Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10850 ⋅ Poprawnie: 110/209 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Układ równań \begin{cases} y=-2(a-5)x-2b+16 \\ y=\frac{4}{b-8}x+a-5 \end{cases} ma nieskończenie wiele rozwiązań dla:
Odpowiedzi:
A. a=3 \wedge b=9 B. a=3 \wedge b=10
C. a=4 \wedge b=9 D. a=1 \wedge b=10
Zadanie 2.  1 pkt ⋅ Numer: pp-11702 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 1,2x-\frac{2}{5}y=30 \\ \frac{2}{3}y+0,2x=\frac{58}{5} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10852 ⋅ Poprawnie: 35/69 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dana jest prosta o równaniu k:-5x-8y-6=0. Prosta k tworzy z prostą lukład sprzeczny.

Prosta l może być opisana równaniem:

Odpowiedzi:
A. l:-\frac{5}{2}x-4y=3 B. l:-8x+5y-6=0
C. l:-5x+8y-6=0 D. l:4y+\frac{5}{2}x=3
Zadanie 4.  1 pkt ⋅ Numer: pp-11700 ⋅ Poprawnie: 12/22 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz równanie postaci x+ay=c, które spełniają wszystkie pary liczb postaci (-5y-9,y).

Podaj liczby a i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10947 ⋅ Poprawnie: 74/115 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Statek płynie ze stałą prędkością i w ciągu minuty przepływa 390 metrów.

Zalezność przepłyniętej drogi y w kilometrach od czasu x w godzinach opisuje wzór y=a\cdot x.

Wyznacz a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=-4 \\ 0,25y=2x+15 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 19 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20059 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Po zmieszaniu 6 kilogramów roztworu pierwszego o stężeniu p\% i 15 kilogramów roztworu drugiego o stężeniu q\% otrzymano roztwór o stężeniu 72\%. Jeśli natomiast zmieszano 19 kilogramów pierwszego roztworu i 9 kilogramów drugiego roztworu, to otrzymano roztwór o stężeniu 50\%.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20941 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz wszystkie pary liczb całkowitych x i y, które spełniają równość (2x-y-3)(x-y-5)=7.

Ile jest takich par?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z rzędnych wszystkich rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dwie liczby naturalne dają w sumie 901. Jeśli większą z nich podzielimy przez mniejszą, to otrzymamy wynik 6 i resztę 103.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm