Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 663/980 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-4x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right) T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
T/N : funkcja f jest malejąca w zbiorze \mathbb{R}  
Zadanie 2.  1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 190/333 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji liniowej f należą punkty A=(4, 0) i B=(0,1). Wykres funkcji liniowej g określonej wzorem g(x)=mx+n jest symetryczny do wykresu funkcji f względem osi Ox.

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 98/159 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Punkt o współrzędnych (9-3t, 2t+2), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem 2x+by=c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 279/547 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f(x)=(m+2)x-(m+1)^2+13 jest malejąca i jej wykres przecina oś rzędnych w punkcie P=(0,-36).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10933 ⋅ Poprawnie: 302/535 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Wykresy funkcji f(x)=-\frac{3}{4}x-5 oraz g(x)=mx+2 przecinają oś Ox w tym samym punkcie.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Miejsce zerowe funkcji liniowej określonej wzorem f(x)=10x-7m jest większe od 2 dla każdej liczby m należącej do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (p,+\infty)
C. (-\infty,q) D. (-\infty,q\rangle
E. \langle p,q\rangle F. (p,q)
Podpunkt 6.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 451/589 [76%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(9-6\sqrt{2}\right)x+2\sqrt{2} T/N : y=\left(10-4\sqrt{5}\right)x+\sqrt{5}
T/N : y=\left(10-7\sqrt{2}\right)x+\sqrt{2}  
Zadanie 8.  1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Wyznacz te wartości parametru m, dla których funkcja liniowa f(x)=(11-m^2)x-5 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba p jest najmniejszym z końców liczbowych tych przedziałów, a liczba q jest ilością liczb całkowitych należących do rozwiązania.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(3-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{2}{3} B. \frac{1}{3}
C. -\frac{1}{3} D. -\frac{2}{3}
E. +\infty F. -\infty
Zadanie 10.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{8}{5}m-5\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 2 B. -\infty
C. 6 D. 12
E. -10 F. +\infty
Zadanie 11.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=27.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(-\frac{1}{10}-\frac{\sqrt{3}}{8}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{2}{15} B. \frac{2}{5}
C. -\frac{4}{45} D. -\infty
E. +\infty F. -\frac{8}{15}
Zadanie 13.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%] Rozwiąż 
Podpunkt 13.1 (0.5 pkt)
 Dana jest funkcja f(x)=-3x+3.

Zbiór rozwiązań nierówności -1\leqslant f(x)\leqslant 8 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 99/132 [75%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcje określone wzorami f(x)=-\frac{3}{5}x+2 i g(x)=\frac{1}{2}x+5 przyjmują równą wartość dla argumentu x_0.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wykres funkcji f(x)=2x-8m przecina oś Oy w punkcie o rzędnej 6. Wykres funkcji g(x)=10x+3m przecina oś Ox w punkcie o odciętej ......... .

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm