Podgląd testu : lo2@sp-07-funk-wybr-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11621 ⋅ Poprawnie: 129/164 [78%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2 należy punkt o współrzędnych
\left(-3,\frac{45}{2}\right) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji kwadratowej należą punkty o współrzędnych
(2, 2) oraz
\left(\frac{7}{2},2\right) ,
a osią symetrii tego wykresu jest prosta o równaniu
x=a .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11624 ⋅ Poprawnie: 227/299 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=(x-7)^2 ,
a jej wykresem jest parabola o wierzchołku
W=(p,q) .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 78/176 [44%]
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2+2x+6 .
Zbiorem wartości tej funkcji jest przedział postaci:
Odpowiedzi:
A. \langle p,+\infty)
B. (-\infty, p\rangle
C. (-\infty, p)
D. (p,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Rzucono kamień z prędkością początkową
13\ [m/s] pionowo do góry.
Wysokość
s\ [m] , jaką osiągnie kamień po
t
sekundach, określona jest w przybliżeniu wzorem funkcji
s(t)=26t-13t^2 .
Jaką największą wysokość osiągnie ten kamień?
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11631 ⋅ Poprawnie: 19/56 [33%]
Rozwiąż
Podpunkt 6.1 (0.5 pkt)
« Dane są potęgi
5^{2} ,
5^{-1} ,
5^{-2} ,
5^{-\sqrt{3}} ,
5^{\frac{\sqrt{3}}{2}} i
5^{-\frac{\sqrt{2}}{2}} .
Podaj wykładnik najmniejszej z nich.
Odpowiedź:
Podpunkt 6.2 (0.5 pkt)
Podaj wykładnik największej z nich.
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=2^x , gdzie
x\in(-2,4) ,
jest przedział
(a,b) .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 36/40 [90%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Do wykresu funkcji logarytmicznej określonej wzorem
f(x)=\log_{a}{x} należy punkt
P=(16,4) .
Oblicz podstawę logarytmu a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 394/615 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{5}{x} .
Oblicz wartość tej funkcji w punkcie \sqrt{10}-\sqrt{5}
i zapisz wynik w postaci m\sqrt{10}+n\sqrt{5} , gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-11109 ⋅ Poprawnie: 233/416 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wykres funkcji określonej wzorem
f(x)=-\frac{5}{x} nie przecina
prostej o równaniu:
Odpowiedzi:
A. x=-5
B. y=-5x
C. y=5
D. y=10x
Zadanie 11. 1 pkt ⋅ Numer: pp-11115 ⋅ Poprawnie: 397/706 [56%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Do wykresu funkcji
f(x)=\frac{a}{x} należy punkt
o współrzędnych
(324,325) .
Zatem funkcja f :
Odpowiedzi:
A. jest rosnąca w (-\infty, 0)
B. jest rosnąca w (0,+\infty)
C. jest malejąca w (0,+\infty)
D. jest malejąca w \mathbb{R}
Zadanie 12. 1 pkt ⋅ Numer: pp-11117 ⋅ Poprawnie: 160/225 [71%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dla której z podanych wartości
a , wykres funkcji określonej wzorem
f(x)=\frac{a}{x} nie ma punktów wspólnych z wykresem
prostej o równaniu
y=5x :
Odpowiedzi:
A. a=5
B. a=-\sqrt{8}
C. a=\sqrt{4}
D. a=\frac{1}{5}
E. a=4
F. a=\frac{1}{3}
Rozwiąż