Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10872 ⋅ Poprawnie: 377/496 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Którą parę prostych pokazano na rysunku:
Odpowiedzi:
A. y=x-1\wedge y=2x+4 B. y=x-1\wedge y=-2x+4
C. y=x+1\wedge y=2x+4 D. y=x+1\wedge y=-2x+4
Zadanie 2.  1 pkt ⋅ Numer: pp-11694 ⋅ Poprawnie: 40/101 [39%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} \frac{2}{5}x+\frac{1}{3}y=\frac{79}{15} \\ \frac{1}{2}x-\frac{2}{9}y=-\frac{77}{18} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pr-10108 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Układ równań \begin{cases} \frac{1}{10}(x-5)+\frac{1}{8}(y-5)=0 \\ \frac{1}{20}(x)-\frac{1}{10}(y-6)=1 \end{cases} spełnia para liczb (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{23}{4},m-5\right) i (n-4,-8) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=\frac{9}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10949 ⋅ Poprawnie: 169/210 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do pewnej liczby m dodano 102. Otrzymaną sumę podzielono przez 2. W wyniku tego działania otrzymano liczbę 2 razy większą od liczby m.

Wyznacz m.

Odpowiedź:
m=\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dla jakiej wartości parametru m proste, będące wykresami funkcji liniowych f(x)=2x+5 i g(x)=4x+1 przecinają się na prostej 7x-2y+m+5=0?
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 19 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20056 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Pan Kowalski złożył w banku swoje oszczędności na lokacie rocznej oprocentowanej w kwocie 1\%, a pan Nowak w innym banku na lokacie oprocentowanej w wysokości 13\%. Wspólnie wpłacili łączną kwotę w wysokości 10000 zł, a odsetki wypłacone po roku z obu lokat wynosiły 964.00 zł.

Ile była równa mniejsza z kwot wpłaconych do banku?

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile była równa większa z kwot wpłaconych do banku?
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20941 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz wszystkie pary liczb całkowitych x i y, które spełniają równość (2x-y-1)(x-y+2)=3.

Ile jest takich par?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z rzędnych wszystkich rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20058 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 O liczbie naturalnej n wiadomo, że 5|n, 100\leqslant n\leqslant 999, n jest nieparzysta, a suma cyfry setek i cyfry dziesiątek wynosi 3. W liczbie n wymieniono miejscami cyfry dziesiątek i jedności i wówczas otrzymano liczbę o 45 większą.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm