Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10874 ⋅ Poprawnie: 704/848 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Rozwiązaniem układu równań \begin{cases} -3x-4y=-9 \\ 4x+8y=16 \end{cases} jest para liczb:
Odpowiedzi:
A. x=2\wedge y=\frac{3}{2} B. x=1\wedge y=\frac{5}{2}
C. x=1\wedge y=\frac{3}{2} D. x=0\wedge y=2
Zadanie 2.  1 pkt ⋅ Numer: pp-11693 ⋅ Poprawnie: 90/178 [50%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 2x-5y=10 \\ \frac{3}{4}x-2y=4 \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10869 ⋅ Poprawnie: 431/746 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dane jest równanie 6x+6y-3=0. Z którym z poniższych równań tworzy ono układ równań sprzeczny:
Odpowiedzi:
A. 12x+12y+6=0 B. 6x-6y-3=0
C. 12x-6y-3=0 D. 12x-6y+3=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11700 ⋅ Poprawnie: 12/22 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz równanie postaci x+ay=c, które spełniają wszystkie pary liczb postaci (9y+3,y).

Podaj liczby a i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10951 ⋅ Poprawnie: 101/134 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Sznurek o długości 21.6 metrów pocięto na trzy części, których stosunek długości jest równy 2:9:13.

Ile decymetrów ma najdłuższa z tych części?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-6y)-x=6-\frac{1}{2}(x+6y-6) \\ \frac{1}{2}(x-30)-\frac{1}{4}(6y-36)=x+6y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 54 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20058 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 O liczbie naturalnej n wiadomo, że 5|n, 100\leqslant n\leqslant 999, n jest nieparzysta, a suma cyfry setek i cyfry dziesiątek wynosi 9. W liczbie n wymieniono miejscami cyfry dziesiątek i jedności i wówczas otrzymano liczbę o 18 większą.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20941 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz wszystkie pary liczb całkowitych x i y, które spełniają równość (2x-y+2)(x-y-4)=19.

Ile jest takich par?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z rzędnych wszystkich rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30022 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Proste o równaniach y-x=m+5 i y+x=2m+11 przecinają się w punkcie należącym do trójkąta o wierzchołkach A=(-3,0), B=(6,0) i C=(0,3).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm