Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-5x oblicz h\left(\frac{3\sqrt{3}-4}{5}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest pierwsza T/N : liczba ta jest złożona
Zadanie 2.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 433/606 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(6,-7) i B=(0,3) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-2,7) i Q=(5,-6).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 483/672 [71%] Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+4)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10933 ⋅ Poprawnie: 302/534 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Wykresy funkcji f(x)=\frac{1}{2}x-5 oraz g(x)=mx+2 przecinają oś Ox w tym samym punkcie.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji g(x)=(m-1)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=\frac{1}{2}x-3 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,3\right) T/N : funkcja ta jest malejąca i P=\left(0,-\frac{3}{2}\right)
T/N : funkcja ta jest rosnąca i P=\left(0,\frac{3}{2}\right)  
Zadanie 8.  1 pkt ⋅ Numer: pp-10880 ⋅ Poprawnie: 102/185 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(36-m^2\right)x+2 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-3-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{2}{3} B. -\frac{1}{3}
C. +\infty D. -\infty
E. \frac{1}{3} F. -\frac{2}{3}
Zadanie 10.  1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Funkcja liniowa określona wzorem f(x)=ax+b jest rosnąca i ma miejsce zerowe \frac{\sqrt{37}-6}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b > 0 B. a > 0 \wedge b \lessdot 0
C. a \lessdot 0 \wedge b < 0 D. a \lessdot 0 \wedge b > 0
Zadanie 11.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x ujemne, a warunek f(x) > 0 spełnia każde x dodatnie.

Wynika z tego, że:

Odpowiedzi:
A. a\lessdot 0 B. a=0
C. a > 0 \wedge b=0 D. a=0 \wedge b > 0
Zadanie 12.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 102/162 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 2.

Wówczas:

Odpowiedzi:
A. a>0 \wedge b>0 B. a>0 \wedge b\lessdot 0
C. a\lessdot 0 \wedge b<0 D. a\lessdot 0 \wedge b>0
Zadanie 13.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%] Rozwiąż 
Podpunkt 13.1 (0.5 pkt)
 Dana jest funkcja f(x)=3x-2.

Zbiór rozwiązań nierówności -5\leqslant f(x)\leqslant 8 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},2\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10934 ⋅ Poprawnie: 84/157 [53%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 O funkcji f określonej wzorem f(x)=\frac{7-m}{m-8}x-3 wiadomo, że f(-1)=0.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm