Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-6

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11623  
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli ma współrzedne W=(4,-4), a punkt A=\left(3, -2\right) należy do jej wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i jest symetryczny do punktu A względem osi symetrii tej paraboli.

Wyznacz współrzedne punktu B.

Odpowiedzi:
x_B= (dwie liczby całkowite)

y_B= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11626  
Podpunkt 2.1 (0.2 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-2x^2+12x-24.

Zbiorem wartości tej funkcji jest przedział postaci:

Odpowiedzi:
A. (-\infty, p\rangle B. (-\infty, p)
C. \langle p,+\infty) D. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11631  
Podpunkt 3.1 (0.5 pkt)
 « Dane są potęgi 7^{2}, 7^{-1}, 7^{-2}, 7^{-\sqrt{3}}, 7^{\frac{\sqrt{3}}{2}} i 7^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11109  
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=-\frac{7}{x} nie przecina prostej o równaniu:
Odpowiedzi:
A. x=-7 B. y=14x
C. y=-7x D. y=7
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11114  
Podpunkt 5.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (15,2).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (-1,-2) B. (-4,-2)
C. (-6,-8) D. (-15,-2)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20924  
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(-3,-8), a jednym z miejsc zerowych tej funkcji jest liczba -1.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20926  
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-11n-204, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 748 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20486  
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},-\frac{9}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20497  
Podpunkt 9.1 (2 pkt)
 «« Do wykresu proporcjonalności odwrotnej należy punkt \left(-5, \frac{1}{2}\right).

Wyznacz liczbę odwrotną do liczby \sqrt{3} w tej proporcjonalności.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30396  
Podpunkt 10.1 (4 pkt)
 « Odległość między dwoma miastami Odległość między dwoma miastami wynosi 49 km. Pociąg pokonuję tę trasę w określonym czasie t. Gdyby pociąg jechał o 10 km/h wolniej, to do miasta docelowego przyjechałby o 7 minut później. Gdyby zaś pociąg jechał o 35 km/h szybiej, to pokonywałby tę trasę w czasie o 14 minut krótszym.

Ile minut potrzebuje pociąg na pokonanie tej trasy?

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm