Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10863 ⋅ Poprawnie: 271/452 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Układ równań \begin{cases} 5x-y=3 \\ -y+5x=3 \end{cases} :
Odpowiedzi:
A. ma dwa rozwiązania B. jest sprzeczny
C. jest nieoznaczony D. jest oznaczony
Zadanie 2.  1 pkt ⋅ Numer: pp-11693 ⋅ Poprawnie: 90/178 [50%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 2x-5y=-16 \\ \frac{3}{4}x-2y=-\frac{13}{2} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10870 ⋅ Poprawnie: 368/586 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Układ równań \begin{cases} -4x-2y=4\\ -2x+4y=12 \end{cases} opisuje w układzie współrzędnych na płaszczyźnie:
Odpowiedzi:
A. zbiór jednoelementowy B. zbiór dwuelementowy
C. zbiór nieskończony D. zbiór pusty
Zadanie 4.  1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb (2,m+1) i (n+2,16) spełniały równanie \frac{3}{10}x-\frac{1}{2}y=\frac{1}{10}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10947 ⋅ Poprawnie: 74/115 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Statek płynie ze stałą prędkością i w ciągu minuty przepływa 870 metrów.

Zalezność przepłyniętej drogi y w kilometrach od czasu x w godzinach opisuje wzór y=a\cdot x.

Wyznacz a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dla jakiej wartości parametru m proste, będące wykresami funkcji liniowych f(x)=2x+5 i g(x)=4x+1 przecinają się na prostej 7x-2y+m-7=0?
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 300 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20057 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do 12 litrów wody o temperaturze 50 stopni dolano y litrów wody o temperaturze 65 stopni. W efekcie otrzymano wodę o temperaturze 55 stopni.

Wyznacz y.

Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20454 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
«« Liczby a i b są całkowite i spełniają warunki: a \lessdot 0 i b > 0. Ponadto liczby te są współrzędnymi punktu (a,b) należącego do prostej określonej równaniem y=0,75x+400. Wyznacz ilość takich punktów.

Podaj kolejno cyfry setek, dziesiątek i jedności rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30020 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Samochód przebył drogę o długości s km w pewnym czasie t. Gdyby jechał z prędkością o 8 km/h większą, to przebyłby tę drogę o 120 minut szybciej. Gdyby zaś jechał z prędkością o 16 km/h mniejszą, to podróż trwałaby o 600 minut dłużej.

Wyznacz s.

Odpowiedź:
s[km]= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Wyznacz t w minutach.
Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm