Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10872 ⋅ Poprawnie: 377/496 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Którą parę prostych pokazano na rysunku:
Odpowiedzi:
A. y=x-1\wedge y=2x+4 B. y=x-1\wedge y=-2x+4
C. y=x+1\wedge y=2x+4 D. y=x+1\wedge y=-2x+4
Zadanie 2.  1 pkt ⋅ Numer: pp-11693 ⋅ Poprawnie: 90/178 [50%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 2x-5y=16 \\ \frac{3}{4}x-2y=\frac{25}{4} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10852 ⋅ Poprawnie: 35/69 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dana jest prosta o równaniu k:5x+3y-3=0. Prosta k tworzy z prostą lukład sprzeczny.

Prosta l może być opisana równaniem:

Odpowiedzi:
A. l:5x-3y-3=0 B. l:-\frac{3}{2}y-\frac{5}{2}x=\frac{3}{2}
C. l:\frac{5}{2}x+\frac{3}{2}y=\frac{3}{2} D. l:3x-5y-3=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{3}{4},m-2\right) i (n-1,-12) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=\frac{12}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10953 ⋅ Poprawnie: 36/83 [43%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Halę targową budowało n=75 osób przez 252 dni. Teraz taką samą halę trzeba wybudować w innym mieście w 225 dni.

Ile osób należy zatrudnić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-5y)-x=5-\frac{1}{2}(x+5y-5) \\ \frac{1}{2}(x-25)-\frac{1}{4}(5y-30)=x+5y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Jeśli do liczby 45 dopiszemy cyfrę z przodu, to otrzymamy liczbę x. Jeśli do liczby 45 dopiszemy cyfrę z tyłu, to otrzymamy liczbę y. Różnica x-y jest równa 292, zaś suma cyfr dopisanych z przodu i z tyłu jesty równa 10.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20059 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Po zmieszaniu 21 kilogramów roztworu pierwszego o stężeniu p\% i 9 kilogramów roztworu drugiego o stężeniu q\% otrzymano roztwór o stężeniu 80\%. Jeśli natomiast zmieszano 18 kilogramów pierwszego roztworu i 12 kilogramów drugiego roztworu, to otrzymano roztwór o stężeniu 76\%.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20943 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Boki trójkąta mają długości 5x+y+28, 3x+y+18 i 4y-2x+2, a jego obwód ma długość 18. Wyznacz wszystkie pary liczb całkowitych, które spełniają warunki zadania.

Podaj liczby x i y tej pary, która ma największą rzędną.

Odpowiedzi:
x= (wpisz liczbę całkowitą)
y= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20059 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Po zmieszaniu 21 kilogramów roztworu pierwszego o stężeniu p\% i 9 kilogramów roztworu drugiego o stężeniu q\% otrzymano roztwór o stężeniu 80\%. Jeśli natomiast zmieszano 18 kilogramów pierwszego roztworu i 12 kilogramów drugiego roztworu, to otrzymano roztwór o stężeniu 76\%.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz q.
Odpowiedź:
q= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm