Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10862 ⋅ Poprawnie: 325/418 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Interpretacją geometryczną układu równań \begin{cases} -7y-5x=2 \\ y-4=0 \end{cases} są dwie proste przecinające się w ćwiartce układu współrzędnych:
Odpowiedzi:
A. drugiej B. czwartej
C. pierwszej D. trzeciej
Zadanie 2.  1 pkt ⋅ Numer: pp-11694 ⋅ Poprawnie: 40/101 [39%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} \frac{2}{5}x+\frac{1}{3}y=\frac{16}{3} \\ \frac{1}{2}x-\frac{2}{9}y=-\frac{32}{9} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10870 ⋅ Poprawnie: 368/586 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Układ równań \begin{cases} -3x-4y=1\\ -4x+3y=3 \end{cases} opisuje w układzie współrzędnych na płaszczyźnie:
Odpowiedzi:
A. zbiór dwuelementowy B. zbiór jednoelementowy
C. zbiór pusty D. zbiór nieskończony
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{23}{4},m+5\right) i (n-3,3) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-\frac{13}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10953 ⋅ Poprawnie: 36/83 [43%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Halę targową budowało n=76 osób przez 260 dni. Teraz taką samą halę trzeba wybudować w innym mieście w 247 dni.

Ile osób należy zatrudnić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-2y)-x=2-\frac{1}{2}(x+2y-2) \\ \frac{1}{2}(x-10)-\frac{1}{4}(2y-12)=x+2y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 150 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dwie liczby naturalne dają w sumie 762. Jeśli większą z nich podzielimy przez mniejszą, to otrzymamy wynik 5 i resztę 48.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20454 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
«« Liczby a i b są całkowite i spełniają warunki: a \lessdot 0 i b > 0. Ponadto liczby te są współrzędnymi punktu (a,b) należącego do prostej określonej równaniem y=0,75x+400. Wyznacz ilość takich punktów.

Podaj kolejno cyfry setek, dziesiątek i jedności rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30022 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Proste o równaniach y-x=m-3 i y+x=2m-5 przecinają się w punkcie należącym do trójkąta o wierzchołkach A=(-3,0), B=(6,0) i C=(0,3).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm