możliwe i największe możliwe m .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(m^2-16\right)x+2 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%]
Rozwiąż
Podpunkt 9.1 (0.8 pkt)
Funkcja liniowa
f(x)=(-11-m)x+2m jest malejąca, gdy parametr
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 9.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{11}
B. -\infty
C. -\frac{2}{11}
D. +\infty
E. -\frac{1}{11}
F. \frac{2}{11}
Zadanie 10. 1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%]
Rozwiąż
Podpunkt 10.1 (0.8 pkt)
Wyznacz przedział tych wszystkich wartości
m , dla których funkcja liniowa
f(x)=\left(-7m-2\right)x-m
jest rosnąca.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 7
B. +\infty
C. -\infty
D. -9
E. -10
F. 10
Zadanie 11. 1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykres funkcji liniowej
y=2^{14}x+2^{27} przechodzi przez
ćwiartki układu współrzędnych:
Odpowiedzi:
A. II, III, IV
B. I, III i IV
C. I, II i III
D. I, II i IV
Zadanie 12. 1 pkt ⋅ Numer: pp-10908 ⋅ Poprawnie: 91/133 [68%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Funkcja liniowa
f(x)=(2-m)x+(m+1)^2-6 jest rosnąca
i jej wykres przecina oś rzędnych w punkcie
P=(0,10) .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%]
Rozwiąż
Podpunkt 13.1 (0.5 pkt)
Dana jest funkcja
f(x)=2x+4 .
Zbiór rozwiązań nierówności -8\leqslant f(x)\leqslant 3 jest przedziałem
\langle a, b\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Punkt o współrzędnych
P=\left(\sqrt{7}, -6\right)
należy do wykresu funkcji liniowej
y=-3\sqrt{7}x+2\cdot ......-4 .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
«« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od
20 . Do jej wykresu należy punkt
\left(2,\frac{9}{2}\right) .
Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż