Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2 należy punkt o współrzędnych
\left(3,\frac{27}{2}\right).
Wyznacz wartość parametru a.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11625
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem f(x)=(x+1)^2-1.
Przekształć jej wzór do postaci ogólnej y=ax^2+bx+c.
Podaj współczynniki b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(dwie liczby całkowite)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11635
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji logarytmicznej określonej wzorem
f(x)=\log_{a}{x} należy punkt
P=(16,4).
Oblicz podstawę logarytmu a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11109
Podpunkt 4.1 (1 pkt)
« Wykres funkcji określonej wzorem f(x)=-\frac{5}{x} nie przecina
prostej o równaniu:
Odpowiedzi:
A.y=5
B.y=10x
C.y=-5x
D.x=-5
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11117
Podpunkt 5.1 (1 pkt)
Dla której z podanych wartości a, wykres funkcji określonej wzorem
f(x)=\frac{a}{x} nie ma punktów wspólnych z wykresem
prostej o równaniu y=5x:
Odpowiedzi:
A.a=\sqrt{4}
B.a=-\sqrt{9}
C.a=4
D.a=2
E.a=5
F.a=\frac{1}{4}
Zadanie 6.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20923
Podpunkt 6.1 (1 pkt)
Liczby -2 i -1 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left(-\infty, \frac{1}{2}\right\rangle.
Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.
Podaj liczbę p.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20926
Podpunkt 7.1 (1 pkt)
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-13n-136,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
792 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20485
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt
\left(5,\frac{1}{4}\right) oraz
punkt (x_0,-3).
Wyznacz x_0.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat