Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10865 ⋅ Poprawnie: 281/430 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Układ równań \begin{cases} -x-y=-4 \\ -5y=8+5x \end{cases} :
Odpowiedzi:
A. ma dwa rozwiązania B. jest nieoznaczony
C. jest sprzeczny D. jest oznaczony
Zadanie 2.  1 pkt ⋅ Numer: pp-10873 ⋅ Poprawnie: 370/490 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest układ równań: \begin{cases} 8y+7x=105 \\ -3x+6y=21 \end{cases} . Określ znaki liczb pary (x,y) spełniającej ten układ równań:
Odpowiedzi:
A. x > 0 \wedge y \lessdot 0 B. x > 0 \wedge y > 0
C. x \lessdot 0 \wedge y > 0 D. x \lessdot 0 \wedge y \lessdot 0
Zadanie 3.  1 pkt ⋅ Numer: pp-10869 ⋅ Poprawnie: 431/746 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dane jest równanie -x+3y-3=0. Z którym z poniższych równań tworzy ono układ równań sprzeczny:
Odpowiedzi:
A. -2x-3y-3=0 B. -x-3y-3=0
C. -2x+6y+6=0 D. -2x-3y+3=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{39}{4},m+5\right) i (n+2,1) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-1.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10952 ⋅ Poprawnie: 185/221 [83%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kolejka górska porusza się ze stałą prędkością 100 km/h.

Zalezność przebytej drogi s od czasu t opisuje wzór:

Odpowiedzi:
A. s=\frac{100}{t} B. s=t+100
C. s=\frac{t}{100} D. s=100\cdot t
Zadanie 6.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=0 \\ 0,25y=2x+7 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 34 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20059 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Po zmieszaniu 15 kilogramów roztworu pierwszego o stężeniu p\% i 5 kilogramów roztworu drugiego o stężeniu q\% otrzymano roztwór o stężeniu 51\%. Jeśli natomiast zmieszano 25 kilogramów pierwszego roztworu i 27 kilogramów drugiego roztworu, to otrzymano roztwór o stężeniu 65\%.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20941 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz wszystkie pary liczb całkowitych x i y, które spełniają równość (2x-y-2)(x-y-2)=7.

Ile jest takich par?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z rzędnych wszystkich rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30020 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Samochód przebył drogę o długości s km w pewnym czasie t. Gdyby jechał z prędkością o 20 km/h większą, to przebyłby tę drogę o 240 minut szybciej. Gdyby zaś jechał z prędkością o 24 km/h mniejszą, to podróż trwałaby o 2400 minut dłużej.

Wyznacz s.

Odpowiedź:
s[km]= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Wyznacz t w minutach.
Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm