Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 663/980 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-4x+2 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right)
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
Zadanie 2. 1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 190/333 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji liniowej
f należą punkty
A=(4, 0) i
B=(0,1) .
Wykres funkcji liniowej
g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji
f względem osi
Ox .
Wyznacz współczynniki m i n .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 98/159 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Punkt o współrzędnych
(9-3t, 2t+2) , gdzie
t\in\mathbb{R} , należy do prostej określonej
równaniem
2x+by=c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 279/547 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja liniowa
f(x)=(m+2)x-(m+1)^2+13 jest malejąca
i jej wykres przecina oś rzędnych w punkcie
P=(0,-36) .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10933 ⋅ Poprawnie: 302/535 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Wykresy funkcji
f(x)=-\frac{3}{4}x-5 oraz
g(x)=mx+2 przecinają oś
Ox w tym samym punkcie.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%]
Rozwiąż
Podpunkt 6.1 (0.2 pkt)
Miejsce zerowe funkcji liniowej określonej wzorem
f(x)=10x-7m
jest większe od
2 dla każdej liczby
m należącej do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. (p,+\infty)
C. (-\infty,q)
D. (-\infty,q\rangle
E. \langle p,q\rangle
F. (p,q)
Podpunkt 6.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 451/589 [76%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(9-6\sqrt{2}\right)x+2\sqrt{2}
T/N : y=\left(10-4\sqrt{5}\right)x+\sqrt{5}
T/N : y=\left(10-7\sqrt{2}\right)x+\sqrt{2}
Zadanie 8. 1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Wyznacz te wartości parametru
m , dla których funkcja liniowa
f(x)=(11-m^2)x-5 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba
p jest najmniejszym z końców liczbowych tych przedziałów,
a liczba
q jest ilością liczb całkowitych należących do
rozwiązania.
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%]
Rozwiąż
Podpunkt 9.1 (0.8 pkt)
Funkcja liniowa
f(x)=(3-m)x+2m jest malejąca, gdy parametr
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 9.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{2}{3}
B. \frac{1}{3}
C. -\frac{1}{3}
D. -\frac{2}{3}
E. +\infty
F. -\infty
Zadanie 10. 1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%]
Rozwiąż
Podpunkt 10.1 (0.8 pkt)
Wyznacz przedział tych wszystkich wartości
m , dla których funkcja liniowa
f(x)=\left(-\frac{8}{5}m-5\right)x-m
jest rosnąca.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 2
B. -\infty
C. 6
D. 12
E. -10
F. +\infty
Zadanie 11. 1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Funkcja liniowa
f określona jest wzorem
f(x)=ax+b i spełnia warunek
f(7)-f(4)=27 .
Wyznacz a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%]
Rozwiąż
Podpunkt 12.1 (0.8 pkt)
Funkcja określona wzorem
f(x)=\left(-\frac{1}{10}-\frac{\sqrt{3}}{8}m\right)x+2 jest rosnąca,
gdy parametr
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
Podpunkt 12.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{2}{15}
B. \frac{2}{5}
C. -\frac{4}{45}
D. -\infty
E. +\infty
F. -\frac{8}{15}
Zadanie 13. 1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%]
Rozwiąż
Podpunkt 13.1 (0.5 pkt)
Dana jest funkcja
f(x)=-3x+3 .
Zbiór rozwiązań nierówności -1\leqslant f(x)\leqslant 8 jest przedziałem
\langle a, b\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 99/132 [75%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Funkcje określone wzorami
f(x)=-\frac{3}{5}x+2 i
g(x)=\frac{1}{2}x+5 przyjmują równą wartość dla argumentu
x_0 .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Wykres funkcji
f(x)=2x-8m przecina oś
Oy w punkcie o rzędnej
6 .
Wykres funkcji
g(x)=10x+3m przecina oś
Ox w punkcie o odciętej
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż