Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10850 ⋅ Poprawnie: 110/209 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Układ równań \begin{cases} y=-2(a+6)x-2b-4 \\ y=\frac{4}{b+2}x+a+6 \end{cases} ma nieskończenie wiele rozwiązań dla:
Odpowiedzi:
A. a=-7 \wedge b=-1 B. a=-8 \wedge b=0
C. a=-10 \wedge b=0 D. a=-8 \wedge b=-1
Zadanie 2.  1 pkt ⋅ Numer: pp-10868 ⋅ Poprawnie: 398/597 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Układ równań \begin{cases} -\frac{4}{3}x-\frac{1}{2}y=1 \\ 8x+3y=-6 \end{cases} :
Odpowiedzi:
A. ma nieskończenie wiele rozwiązań B. ma dokładnie jedno rozwiązanie
C. ma dokładnie dwa rozwiązania D. jest sprzeczny
Zadanie 3.  1 pkt ⋅ Numer: pp-10867 ⋅ Poprawnie: 188/303 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ równań sprzecznych:
Odpowiedzi:
A. -4x-8y=4\ \wedge\ 6y+3x=-3 B. -3x-5y=-4\ \wedge\ 3x+5y=4
C. 7y+7x=-6\ \wedge\ -3x+5y=5 D. 5x+5y=1\ \wedge\ 3x+3y=6
Zadanie 4.  1 pkt ⋅ Numer: pp-11700 ⋅ Poprawnie: 12/22 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz równanie postaci x+ay=c, które spełniają wszystkie pary liczb postaci (7y+3,y).

Podaj liczby a i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10950 ⋅ Poprawnie: 173/201 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Sznurek o długości 360 metrów pocięto na trzy części, których stosunek długości jest równy 2:11:17.

Ile metrów ma najdłuższa z tych części?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-6y)-x=6-\frac{1}{2}(x+6y-6) \\ \frac{1}{2}(x-30)-\frac{1}{4}(6y-36)=x+6y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 300 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dwie liczby naturalne dają w sumie 838. Jeśli większą z nich podzielimy przez mniejszą, to otrzymamy wynik 7 i resztę 86.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20454 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
«« Liczby a i b są całkowite i spełniają warunki: a \lessdot 0 i b > 0. Ponadto liczby te są współrzędnymi punktu (a,b) należącego do prostej określonej równaniem y=0,75x+400. Wyznacz ilość takich punktów.

Podaj kolejno cyfry setek, dziesiątek i jedności rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30022 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Proste o równaniach y-x=m+4 i y+x=2m+9 przecinają się w punkcie należącym do trójkąta o wierzchołkach A=(-3,0), B=(6,0) i C=(0,3).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm