Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-4x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right) T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
T/N : miejscem zerowym tej funkcji jest liczba -\frac{1}{2}  
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(1,7) i B=(2,6) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 196/379 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór funkcji, której wykres jest symetryczny do tego wykresu względem osi Oy:
Odpowiedzi:
A. y=\frac{1}{\sqrt{3}}x+1 B. y=-\frac{\sqrt{3}}{3}x+1
C. y=\sqrt{3}x+1 D. y=-\sqrt{3}x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 278/546 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f(x)=(m+2)x-(m+1)^2+47 jest malejąca i jej wykres przecina oś rzędnych w punkcie P=(0,-97).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{13}+\sqrt{8})x-5 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{8}-\sqrt{13}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{3}{7}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty o współrzędnych (500,700) oraz (600,-100) należą do wykresu funkcji liniowej y=mx+n.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : z treści wynika, że n=0 T/N : z treści wynika, że m > 0
T/N : z treści wynika, że n \lessdot 0  
Zadanie 8.  1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Wyznacz te wartości parametru m, dla których funkcja liniowa f(x)=(13-m^2)x-5 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba p jest najmniejszym z końców liczbowych tych przedziałów, a liczba q jest ilością liczb całkowitych należących do rozwiązania.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=7+5x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 3 B. +\infty
C. -7 D. 5
E. -\infty F. -2
Zadanie 10.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-6a przecina oś Oy powyżej punktu (0,8) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -\infty
C. -5 D. 4
E. 1 F. -8
Zadanie 11.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x dodatnie, a warunek f(x) > 0 spełnia każde x ujemne.

Wynika z tego, że:

Odpowiedzi:
A. a=0 B. a > 0
C. a=0 \wedge b \lessdot 0 D. a \lessdot 0 \wedge b=0
Zadanie 12.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=4x+\frac{5}{4} i g(x)=6 opisują proste:
Odpowiedzi:
A. równoległe i różne B. pokrywające się
C. przecinające się pod kątem o mierze 90^{\circ} D. przecinające się pod kątem różnym od 90^{\circ}
Zadanie 13.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Nierówności \left(6+\sqrt{37}\right)\left(\sqrt{37}-6\right)x > 2x-4 oraz (1-3x)^2+3x\leqslant (3x+1)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj lewy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2 B. 4
C. -\infty D. 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji y=-\frac{3}{4}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{7}{3},-\frac{19}{4}\right) B. \left(\frac{10}{3},-\frac{9}{2}\right)
C. \left(\frac{4}{3},-5\right) D. \left(\frac{1}{3},-\frac{5}{4}\right)
Zadanie 15.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 12. Do jej wykresu należy punkt \left(6,\frac{5}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm