Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10850 ⋅ Poprawnie: 110/209 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Układ równań \begin{cases} y=-2(a-7)x-2b-10 \\ y=\frac{4}{b+5}x+a-7 \end{cases} ma nieskończenie wiele rozwiązań dla:
Odpowiedzi:
A. a=6 \wedge b=-4 B. a=5 \wedge b=-3
C. a=5 \wedge b=-4 D. a=3 \wedge b=-3
Zadanie 2.  1 pkt ⋅ Numer: pp-11694 ⋅ Poprawnie: 40/101 [39%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} \frac{2}{5}x+\frac{1}{3}y=\frac{32}{15} \\ \frac{1}{2}x-\frac{2}{9}y=\frac{1}{9} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10866 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ nieoznaczony:
Odpowiedzi:
A. -6y-3x=-5\ \wedge\ 8x+7y=7 B. -6x-8y=1\ \wedge\ -3x-4y=7
C. -x+2y=2\ \wedge\ 8y-4x=1 D. 8x+4y=7\ \wedge\ 8x+4y=7
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{43}{4},m+10\right) i (n+10,3) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-\frac{8}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10952 ⋅ Poprawnie: 185/221 [83%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kolejka górska porusza się ze stałą prędkością 90 km/h.

Zalezność przebytej drogi s od czasu t opisuje wzór:

Odpowiedzi:
A. s=\frac{90}{t} B. s=\frac{t}{90}
C. s=t+90 D. s=90\cdot t
Zadanie 6.  2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dla jakiej wartości parametru m proste, będące wykresami funkcji liniowych f(x)=2x+5 i g(x)=4x+1 przecinają się na prostej 7x-2y+m+1=0?
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20330 ⋅ Poprawnie: 490/707 [69%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa 12. Jeśli od cyfry dziesiątek odejmiemy 6, a do cyfry jedności dodamy 6, to otrzymana liczba będzie się składać z takich samych cyfr, ale zapisanych w odwrotnej kolejności.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dwie liczby naturalne dają w sumie 658. Jeśli większą z nich podzielimy przez mniejszą, to otrzymamy wynik 6 i resztę 63.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20941 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz wszystkie pary liczb całkowitych x i y, które spełniają równość (2x-y+1)(x-y+1)=5.

Ile jest takich par?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z rzędnych wszystkich rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30020 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Samochód przebył drogę o długości s km w pewnym czasie t. Gdyby jechał z prędkością o 10 km/h większą, to przebyłby tę drogę o 120 minut szybciej. Gdyby zaś jechał z prędkością o 20 km/h mniejszą, to podróż trwałaby o 600 minut dłużej.

Wyznacz s.

Odpowiedź:
s[km]= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Wyznacz t w minutach.
Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm