Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-6, -4) oraz \left(-4,-4\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11623 ⋅ Poprawnie: 79/156 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wierzchołek paraboli ma współrzedne W=(6,4), a punkt A=\left(-6, -12\right) należy do jej wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i jest symetryczny do punktu A względem osi symetrii tej paraboli.

Wyznacz współrzedne punktu B.

Odpowiedzi:
x_B= (dwie liczby całkowite)

y_B= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11627 ⋅ Poprawnie: 56/84 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-\frac{1}{2}x^2+4x-8.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono kamień z prędkością początkową 7\ [m/s] pionowo do góry. Wysokość s\ [m], jaką osiągnie kamień po t sekundach, określona jest w przybliżeniu wzorem funkcji s(t)=32t-16t^2.

Jaką największą wysokość osiągnie ten kamień?

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11631 ⋅ Poprawnie: 19/56 [33%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 « Dane są potęgi 3^{2}, 3^{-1}, 3^{-2}, 3^{-\sqrt{3}}, 3^{\frac{\sqrt{3}}{2}} i 3^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 36/40 [90%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=(32,5).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 701/869 [80%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{2}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{2\} B. \mathbb{R}-\{0\}
C. \mathbb{R} D. \mathbb{R}-\{-2\}
Zadanie 8.  1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 451/634 [71%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (4,3).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (-6,-2) B. (-6,-3)
C. (2,1) D. (6,-6)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm