Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 663/980 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-5x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : miejscem zerowym tej funkcji jest liczba -\frac{2}{5} T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{2}{3},-\frac{4}{3}\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(5,-6) i B=(-4,1) określona jest równaniem 7x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 106/165 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t+6), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 323/481 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=\frac{1}{4}x+5 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 74/127 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=10\sqrt{2}x-\frac{\sqrt{14}}{2} jest liczba \frac{\sqrt{2\cdot 14}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba -1 jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=\frac{1}{3}x-2 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,2\right) T/N : funkcja ta jest rosnąca i P=\left(0,-2\right)
T/N : funkcja ta jest rosnąca i P=\left(0,\frac{2}{3}\right)  
Zadanie 8.  1 pkt ⋅ Numer: pp-10880 ⋅ Poprawnie: 102/185 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(9-m^2\right)x+2 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10890 ⋅ Poprawnie: 42/82 [51%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Wykres funkcji liniowej określonej wzorem h(x)=(\sqrt{8}-a)x+\frac{a}{2} jest prostą, która nie przechodzi tylko przez czwartą ćwiartkę układu współrzędnych.

Funkcja h spełnia ten warunek wtedy i tylko wtedy, gdy liczba a należy do pewnego przedziału o końcach p i q, przy czym p\lessdot q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Podaj q.
Odpowiedź:
q= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-3m-2\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 1
C. -3 D. -9
E. -\infty F. -8
Zadanie 11.  1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
A. y=4x^2 B. y=\frac{4}{x}
C. y=\frac{2}{\sqrt{2}x} D. y=\frac{\sqrt{2}x}{2}
Zadanie 12.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=2x+\frac{5}{4} i g(x)=6 opisują proste:
Odpowiedzi:
A. równoległe i różne B. pokrywające się
C. przecinające się pod kątem różnym od 90^{\circ} D. przecinające się pod kątem o mierze 90^{\circ}
Zadanie 13.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{99}-10\right)(-9+2x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 1 B. 3
C. +\infty D. -\infty
E. -6 F. 7
Zadanie 14.  1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 67/92 [72%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m-5 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Trójkąt o bokach długości 5, 2p-7, p-5 jest równoramienny.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm