Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 533/804 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(6)=4, a jej wykres zawiera punkt (-4,-4).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(4,1) i B=(-1,-4) określona jest równaniem -5x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-1,-3) i Q=(4,-6).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/492 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=-\frac{1}{4}-\frac{5}{7}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 453/761 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-6,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-5).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Miejsce zerowe funkcji liniowej określonej wzorem f(x)=9x-7m jest większe od 2 dla każdej liczby m należącej do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. (-\infty,q) D. (p,q)
E. \langle p,+\infty) F. (-\infty,q\rangle
Podpunkt 6.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(144-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10880 ⋅ Poprawnie: 102/185 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(25-m^2\right)x+2 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/345 [60%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-2+6m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -7 B. +\infty
C. -9 D. 5
E. -\infty F. -1
Zadanie 10.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 99/174 [56%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m+\frac{1}{3}\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 5 B. -9
C. -\infty D. +\infty
E. -1 F. -7
Zadanie 11.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 217/415 [52%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(\frac{5}{6}+2m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 6 B. +\infty
C. -\infty D. -12
E. 12 F. -5
Zadanie 12.  1 pkt ⋅ Numer: pp-10911 ⋅ Poprawnie: 198/317 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wskaż prostą równoległą do osi Ox:
Odpowiedzi:
A. x-3=y B. 3x=6y
C. 6x+3=0 D. 6y+3=0
E. 3x=6 F. 3x=0
Zadanie 13.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{95}-\frac{49}{5}\right)(2+3x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -1 B. 3
C. -\infty D. -2
E. +\infty F. -8
Zadanie 14.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},9\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 Rozwiąż nierówność -\frac{1}{2}x\leqslant \frac{3}{2}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -5 B. +\infty
C. -2 D. -\infty
E. 1 F. -6


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm