Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 846/1224 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja liniowa określona wzorem f(x)=5x-10.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f rośnie w \mathbb{R} T/N : wykres tej funkcji przecina oś rzędnych w punkcie (0,-10)
T/N : do jej wykresu należy punkt (-1,15)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(4,2) i B=(-3,-3) określona jest równaniem -5x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-1,-7) i Q=(4,-8).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 483/672 [71%] Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+6)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11431 ⋅ Poprawnie: 305/495 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba 5 jest miejscem zerowym funkcji liniowej f(x)=.....\cdot x+b, a punkt M=(2,6) należy do wykresu tej funkcji.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=\frac{3}{2}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 119/192 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=4x^2 T/N : y=\frac{x}{\sqrt{7}}
T/N : y=\frac{\sqrt{7}}{7}x  
Zadanie 8.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{49}\right)x+2401 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/345 [60%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(3-6m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 1 B. -\infty
C. -8 D. 4
E. -7 F. +\infty
Zadanie 10.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{98}-10}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b > 0 B. a > 0 \wedge b \lessdot 0
C. a \lessdot 0 \wedge b > 0 D. a \lessdot 0 \wedge b < 0
Zadanie 11.  1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f jest liniowa oraz f(-4)=4 i f(-3)=2.

Oblicz f(0).

Odpowiedź:
f(0)= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(\frac{4}{7}-\frac{\sqrt{3}}{7}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{8}{3} B. 2
C. +\infty D. -\infty
E. -2 F. -\frac{2}{3}
Zadanie 13.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Nierówności \left(7+\sqrt{50}\right)\left(\sqrt{50}-7\right)x > 2x-4 oraz (2-3x)^2+3x\leqslant (3x+2)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj lewy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 4
C. -\infty D. 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},7\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wykres funkcji f(x)=-x-7m przecina oś Oy w punkcie o rzędnej 6. Wykres funkcji g(x)=5x-9m przecina oś Ox w punkcie o odciętej ......... .

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm