Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 99/186 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem y=-\frac{3}{2}x^2.

Określ, które z podanych punktów należą do jej wykresu:

Odpowiedzi:
T/N : \left(2,-6\right) T/N : \left(-2\sqrt{3},-18\right)
T/N : \left(\sqrt{2},-3\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11623 ⋅ Poprawnie: 79/156 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wierzchołek paraboli ma współrzedne W=(3,-2), a punkt A=\left(-3, 12\right) należy do jej wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i jest symetryczny do punktu A względem osi symetrii tej paraboli.

Wyznacz współrzedne punktu B.

Odpowiedzi:
x_B= (dwie liczby całkowite)

y_B= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11625 ⋅ Poprawnie: 150/265 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=(x+6)^2+7. Przekształć jej wzór do postaci ogólnej y=ax^2+bx+c.

Podaj współczynniki b i c.

Odpowiedzi:
b=
(wpisz liczbę całkowitą)

c=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 78/176 [44%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-x^2-12x-29.

Zbiorem wartości tej funkcji jest przedział postaci:

Odpowiedzi:
A. (p,+\infty) B. (-\infty, p)
C. \langle p,+\infty) D. (-\infty, p\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Rzucono kamień z prędkością początkową 33\ [m/s] pionowo do góry. Wysokość s\ [m], jaką osiągnie kamień po t sekundach, określona jest w przybliżeniu wzorem funkcji s(t)=28t-14t^2.

Jaką największą wysokość osiągnie ten kamień?

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11723 ⋅ Poprawnie: 16/31 [51%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dane są potęgi \left(\frac{1}{8}\right)^{2}, \left(\frac{1}{8}\right)^{-1}, \left(\frac{1}{8}\right)^{\sqrt{5}}, \left(\frac{1}{8}\right)^{-2}, \left(\frac{1}{8}\right)^{-\sqrt{3}}, \left(\frac{1}{8}\right)^{\frac{\sqrt{3}}{2}} i \left(\frac{1}{8}\right)^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11724 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Zbiorem wartości funkcji określonej wzorem f(x)=4^{-x}, gdzie x\in(-2,1), jest przedział (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/41 [90%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=(81,4).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/618 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{5}{x}.

Oblicz wartość tej funkcji w punkcie \sqrt{17}-\sqrt{12} i zapisz wynik w postaci m\sqrt{17}+n\sqrt{12}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11109 ⋅ Poprawnie: 233/416 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=-\frac{11}{x} nie przecina prostej o równaniu:
Odpowiedzi:
A. y=22x B. y=-11x
C. x=-11 D. y=11
Zadanie 11.  1 pkt ⋅ Numer: pp-11115 ⋅ Poprawnie: 397/706 [56%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Do wykresu funkcji f(x)=\frac{a}{x} należy punkt o współrzędnych (992,993).

Zatem funkcja f:

Odpowiedzi:
A. jest malejąca w \mathbb{R} B. jest rosnąca w (0,+\infty)
C. jest malejąca w (0,+\infty) D. jest rosnąca w (-\infty, 0)
Zadanie 12.  1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 454/637 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (4,12).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (-6,-7) B. (16,3)
C. (6,-5) D. (-3,-2)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm