Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10862 ⋅ Poprawnie: 325/418 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Interpretacją geometryczną układu równań \begin{cases} -y+6x=-7 \\ y+2=0 \end{cases} są dwie proste przecinające się w ćwiartce układu współrzędnych:
Odpowiedzi:
A. pierwszej B. drugiej
C. trzeciej D. czwartej
Zadanie 2.  1 pkt ⋅ Numer: pp-10873 ⋅ Poprawnie: 370/490 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest układ równań: \begin{cases} -y-3x=13 \\ 6x-y=-5 \end{cases} . Określ znaki liczb pary (x,y) spełniającej ten układ równań:
Odpowiedzi:
A. x \lessdot 0 \wedge y > 0 B. x > 0 \wedge y \lessdot 0
C. x > 0 \wedge y > 0 D. x \lessdot 0 \wedge y \lessdot 0
Zadanie 3.  1 pkt ⋅ Numer: pp-10867 ⋅ Poprawnie: 188/303 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ równań sprzecznych:
Odpowiedzi:
A. -2x-2y=2\ \wedge\ 4x+4y=-6 B. 4x+3y=-1\ \wedge\ -6y-8x=2
C. 7y+2x=2\ \wedge\ -3x+5y=-3 D. -3x+2y=-3\ \wedge\ -6x+4y=-6
Zadanie 4.  1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb (-9,m-2) i (n-4,8) spełniały równanie \frac{3}{10}x-\frac{1}{2}y=\frac{4}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10946 ⋅ Poprawnie: 82/105 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciało w czasie 130 minut pokonało drogę długości 500 metrów.

Oblicz z jaką średnią prędkością w kilometrach na godzinę poruszało się to ciało.

Odpowiedź:
v\ \left[\frac{km}{h}\right]=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=0 \\ 0,25y=2x+7 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Jeśli do liczby 40 dopiszemy cyfrę z przodu, to otrzymamy liczbę x. Jeśli do liczby 40 dopiszemy cyfrę z tyłu, to otrzymamy liczbę y. Różnica x-y jest równa 436, zaś suma cyfr dopisanych z przodu i z tyłu jesty równa 12.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20057 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do 13 litrów wody o temperaturze 40 stopni dolano y litrów wody o temperaturze 90 stopni. W efekcie otrzymano wodę o temperaturze 64 stopni.

Wyznacz y.

Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20454 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
«« Liczby a i b są całkowite i spełniają warunki: a \lessdot 0 i b > 0. Ponadto liczby te są współrzędnymi punktu (a,b) należącego do prostej określonej równaniem y=0,75x+400. Wyznacz ilość takich punktów.

Podaj kolejno cyfry setek, dziesiątek i jedności rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dwie liczby naturalne dają w sumie 615. Jeśli większą z nich podzielimy przez mniejszą, to otrzymamy wynik 6 i resztę 41.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm