Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-4, -4) oraz \left(1,-4\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=2x^2-4x-6, a wierzchołek jej wykresu ma współrzędne W=(x_w,y_w).

Wyznacz współrzędne wierzchołka W.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11723 ⋅ Poprawnie: 16/31 [51%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Dane są potęgi \left(\frac{1}{10}\right)^{2}, \left(\frac{1}{10}\right)^{-1}, \left(\frac{1}{10}\right)^{\sqrt{5}}, \left(\frac{1}{10}\right)^{-2}, \left(\frac{1}{10}\right)^{-\sqrt{3}}, \left(\frac{1}{10}\right)^{\frac{\sqrt{3}}{2}} i \left(\frac{1}{10}\right)^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11117 ⋅ Poprawnie: 160/225 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla której z podanych wartości a, wykres funkcji określonej wzorem f(x)=\frac{a}{x} nie ma punktów wspólnych z wykresem prostej o równaniu y=9x:
Odpowiedzi:
A. a=-\sqrt{10} B. a=\sqrt{3}
C. a=3 D. a=\frac{1}{5}
E. a=\frac{1}{4} F. a=4
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{20x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 129/202 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby -5 i -4 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left(-\infty, \frac{1}{4}\right\rangle. Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-11n-304, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 1040 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,7).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20497 ⋅ Poprawnie: 32/154 [20%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Do wykresu proporcjonalności odwrotnej należy punkt \left(3, \frac{1}{6}\right).

Wyznacz liczbę odwrotną do liczby \sqrt{5} w tej proporcjonalności.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20821 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dana jest funkcja g(x)=\frac{14}{x}. Wyrażenie g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right) zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i n\in\mathbb{N}.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Odległość między dwoma miastami Odległość między dwoma miastami wynosi 44 km. Pociąg pokonuję tę trasę w określonym czasie t. Gdyby pociąg jechał o 12 km/h wolniej, to do miasta docelowego przyjechałby o 11 minut później. Gdyby zaś pociąg jechał o 50 km/h szybiej, to pokonywałby tę trasę w czasie o 20 minut krótszym.

Ile minut potrzebuje pociąg na pokonanie tej trasy?

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30831 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta A do miasta B w ustalonym czasie t. Jeśli jechałby z prędkością o 20 większą, to czas przejazdu byłby o 0 godzin i 8 minut krótszy; gdyby zaś jego prędkość była o 18 km/h mniejsza, to czas przejazdu byłby o 0 godzin i 11 minut dłuższy.

Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?

Odpowiedź:
v_{sr}\ [km/h]= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm