Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem y=-\frac{3}{2}x^2.

Określ, które z podanych punktów należą do jej wykresu:

Odpowiedzi:
T/N : \left(-3\sqrt{2},-18\right) T/N : \left(-2\sqrt{3},-9\right)
T/N : \left(2,-3\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11623 ⋅ Poprawnie: 104/183 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wierzchołek paraboli ma współrzedne W=(6,-4), a punkt A=\left(-4, -3\right) należy do jej wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i jest symetryczny do punktu A względem osi symetrii tej paraboli.

Wyznacz współrzedne punktu B.

Odpowiedzi:
x_B= (dwie liczby całkowite)

y_B= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=2x^2+16x+24, a wierzchołek jej wykresu ma współrzędne W=(x_w,y_w).

Wyznacz współrzędne wierzchołka W.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11628 ⋅ Poprawnie: 51/74 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-2(x-1)^2+8.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Rzucono kamień z prędkością początkową 4\ [m/s] pionowo do góry. Wysokość s\ [m], jaką osiągnie kamień po t sekundach, określona jest w przybliżeniu wzorem funkcji s(t)=32t-16t^2.

Jaką największą wysokość osiągnie ten kamień?

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11631 ⋅ Poprawnie: 19/56 [33%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 « Dane są potęgi 2^{2}, 2^{-1}, 2^{-2}, 2^{-\sqrt{3}}, 2^{\frac{\sqrt{3}}{2}} i 2^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=2^x, gdzie x\in(-1,1), jest przedział (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/41 [90%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=(32,5).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/619 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{5}{x}.

Oblicz wartość tej funkcji w punkcie \sqrt{7}-\sqrt{2} i zapisz wynik w postaci m\sqrt{7}+n\sqrt{2}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11109 ⋅ Poprawnie: 233/416 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=-\frac{2}{x} nie przecina prostej o równaniu:
Odpowiedzi:
A. y=-2x B. y=2
C. y=4x D. x=-2
Zadanie 11.  1 pkt ⋅ Numer: pp-11116 ⋅ Poprawnie: 620/739 [83%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=\frac{a}{x}, dla x\neq 0 należy punkt o współrzędnych A=(-8,6).

Podaj wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 454/638 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (6,1).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (2,1) B. (-3,-2)
C. (5,4) D. (5,4)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm