Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 663/980 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-4x+2 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right)
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
Zadanie 2. 1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 189/333 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji liniowej
f należą punkty
A=(5, 0) i
B=(0,1) .
Wykres funkcji liniowej
g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji
f względem osi
Ox .
Wyznacz współczynniki m i n .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Punkt o współrzędnych
(9-3t, 2t+3) , gdzie
t\in\mathbb{R} , należy do prostej określonej
równaniem
2x+by=c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/492 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz miejsce zerowe funkcji określonej wzorem
f(x)=\frac{5}{16}+\frac{7}{3}x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 67/119 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Miejscem zerowym funkcji określonej wzorem
f(x)=3\sqrt{2}x-\frac{\sqrt{14}}{2}
jest liczba
\frac{\sqrt{2\cdot 14}}{......} .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykres funkcji
g(x)=(m+4)x+15 przecina oś
Ox w punkcie o odciętej równej
\frac{\log_{2}{8}}{3^0} .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 119/192 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=\frac{9}{x}
T/N : y=\frac{\sqrt{x}}{x+3}
T/N : y=\frac{\sqrt{3}}{7}x
Zadanie 8. 1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(m^2-4\right)x+2 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%]
Rozwiąż
Podpunkt 9.1 (0.8 pkt)
Funkcja liniowa określona wzorem
f(x)=9+7x-12mx jest malejąca, wtedy i tylko wtedy,
gdy liczba
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 1
B. 3
C. +\infty
D. -1
E. -\infty
F. -2
Zadanie 10. 1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Funkcja liniowa określona wzorem
f(x)=ax+b jest rosnąca i ma
miejsce zerowe
\frac{\sqrt{10}-3}{2} .
Wynika z tego, że:
Odpowiedzi:
A. a \lessdot 0 \wedge b > 0
B. a > 0 \wedge b > 0
C. a > 0 \wedge b \lessdot 0
D. a \lessdot 0 \wedge b < 0
Zadanie 11. 1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Do wykresu funkcji liniowej
y=ax+b należą punkty
(2, 0) i
(0, -5) .
Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")
Odpowiedzi:
T/N : a > 0 \wedge b > 0
T/N : a > 0 \wedge b \lessdot 0
T/N : a \lessdot 0 \wedge b < 0
Zadanie 12. 1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Proste
p i
q są
równoległe, a punkt
O(0,0) leży pomiędzy nimi.
Zatem:
Odpowiedzi:
A. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
B. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0
C. a\cdot m > 0 \ \wedge\ b\cdot n > 0
D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0
Zadanie 13. 1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%]
Rozwiąż
Podpunkt 13.1 (0.8 pkt)
Zbiorem wszystkich rozwiązań nierówności
\left(\sqrt{83}-\frac{46}{5}\right)(-8+5x) > 0 jest pewien przedział.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. 3
C. 1
D. 8
E. -\infty
F. -2
Zadanie 14. 1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji
y=\frac{3}{2}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{4}{3},0\right)
B. \left(\frac{1}{3},-\frac{5}{2}\right)
C. \left(-\frac{5}{3},-\frac{7}{2}\right)
D. \left(-\frac{2}{3},-5\right)
Zadanie 15. 1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
«« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od
12 . Do jej wykresu należy punkt
\left(4,\frac{5}{2}\right) .
Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż