Podgląd testu : lo2@sp-07-funk-wybr-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11621 ⋅ Poprawnie: 133/171 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2 należy punkt o współrzędnych
\left(-3,15\right) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji kwadratowej należą punkty o współrzędnych
(3, 3) oraz
\left(4,3\right) ,
a osią symetrii tego wykresu jest prosta o równaniu
x=a .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+11 ,
a wierzchołek jej wykresu ma współrzędne
W=(x_w,y_w) .
Wyznacz współrzędne wierzchołka W .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 97/203 [47%]
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2+10x+30 .
Zbiorem wartości tej funkcji jest przedział postaci:
Odpowiedzi:
A. (-\infty, p)
B. (p,+\infty)
C. \langle p,+\infty)
D. (-\infty, p\rangle
Podpunkt 4.2 (0.8 pkt)
Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Rzucono kamień z prędkością początkową
29\ [m/s] pionowo do góry.
Wysokość
s\ [m] , jaką osiągnie kamień po
t
sekundach, określona jest w przybliżeniu wzorem funkcji
s(t)=28t-14t^2 .
Jaką największą wysokość osiągnie ten kamień?
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11723 ⋅ Poprawnie: 16/31 [51%]
Rozwiąż
Podpunkt 6.1 (0.5 pkt)
Dane są potęgi
\left(\frac{1}{8}\right)^{2} ,
\left(\frac{1}{8}\right)^{-1} ,
\left(\frac{1}{8}\right)^{\sqrt{5}} ,
\left(\frac{1}{8}\right)^{-2} ,
\left(\frac{1}{8}\right)^{-\sqrt{3}} ,
\left(\frac{1}{8}\right)^{\frac{\sqrt{3}}{2}} i
\left(\frac{1}{8}\right)^{-\frac{\sqrt{2}}{2}} .
Podaj wykładnik najmniejszej z nich.
Odpowiedź:
Podpunkt 6.2 (0.5 pkt)
Podaj wykładnik największej z nich.
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=4^x , gdzie
x\in(-1,3) ,
jest przedział
(a,b) .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/42 [88%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Do wykresu funkcji logarytmicznej określonej wzorem
f(x)=\log_{a}{x} należy punkt
P=(81,4) .
Oblicz podstawę logarytmu a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/620 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{5}{x} .
Oblicz wartość tej funkcji w punkcie \sqrt{15}-\sqrt{10}
i zapisz wynik w postaci m\sqrt{15}+n\sqrt{10} , gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 705/874 [80%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=\frac{9}{x} jest:
Odpowiedzi:
A. \mathbb{R}
B. \mathbb{R}-\{9\}
C. \mathbb{R}-\{0\}
D. \mathbb{R}-\{-9\}
Zadanie 11. 1 pkt ⋅ Numer: pp-11116 ⋅ Poprawnie: 621/740 [83%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=\frac{a}{x} , dla
x\neq 0 należy punkt o współrzędnych
A=(6,3) .
Podaj wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 455/639 [71%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych
(6,7) .
Wynika z tego, że ten wykres zawiera też punkt:
Odpowiedzi:
A. (-6,-7)
B. (8,-1)
C. (-5,6)
D. (3,7)
Rozwiąż