Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-6

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11621  
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(-3,18\right).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11630  
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=3x^2+12x+6, a wierzchołek jej wykresu ma współrzędne W=(x_w,y_w).

Wyznacz współrzędne wierzchołka W.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11723  
Podpunkt 3.1 (0.5 pkt)
 Dane są potęgi \left(\frac{1}{11}\right)^{2}, \left(\frac{1}{11}\right)^{-1}, \left(\frac{1}{11}\right)^{\sqrt{5}}, \left(\frac{1}{11}\right)^{-2}, \left(\frac{1}{11}\right)^{-\sqrt{3}}, \left(\frac{1}{11}\right)^{\frac{\sqrt{3}}{2}} i \left(\frac{1}{11}\right)^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11119  
Podpunkt 4.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\frac{6}{x} . Zbiór A jest zbiorem wszystkich liczb całkowitych c takich, że f(c) jest liczbą całkowitą.

Ile liczb zawiera zbiór A.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11117  
Podpunkt 5.1 (1 pkt)
 Dla której z podanych wartości a, wykres funkcji określonej wzorem f(x)=\frac{a}{x} nie ma punktów wspólnych z wykresem prostej o równaniu y=2x:
Odpowiedzi:
A. a=-\sqrt{11} B. a=4
C. a=\sqrt{4} D. a=3
E. a=\frac{1}{4} F. a=\sqrt{3}
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20924  
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(1,-18), a jednym z miejsc zerowych tej funkcji jest liczba 4.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20926  
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-21n-44, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 420 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20485  
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,-11).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20879  
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 100 km/h pokonuje pewną drogę w czasie 2 godzin i 48 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 32 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 4 godzin i 40 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30396  
Podpunkt 10.1 (4 pkt)
 « Odległość między dwoma miastami Odległość między dwoma miastami wynosi 63 km. Pociąg pokonuję tę trasę w określonym czasie t. Gdyby pociąg jechał o 15 km/h wolniej, to do miasta docelowego przyjechałby o 50 minut później. Gdyby zaś pociąg jechał o 42 km/h szybiej, to pokonywałby tę trasę w czasie o 45 minut krótszym.

Ile minut potrzebuje pociąg na pokonanie tej trasy?

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm