Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10863 ⋅ Poprawnie: 271/452 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Układ równań \begin{cases} 6x+2y=-5 \\ 5y+3x=2 \end{cases} :
Odpowiedzi:
A. ma dwa rozwiązania B. jest oznaczony
C. jest sprzeczny D. jest nieoznaczony
Zadanie 2.  1 pkt ⋅ Numer: pp-11702 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 1,2x-\frac{2}{5}y=\frac{166}{5} \\ \frac{2}{3}y+0,2x=\frac{28}{15} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10867 ⋅ Poprawnie: 188/303 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ równań sprzecznych:
Odpowiedzi:
A. x+3y=4\ \wedge\ x+3y=4 B. -6y-5x=-3\ \wedge\ -6x-y=-7
C. -4x+y=-2\ \wedge\ 2y-8x=-4 D. x-2y=1\ \wedge\ 4x-8y=-6
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{23}{4},m+2\right) i (n+7,-2) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-\frac{3}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10951 ⋅ Poprawnie: 101/134 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Sznurek o długości 28.8 metrów pocięto na trzy części, których stosunek długości jest równy 6:12:14.

Ile decymetrów ma najdłuższa z tych części?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż układ równań \begin{cases} 3x+2y=3 \\ y+2=\frac{3(1-x)+4}{2} \end{cases} .

Punkt A=(-4, m) należy do rozwiązania. Podaj m.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Jeśli do liczby 37 dopiszemy cyfrę z przodu, to otrzymamy liczbę x. Jeśli do liczby 37 dopiszemy cyfrę z tyłu, to otrzymamy liczbę y. Różnica x-y jest równa 461, zaś suma cyfr dopisanych z przodu i z tyłu jesty równa 14.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20056 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Pan Kowalski złożył w banku swoje oszczędności na lokacie rocznej oprocentowanej w kwocie 18\%, a pan Nowak w innym banku na lokacie oprocentowanej w wysokości 13\%. Wspólnie wpłacili łączną kwotę w wysokości 10000 zł, a odsetki wypłacone po roku z obu lokat wynosiły 1465.00 zł.

Ile była równa mniejsza z kwot wpłaconych do banku?

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile była równa większa z kwot wpłaconych do banku?
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20454 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
«« Liczby a i b są całkowite i spełniają warunki: a \lessdot 0 i b > 0. Ponadto liczby te są współrzędnymi punktu (a,b) należącego do prostej określonej równaniem y=0,75x+400. Wyznacz ilość takich punktów.

Podaj kolejno cyfry setek, dziesiątek i jedności rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm