Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem y=-\frac{5}{4}x^2.

Określ, które z podanych punktów należą do jej wykresu:

Odpowiedzi:
T/N : \left(-3\sqrt{2},-15\right) T/N : \left(-\frac{\sqrt{2}}{2},-\frac{5}{16}\right)
T/N : \left(\frac{\sqrt{3}}{2},-\frac{5}{3}\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-8, -1) oraz \left(5,-1\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11625 ⋅ Poprawnie: 151/266 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=(x-4)^2-7. Przekształć jej wzór do postaci ogólnej y=ax^2+bx+c.

Podaj współczynniki b i c.

Odpowiedzi:
b=
(wpisz liczbę całkowitą)

c=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11628 ⋅ Poprawnie: 51/74 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=3(x-5)^2-3.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Rzucono kamień z prędkością początkową 21\ [m/s] pionowo do góry. Wysokość s\ [m], jaką osiągnie kamień po t sekundach, określona jest w przybliżeniu wzorem funkcji s(t)=34t-17t^2.

Jaką największą wysokość osiągnie ten kamień?

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11631 ⋅ Poprawnie: 19/56 [33%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 « Dane są potęgi 7^{2}, 7^{-1}, 7^{-2}, 7^{-\sqrt{3}}, 7^{\frac{\sqrt{3}}{2}} i 7^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=3^x, gdzie x\in(-1,3), jest przedział (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11725 ⋅ Poprawnie: 33/34 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=\left(\frac{1}{81},4\right).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/619 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{5}{x}.

Oblicz wartość tej funkcji w punkcie \sqrt{13}-\sqrt{8} i zapisz wynik w postaci m\sqrt{13}+n\sqrt{8}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 704/873 [80%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{6}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{0\} B. \mathbb{R}-\{-6\}
C. \mathbb{R}-\{6\} D. \mathbb{R}
Zadanie 11.  1 pkt ⋅ Numer: pp-11115 ⋅ Poprawnie: 397/706 [56%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Do wykresu funkcji f(x)=\frac{a}{x} należy punkt o współrzędnych (593,594).

Zatem funkcja f:

Odpowiedzi:
A. jest malejąca w (0,+\infty) B. jest rosnąca w (0,+\infty)
C. jest malejąca w \mathbb{R} D. jest rosnąca w (-\infty, 0)
Zadanie 12.  1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 454/638 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (10,3).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (-4,4) B. (8,-8)
C. (5,-1) D. (-2,-15)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm