Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10862 ⋅ Poprawnie: 325/418 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Interpretacją geometryczną układu równań \begin{cases} -3y-7x=5 \\ y+3=0 \end{cases} są dwie proste przecinające się w ćwiartce układu współrzędnych:
Odpowiedzi:
A. pierwszej B. trzeciej
C. drugiej D. czwartej
Zadanie 2.  1 pkt ⋅ Numer: pp-10873 ⋅ Poprawnie: 370/490 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest układ równań: \begin{cases} -6y+7x=90 \\ -3x+3y=-42 \end{cases} . Określ znaki liczb pary (x,y) spełniającej ten układ równań:
Odpowiedzi:
A. x > 0 \wedge y > 0 B. x \lessdot 0 \wedge y > 0
C. x > 0 \wedge y \lessdot 0 D. x \lessdot 0 \wedge y \lessdot 0
Zadanie 3.  1 pkt ⋅ Numer: pp-10869 ⋅ Poprawnie: 431/746 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dane jest równanie 4x+5y-3=0. Z którym z poniższych równań tworzy ono układ równań sprzeczny:
Odpowiedzi:
A. 4x-5y-3=0 B. 8x+10y+6=0
C. 8x-5y+3=0 D. 8x-5y-3=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb (-1,m-13) i (n-1,2) spełniały równanie \frac{3}{10}x-\frac{1}{2}y=\frac{31}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10950 ⋅ Poprawnie: 173/201 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Sznurek o długości 432 metrów pocięto na trzy części, których stosunek długości jest równy 2:5:17.

Ile metrów ma najdłuższa z tych części?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż układ równań \begin{cases} 3x+2y=3 \\ y+2=\frac{3(1-x)+4}{2} \end{cases} .

Punkt A=(8, m) należy do rozwiązania. Podaj m.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 49 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20056 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Pan Kowalski złożył w banku swoje oszczędności na lokacie rocznej oprocentowanej w kwocie 11\%, a pan Nowak w innym banku na lokacie oprocentowanej w wysokości 3\%. Wspólnie wpłacili łączną kwotę w wysokości 10000 zł, a odsetki wypłacone po roku z obu lokat wynosiły 956.00 zł.

Ile była równa mniejsza z kwot wpłaconych do banku?

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile była równa większa z kwot wpłaconych do banku?
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20943 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Boki trójkąta mają długości 5x+y-28, 3x+y-16 i 4y-2x+20, a jego obwód ma długość 18. Wyznacz wszystkie pary liczb całkowitych, które spełniają warunki zadania.

Podaj liczby x i y tej pary, która ma największą rzędną.

Odpowiedzi:
x= (wpisz liczbę całkowitą)
y= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20058 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 O liczbie naturalnej n wiadomo, że 5|n, 100\leqslant n\leqslant 999, n jest nieparzysta, a suma cyfry setek i cyfry dziesiątek wynosi 4. W liczbie n wymieniono miejscami cyfry dziesiątek i jedności i wówczas otrzymano liczbę o 18 większą.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm