Do wykresu funkcji kwadratowej należą punkty o współrzędnych
(-6, -2) oraz \left(-1,-2\right),
a osią symetrii tego wykresu jest prosta o równaniu x=a.
Wyznacz wartość parametru a.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 90/201 [44%]
Dane są potęgi \left(\frac{1}{10}\right)^{2},
\left(\frac{1}{10}\right)^{-1},
\left(\frac{1}{10}\right)^{\sqrt{5}},
\left(\frac{1}{10}\right)^{-2},
\left(\frac{1}{10}\right)^{-\sqrt{3}},
\left(\frac{1}{10}\right)^{\frac{\sqrt{3}}{2}} i
\left(\frac{1}{10}\right)^{-\frac{\sqrt{2}}{2}}.
Podaj wykładnik najmniejszej z nich.
Odpowiedź:
Wpisz odpowiedź:
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/619 [64%]
Samochód osobowy jadący ze średnią prędkością 75 km/h
pokonuje pewną drogę w czasie 2 godzin i 54 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością
30 km/h?
Wynik podaj w minutach.
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie
3 godzin i 45 minut?
Wynik podaj w kilometrach na godzinę.
Odpowiedź:
v[km/h]=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
« Odległość między dwoma miastami
Odległość między dwoma miastami
wynosi 75 km. Pociąg pokonuję tę trasę w określonym
czasie t. Gdyby pociąg jechał o
30 km/h wolniej, to do miasta docelowego
przyjechałby o 135 minut później. Gdyby zaś pociąg jechał
o 25 km/h szybiej, to pokonywałby tę trasę w czasie o
30 minut krótszym.
Ile minut potrzebuje pociąg na pokonanie tej trasy?
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30831 ⋅ Poprawnie: 0/0
Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta
A do miasta B w ustalonym czasie
t. Jeśli jechałby z prędkością o 6
większą, to czas przejazdu byłby o 0 godzin i 10 minut krótszy;
gdyby zaś jego prędkość była o 26 km/h mniejsza, to czas
przejazdu byłby o 1 godzin
i 5 minut dłuższy.
Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?
Odpowiedź:
v_{sr}\ [km/h]=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat