Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 115/192 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-4x oblicz h\left(\frac{3\sqrt{3}-6}{4}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest ujemna T/N : liczba ta jest niewymierna
Zadanie 2.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 127/217 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x+1)+1. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 516/716 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-3,2) i Q=(2,1).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 276/542 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa spełnia warunki f(-\sqrt{2})=1 i f(7\sqrt{2})=-6.

Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:

Odpowiedzi:
A. I, II i IV B. I, II i III
C. II, III i IV D. I, III i IV
Zadanie 5.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 77/133 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=5\sqrt{11}x-\frac{\sqrt{22}}{2} jest liczba \frac{\sqrt{11\cdot 22}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba \frac{4}{3} jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(36-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 61/102 [59%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Wyznacz te wartości parametru m, dla których funkcja liniowa f(x)=(7-m^2)x+1 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba p jest najmniejszym z końców liczbowych tych przedziałów, a liczba q jest ilością liczb całkowitych należących do rozwiązania.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-5a przecina oś Oy poniżej punktu (0,8) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. 8
C. +\infty D. 6
E. -5 F. -2
Zadanie 10.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 77/140 [55%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{16}{3}m-3\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 6 B. 12
C. 1 D. 2
E. +\infty F. -\infty
Zadanie 11.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 218/416 [52%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(\frac{3}{4}+m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -3 B. 7
C. -7 D. +\infty
E. -2 F. -\infty
Zadanie 12.  1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/63 [61%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dla której z podanych wartości m funkcja liniowa określona wzorem f(x)=-36x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=6 B. m=-2\sqrt{6}
C. m=\sqrt{6}+1 D. m=-\frac{\sqrt{6}}{6}
Zadanie 13.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Nierówności \left(4+\sqrt{17}\right)\left(\sqrt{17}-4\right)x > 2x-4 oraz (1-3x)^2+3x\leqslant (3x+1)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj lewy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. 0
C. 4 D. +\infty
Zadanie 14.  1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 81/103 [78%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m+2 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{5}{2}x+2.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 5 B. -5
C. +\infty D. -2
E. -\infty F. 2


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm