Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10851 ⋅ Poprawnie: 156/248 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Wskaż parę prostych widocznych na rysunku:
Odpowiedzi:
A. y=-2x-2\wedge y=\frac{2}{3}x+2 B. y=-2x-2\wedge y=\frac{3}{2}x+2
C. y=-2x+2\wedge y=\frac{2}{3}x-2 D. y=-2x+2\wedge y=\frac{3}{2}x-2
Zadanie 2.  1 pkt ⋅ Numer: pp-11694 ⋅ Poprawnie: 40/101 [39%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} \frac{2}{5}x+\frac{1}{3}y=-2 \\ \frac{1}{2}x-\frac{2}{9}y=-\frac{19}{3} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10866 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ nieoznaczony:
Odpowiedzi:
A. -6y+4x=-7\ \wedge\ -8x-5y=-2 B. x+2y=7\ \wedge\ -2x-4y=6
C. -8x+8y=8\ \wedge\ -3y+3x=-1 D. -7x+4y=7\ \wedge\ 7x-4y=-7
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{19}{4},m+10\right) i (n+3,0) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-\frac{8}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10946 ⋅ Poprawnie: 82/105 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciało w czasie 170 minut pokonało drogę długości 2600 metrów.

Oblicz z jaką średnią prędkością w kilometrach na godzinę poruszało się to ciało.

Odpowiedź:
v\ \left[\frac{km}{h}\right]=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dla jakiej wartości parametru m proste, będące wykresami funkcji liniowych f(x)=2x+5 i g(x)=4x+1 przecinają się na prostej 7x-2y+m-6=0?
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 44 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20058 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 O liczbie naturalnej n wiadomo, że 5|n, 100\leqslant n\leqslant 999, n jest nieparzysta, a suma cyfry setek i cyfry dziesiątek wynosi 6. W liczbie n wymieniono miejscami cyfry dziesiątek i jedności i wówczas otrzymano liczbę o 27 większą.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20454 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
«« Liczby a i b są całkowite i spełniają warunki: a \lessdot 0 i b > 0. Ponadto liczby te są współrzędnymi punktu (a,b) należącego do prostej określonej równaniem y=0,75x+400. Wyznacz ilość takich punktów.

Podaj kolejno cyfry setek, dziesiątek i jedności rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm