Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10814 ⋅ Poprawnie: 267/526 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiono wykres prostej:
Prosta symetryczna do tej prostej względem osi Ox określona jest równaniem ax+by=4.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 435/608 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-9,18) i B=(-6,13) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 198/382 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór funkcji, której wykres jest symetryczny do tego wykresu względem osi Ox:
Odpowiedzi:
A. y=\frac{1}{\sqrt{3}}x+1 B. y=-\frac{\sqrt{3}}{3}x+1
C. y=\sqrt{3}x-1 D. y=\sqrt{3}x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 324/482 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=-\frac{1}{4}x+9 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/706 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-\frac{7}{8}+\frac{4}{7}x.

Wyznacz miejsce zerowe tej funkcji.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{5}{8}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 81/136 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja określona wzorem f(x)=\left(m^2-m\right)x+5 spełnia warunek f(-5)=f(5).

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 191/247 [77%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{25}\right)x+625 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 241/448 [53%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-3-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{1}{3} B. -\frac{2}{3}
C. +\infty D. -\infty
E. \frac{1}{3} F. \frac{2}{3}
Zadanie 10.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{5}{2}m+4\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -4 B. 7
C. +\infty D. -6
E. -\infty F. 6
Zadanie 11.  1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Do wykresu funkcji liniowej y=ax+b należą punkty (-2, 0) i (0, 3).

Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")

Odpowiedzi:
T/N : a > 0 \wedge b \lessdot 0 T/N : a > 0 \wedge b > 0
T/N : a \lessdot 0 \wedge b < 0  
Zadanie 12.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/297 [72%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=3x+\frac{5}{4} i g(x)=7 opisują proste:
Odpowiedzi:
A. pokrywające się B. równoległe i różne
C. przecinające się pod kątem o mierze 90^{\circ} D. przecinające się pod kątem różnym od 90^{\circ}
Zadanie 13.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{60}-\frac{39}{5}\right)(5+7x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -6 B. 8
C. -5 D. -\infty
E. 3 F. +\infty
Zadanie 14.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji y=-\frac{3}{2}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{1}{3},-\frac{7}{2}\right) B. \left(-\frac{5}{3},\frac{3}{2}\right)
C. \left(\frac{4}{3},-4\right) D. \left(-\frac{2}{3},-3\right)
Zadanie 15.  1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 69/123 [56%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wykres funkcji f(x)=-2x+4m przecina oś Oy w punkcie o rzędnej 30. Wykres funkcji g(x)=8x-10m przecina oś Ox w punkcie o odciętej ......... .

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm