Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 848/1226 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja liniowa określona wzorem f(x)=4x-8.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : miejscem zerowym tej funkcji jest liczba 2 T/N : funkcja f rośnie w \mathbb{R}
T/N : do jej wykresu należy punkt (-1,12)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 225/427 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(-5,1) i B=(6,-3) określona jest równaniem -4x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 493/695 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-4,6) i Q=(1,5).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/493 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=\frac{4}{17}-\frac{1}{5}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 454/762 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-5,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-8).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba 8 jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=\frac{1}{2}x-9 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest rosnąca i P=\left(0,\frac{9}{2}\right) T/N : funkcja ta jest malejąca i P=\left(0,-\frac{9}{2}\right)
T/N : funkcja ta jest malejąca i P=\left(0,9\right)  
Zadanie 8.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-5(m^2-5)x+4 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\infty, -5\right)\cup\left(5, +\infty\right) B. m\in\left(-\infty, -\sqrt{5}\right)\cup\left(\sqrt{5}, +\infty\right)
C. m\in\left(-\infty, -\frac{\sqrt{25}}{5}\right)\cup\left(\frac{\sqrt{25}}{5}, +\infty\right) D. m\in\left(-\sqrt{5},\sqrt{5}\right)
E. m\in\left(-\infty, -\frac{\sqrt{25}}{5}\right)\cup\left(\frac{\sqrt{25}}{5}, +\infty\right) F. m\in\left(-5,5\right)
Zadanie 9.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/345 [60%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-1-6m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 5
C. -10 D. -6
E. -\infty F. 1
Zadanie 10.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{6}{5}m+5\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -6 B. +\infty
C. 1 D. 10
E. 8 F. -\infty
Zadanie 11.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x dodatnie, a warunek f(x) > 0 spełnia każde x ujemne.

Wynika z tego, że:

Odpowiedzi:
A. a=0 B. a > 0
C. a \lessdot 0 \wedge b=0 D. a=0 \wedge b \lessdot 0
Zadanie 12.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=3x+\frac{5}{4} i g(x)=9 opisują proste:
Odpowiedzi:
A. równoległe i różne B. pokrywające się
C. przecinające się pod kątem różnym od 90^{\circ} D. przecinające się pod kątem o mierze 90^{\circ}
Zadanie 13.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{65}-\frac{81}{10}\right)(9+4x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 7 B. -\infty
C. +\infty D. 0
E. -1 F. -4
Zadanie 14.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},2\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wykres funkcji f(x)=7x+4m przecina oś Oy w punkcie o rzędnej 30. Wykres funkcji g(x)=9x+m przecina oś Ox w punkcie o odciętej ......... .

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm