Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11621 ⋅ Poprawnie: 129/164 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(-3,\frac{45}{2}\right).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (2, 2) oraz \left(\frac{7}{2},2\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11624 ⋅ Poprawnie: 227/299 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=(x-7)^2, a jej wykresem jest parabola o wierzchołku W=(p,q).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 78/176 [44%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2+2x+6.

Zbiorem wartości tej funkcji jest przedział postaci:

Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, p\rangle
C. (-\infty, p) D. (p,+\infty)
Podpunkt 4.2 (0.8 pkt)
 Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Rzucono kamień z prędkością początkową 13\ [m/s] pionowo do góry. Wysokość s\ [m], jaką osiągnie kamień po t sekundach, określona jest w przybliżeniu wzorem funkcji s(t)=26t-13t^2.

Jaką największą wysokość osiągnie ten kamień?

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11631 ⋅ Poprawnie: 19/56 [33%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 « Dane są potęgi 5^{2}, 5^{-1}, 5^{-2}, 5^{-\sqrt{3}}, 5^{\frac{\sqrt{3}}{2}} i 5^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=2^x, gdzie x\in(-2,4), jest przedział (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 36/40 [90%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=(16,4).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 394/615 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{5}{x}.

Oblicz wartość tej funkcji w punkcie \sqrt{10}-\sqrt{5} i zapisz wynik w postaci m\sqrt{10}+n\sqrt{5}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11109 ⋅ Poprawnie: 233/416 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=-\frac{5}{x} nie przecina prostej o równaniu:
Odpowiedzi:
A. x=-5 B. y=-5x
C. y=5 D. y=10x
Zadanie 11.  1 pkt ⋅ Numer: pp-11115 ⋅ Poprawnie: 397/706 [56%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Do wykresu funkcji f(x)=\frac{a}{x} należy punkt o współrzędnych (324,325).

Zatem funkcja f:

Odpowiedzi:
A. jest rosnąca w (-\infty, 0) B. jest rosnąca w (0,+\infty)
C. jest malejąca w (0,+\infty) D. jest malejąca w \mathbb{R}
Zadanie 12.  1 pkt ⋅ Numer: pp-11117 ⋅ Poprawnie: 160/225 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dla której z podanych wartości a, wykres funkcji określonej wzorem f(x)=\frac{a}{x} nie ma punktów wspólnych z wykresem prostej o równaniu y=5x:
Odpowiedzi:
A. a=5 B. a=-\sqrt{8}
C. a=\sqrt{4} D. a=\frac{1}{5}
E. a=4 F. a=\frac{1}{3}


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm