Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 664/981 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-4x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right) T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 289/476 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału \langle -4,5\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 198/382 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór funkcji, której wykres jest symetryczny do tego wykresu względem osi Oy:
Odpowiedzi:
A. y=-\sqrt{3}x+1 B. y=\frac{1}{\sqrt{3}}x+1
C. y=\sqrt{3}x+1 D. y=-\frac{\sqrt{3}}{3}x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 276/542 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa spełnia warunki f(-\sqrt{2})=1 i f(9\sqrt{2})=-8.

Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:

Odpowiedzi:
A. I, II i IV B. I, III i IV
C. I, II i III D. II, III i IV
Zadanie 5.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 78/136 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=6\sqrt{11}x-\frac{\sqrt{77}}{2} jest liczba \frac{\sqrt{11\cdot 77}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 218/295 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji g(x)=(m+1)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 430/576 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=\frac{1}{4}x-9 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,-\frac{9}{4}\right) T/N : funkcja ta jest rosnąca i P=\left(0,\frac{9}{4}\right)
T/N : funkcja ta jest malejąca i P=\left(0,9\right)  
Zadanie 8.  1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 61/102 [59%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Wyznacz te wartości parametru m, dla których funkcja liniowa f(x)=(10-m^2)x+1 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba p jest najmniejszym z końców liczbowych tych przedziałów, a liczba q jest ilością liczb całkowitych należących do rozwiązania.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 586/921 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja f określona jest wzorem f(x)=(\sqrt{5}m+20)x+6 dla każdej liczby rzeczywistej x.

Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:

Odpowiedzi:
A. m\in\left(-\infty,4\sqrt{5}\right\rangle B. m\in\left\langle -4\sqrt{5},+\infty\right)
C. m\in\left\langle 4\sqrt{5},+\infty\right) D. m\in\left(-\infty,-4\sqrt{5}\right\rangle
Zadanie 10.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 77/140 [55%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{5}{2}m+4\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -4
C. -\infty D. 11
E. 9 F. -5
Zadanie 11.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x dodatnie, a warunek f(x) > 0 spełnia każde x ujemne.

Wynika z tego, że:

Odpowiedzi:
A. a=0 \wedge b \lessdot 0 B. a=0
C. a \lessdot 0 \wedge b=0 D. a > 0
Zadanie 12.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0 B. a\cdot m > 0 \ \wedge\ b\cdot n > 0
C. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0 D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
Zadanie 13.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Nierówności \left(6+\sqrt{37}\right)\left(\sqrt{37}-6\right)x > 2x-4 oraz (1-3x)^2+3x\leqslant (3x+1)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj lewy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4 B. 0
C. -\infty D. +\infty
Zadanie 14.  1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 81/103 [78%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m-1 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{10}{7}x+5.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -7 B. -10
C. +\infty D. 10
E. -\infty F. 7


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm