Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10814 ⋅ Poprawnie: 267/526 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiono wykres prostej o równaniu ax+by=4:

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 196/339 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji liniowej f należą punkty A=(4, 0) i B=(0,2). Wykres funkcji liniowej g określonej wzorem g(x)=mx+n jest symetryczny do wykresu funkcji f względem osi Ox.

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 516/716 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(1,2) i Q=(8,1).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 501/691 [72%] Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+5)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 454/762 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-5,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-3).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 215/292 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji g(x)=(m+3)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(100-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 128/220 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja liniowa y=ax+b ma dodatnie miejsce zerowe, a jej wykres przecina oś Oy powyżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a \lessdot 0 \wedge b \lessdot 0 B. a > 0 \wedge b \lessdot 0
C. a \lessdot 0 \wedge b > 0 D. a > 0 \wedge b > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 586/921 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja f określona jest wzorem f(x)=(\sqrt{3}m-6)x+6 dla każdej liczby rzeczywistej x.

Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:

Odpowiedzi:
A. m\in\left\langle 2\sqrt{3},+\infty\right) B. m\in\left\langle -2\sqrt{3},+\infty\right)
C. m\in\left(-\infty,2\sqrt{3}\right\rangle D. m\in\left(-\infty,-2\sqrt{3}\right\rangle
Zadanie 10.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 105/180 [58%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m+\frac{1}{2}\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. 2
C. +\infty D. -8
E. -4 F. 12
Zadanie 11.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 218/416 [52%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(-\frac{2}{3}+\frac{1}{2}m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 2
C. -4 D. -\infty
E. 12 F. -8
Zadanie 12.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 104/168 [61%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 3.

Wówczas:

Odpowiedzi:
A. a>0 \wedge b\lessdot 0 B. a>0 \wedge b>0
C. a\lessdot 0 \wedge b>0 D. a\lessdot 0 \wedge b<0
Zadanie 13.  1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Dla argumentu x_0 wartości funkcji określonych wzorami f(x)=2x-4 i g(x)=-2x-3 są sobie równe i obie równe y_0.

Wyznacz y_0.

Odpowiedź:
y_0=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 81/103 [78%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m-2 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=-\frac{7}{4}x-1.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4 B. -4
C. -\infty D. 7
E. +\infty F. -7


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm