Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10865 ⋅ Poprawnie: 281/430 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Układ równań \begin{cases} -7x+6y=-1 \\ 3y=-5-8x \end{cases} :
Odpowiedzi:
A. ma dwa rozwiązania B. jest oznaczony
C. jest nieoznaczony D. jest sprzeczny
Zadanie 2.  1 pkt ⋅ Numer: pp-11693 ⋅ Poprawnie: 90/178 [50%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 2x-5y=-8 \\ \frac{3}{4}x-2y=-4 \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pr-10108 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Układ równań \begin{cases} \frac{1}{10}(x-7)+\frac{1}{8}(y-5)=0 \\ \frac{1}{20}(x-2)-\frac{1}{10}(y-6)=1 \end{cases} spełnia para liczb (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{43}{4},m+3\right) i (n+2,3) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-\frac{8}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10956 ⋅ Poprawnie: 213/385 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Marta ma 2 razy więcej sióstr niż braci, zaś jej brat Tomek ma 5 razy więcej sióstr niż braci.

Ile dzieci jest w tej rodzinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=-8 \\ 0,25y=2x+23 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 9 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dwie liczby naturalne dają w sumie 759. Jeśli większą z nich podzielimy przez mniejszą, to otrzymamy wynik 8 i resztę 57.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20943 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Boki trójkąta mają długości 5x+y-47, 3x+y-31 i 4y-2x-12, a jego obwód ma długość 18. Wyznacz wszystkie pary liczb całkowitych, które spełniają warunki zadania.

Podaj liczby x i y tej pary, która ma największą rzędną.

Odpowiedzi:
x= (wpisz liczbę całkowitą)
y= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30020 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Samochód przebył drogę o długości s km w pewnym czasie t. Gdyby jechał z prędkością o 9 km/h większą, to przebyłby tę drogę o 120 minut szybciej. Gdyby zaś jechał z prędkością o 24 km/h mniejszą, to podróż trwałaby o 1200 minut dłużej.

Wyznacz s.

Odpowiedź:
s[km]= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Wyznacz t w minutach.
Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm