Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-2x oblicz h\left(\frac{3\sqrt{3}-4}{2}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest niewymierna T/N : liczba ta jest złożona
Zadanie 2.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-4x-\frac{1}{2} dla każdej liczby z przedziału \langle -3,0\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 105/164 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t-8), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/492 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=\frac{1}{3}-\frac{8}{3}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{5}+\sqrt{2})x-3 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{2}-\sqrt{5}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba -16 jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 451/589 [76%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(8-5\sqrt{2}\right)x+\sqrt{2} T/N : y=\left(11-6\sqrt{3}\right)x+2\sqrt{3}
T/N : y=\left(7-2\sqrt{10}\right)x+\sqrt{10}  
Zadanie 8.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 115/207 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja liniowa y=ax+b ma ujemne miejsce zerowe, a jej wykres przecina oś Oy powyżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a \lessdot 0 \wedge b > 0 B. a \lessdot 0 \wedge b \lessdot 0
C. a > 0 \wedge b > 0 D. a > 0 \wedge b \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-12-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{6} B. -\frac{1}{6}
C. +\infty D. -\frac{1}{12}
E. -\infty F. \frac{1}{12}
Zadanie 10.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 99/174 [56%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m-1\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -\infty
C. -7 D. 1
E. -5 F. 12
Zadanie 11.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 217/415 [52%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(3+\frac{5}{6}m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 9 B. -9
C. +\infty D. 3
E. -\infty F. 6
Zadanie 12.  1 pkt ⋅ Numer: pp-10921 ⋅ Poprawnie: 196/343 [57%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wykresy funkcji f(x)=-8x-mx-3 i y=-3x+7 nie mają punktów wspólnych.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{83}-\frac{46}{5}\right)(-2+3x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. 3
C. -1 D. 8
E. +\infty F. -8
Zadanie 14.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, -6\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 Rozwiąż nierówność \frac{1}{2}x\leqslant -\frac{2}{3}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4 B. +\infty
C. -1 D. 0
E. -\infty F. -2


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm