Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/390 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(3,7) i B=(-4,14) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 493/695 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(3,6) i Q=(-8,7).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 482/633 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczba ......... jest miejscem zerowym funkcji określonej wzorem f(x)=\frac{1}{3}x-\frac{8}{17}.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{17}+\sqrt{10})x-7 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{10}-\sqrt{17}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba -\frac{4}{3} jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja określona wzorem f(x)=\left(m^2+4m\right)x+5 spełnia warunek f(-6)=f(6).

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-4(m^2-7)x-4 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\infty, -\frac{\sqrt{28}}{7}\right)\cup\left(\frac{\sqrt{28}}{7}, +\infty\right) B. m\in\left(-\sqrt{7},\sqrt{7}\right)
C. m\in\left(-\infty, -\frac{\sqrt{28}}{4}\right)\cup\left(\frac{\sqrt{28}}{4}, +\infty\right) D. m\in\left(-7,7\right)
E. m\in\left(-\infty, -7\right)\cup\left(7, +\infty\right) F. m\in\left(-\infty, -\sqrt{7}\right)\cup\left(\sqrt{7}, +\infty\right)
Zadanie 9.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=9+7x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -\infty
C. -2 D. 4
E. -5 F. -7
Zadanie 10.  1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Funkcja liniowa określona wzorem f(x)=ax+b jest rosnąca i ma miejsce zerowe \frac{\sqrt{62}-8}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b \lessdot 0 B. a \lessdot 0 \wedge b > 0
C. a > 0 \wedge b > 0 D. a \lessdot 0 \wedge b < 0
Zadanie 11.  1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Do wykresu funkcji liniowej y=ax+b należą punkty (2, 0) i (0, 5).

Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")

Odpowiedzi:
T/N : a \lessdot 0 \wedge b < 0 T/N : a > 0 \wedge b > 0
T/N : a > 0 \wedge b \lessdot 0  
Zadanie 12.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=5x+\frac{5}{4} i g(x)=8 opisują proste:
Odpowiedzi:
A. przecinające się pod kątem różnym od 90^{\circ} B. przecinające się pod kątem o mierze 90^{\circ}
C. pokrywające się D. równoległe i różne
Zadanie 13.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%] Rozwiąż 
Podpunkt 13.1 (0.5 pkt)
 Dana jest funkcja f(x)=2x+5.

Zbiór rozwiązań nierówności -9\leqslant f(x)\leqslant 7 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10938 ⋅ Poprawnie: 121/181 [66%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej określonej wzorem g(x)=97-2x:
Odpowiedzi:
A. tylko dla m=7 B. tylko dla m=-14
C. dla m\in\emptyset D. tylko dla m=-7
E. dla m\in\mathbb{R} F. dla m\in\{-7,7\}
Zadanie 15.  1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Trójkąt o bokach długości 5, 2p+1, p-1 jest równoramienny.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm