Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Wiedząc, że
h(x)=3\sqrt{3}-3x oblicz
h\left(\frac{3\sqrt{3}-5}{3}\right) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : liczba ta jest ujemna
T/N : liczba ta jest niewymierna
Zadanie 2. 1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f jest określona wzorem
f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału
\langle -1,3\rangle . Zbiorem wartości tej funkcji jest przedział
\langle p, q\rangle .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Punkt o współrzędnych
(9-3t, 2t-6) , gdzie
t\in\mathbb{R} , należy do prostej określonej
równaniem
2x+by=c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 482/632 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczba
......... jest miejscem zerowym funkcji określonej wzorem
f(x)=-\frac{8}{5}x+\frac{2}{5} .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 67/119 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Miejscem zerowym funkcji określonej wzorem
f(x)=3\sqrt{13}x-\frac{\sqrt{26}}{2}
jest liczba
\frac{\sqrt{13\cdot 26}}{......} .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykres funkcji
g(x)=(m-7)x+15 przecina oś
Ox w punkcie o odciętej równej
\frac{\log_{2}{8}}{3^0} .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja określona wzorem
f(x)=\left(m^2-6m\right)x+5
spełnia warunek
f(-4)=f(4) .
Wyznacz najmniejsze możliwe i największe możliwe m .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(m^2-\frac{1}{9}\right)x+81
jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 585/920 [63%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
(1 pkt)
Funkcja
f określona jest wzorem
f(x)=(\sqrt{2}m-2)x+5
dla każdej liczby rzeczywistej
x .
Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:
Odpowiedzi:
A. m\in\left(-\infty,\sqrt{2}\right\rangle
B. m\in\left\langle \sqrt{2},+\infty\right)
C. m\in\left(-\infty,-\sqrt{2}\right\rangle
D. m\in\left\langle -\sqrt{2},+\infty\right)
Zadanie 10. 1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Funkcja liniowa określona wzorem
f(x)=ax+b jest rosnąca i ma
miejsce zerowe
\frac{\sqrt{17}-4}{2} .
Wynika z tego, że:
Odpowiedzi:
A. a \lessdot 0 \wedge b < 0
B. a \lessdot 0 \wedge b > 0
C. a > 0 \wedge b \lessdot 0
D. a > 0 \wedge b > 0
Zadanie 11. 1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykres funkcji liniowej
y=2^{17}x-2^{28} przechodzi przez
ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, II i IV
B. II, III, IV
C. I, II i III
D. I, III i IV
Zadanie 12. 1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dla której z podanych wartości
m funkcja liniowa
określona wzorem
f(x)=-9x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=-2\sqrt{3}
B. m=\sqrt{3}+1
C. m=3
D. m=-\frac{\sqrt{3}}{3}
Zadanie 13. 1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%]
Rozwiąż
Podpunkt 13.1 (0.8 pkt)
Zbiorem wszystkich rozwiązań nierówności
\left(\sqrt{42}-\frac{13}{2}\right)(-1+6x) > 0 jest pewien przedział.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. 3
C. 2
D. 6
E. -6
F. -\infty
Zadanie 14. 1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 66/91 [72%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Wykres funkcji liniowej
f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m+5
zawiera punkt
M=(0,1) .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%]
Rozwiąż
Podpunkt 15.1 (0.8 pkt)
« Dana jest funkcja określona wzorem
f(x)=-\frac{3}{4}x-1 .
Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.
Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 6
B. -8
C. -\infty
D. 8
E. +\infty
F. -6
Rozwiąż