Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10851 ⋅ Poprawnie: 156/248 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Wskaż parę prostych widocznych na rysunku:
Odpowiedzi:
A. y=-2x-2\wedge y=\frac{2}{3}x+2 B. y=-2x+2\wedge y=\frac{2}{3}x-2
C. y=-2x-2\wedge y=\frac{3}{2}x+2 D. y=-2x+2\wedge y=\frac{3}{2}x-2
Zadanie 2.  1 pkt ⋅ Numer: pp-11702 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 1,2x-\frac{2}{5}y=22 \\ \frac{2}{3}y+0,2x=\frac{11}{15} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10866 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ nieoznaczony:
Odpowiedzi:
A. 6x-6y=4\ \wedge\ -7y+7x=1 B. 6x+6y=-2\ \wedge\ -3x-3y=1
C. 4x+8y=-5\ \wedge\ 3x+6y=7 D. 8y+4x=-7\ \wedge\ -7x+3y=-5
Zadanie 4.  1 pkt ⋅ Numer: pp-11700 ⋅ Poprawnie: 12/22 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz równanie postaci x+ay=c, które spełniają wszystkie pary liczb postaci (7y+5,y).

Podaj liczby a i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10949 ⋅ Poprawnie: 169/210 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do pewnej liczby m dodano 57. Otrzymaną sumę podzielono przez 2. W wyniku tego działania otrzymano liczbę 2 razy większą od liczby m.

Wyznacz m.

Odpowiedź:
m=\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż układ równań \begin{cases} 3x+2y=3 \\ y+2=\frac{3(1-x)+4}{2} \end{cases} .

Punkt A=(8, m) należy do rozwiązania. Podaj m.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Jeśli do liczby 47 dopiszemy cyfrę z przodu, to otrzymamy liczbę x. Jeśli do liczby 47 dopiszemy cyfrę z tyłu, to otrzymamy liczbę y. Różnica x-y jest równa 271, zaś suma cyfr dopisanych z przodu i z tyłu jesty równa 13.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dwie liczby naturalne dają w sumie 618. Jeśli większą z nich podzielimy przez mniejszą, to otrzymamy wynik 5 i resztę 78.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20943 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Boki trójkąta mają długości 5x+y+35, 3x+y+23 i 4y-2x+8, a jego obwód ma długość 18. Wyznacz wszystkie pary liczb całkowitych, które spełniają warunki zadania.

Podaj liczby x i y tej pary, która ma największą rzędną.

Odpowiedzi:
x= (wpisz liczbę całkowitą)
y= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30017 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Proste o równaniach y-x-2ak+2=0 i 2x+y+ak+5=0 przecinają się w punkcie należącym do trójkąta o wierzchołkach A=(-4,1), B=(-4,-2) i C=(0,-2).

Podaj najmniejsze możliwe k.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe k.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm