Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem y=-\frac{3}{4}x^2.

Określ, które z podanych punktów należą do jej wykresu:

Odpowiedzi:
T/N : \left(\sqrt{2},-\frac{3}{2}\right) T/N : \left(-3,-\frac{27}{4}\right)
T/N : \left(-2\sqrt{3},-9\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11627 ⋅ Poprawnie: 56/84 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-\frac{1}{2}x^2+7x-\frac{49}{2}.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11631 ⋅ Poprawnie: 19/56 [33%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 « Dane są potęgi 4^{2}, 4^{-1}, 4^{-2}, 4^{-\sqrt{3}}, 4^{\frac{\sqrt{3}}{2}} i 4^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 705/874 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{3}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{3\} B. \mathbb{R}
C. \mathbb{R}-\{0\} D. \mathbb{R}-\{-3\}
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{10x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 148/218 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby -6 i -1 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left\langle -\frac{25}{4},+\infty\right) Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t[s] przebyło drogę s[m], którą opisuje wzór s(t)=t^2+6t+9, gdzie t\in[1,10].

Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?

Odpowiedź:
s[m]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
v_{sr}[m/s]=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},-\frac{7}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20497 ⋅ Poprawnie: 32/154 [20%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Do wykresu proporcjonalności odwrotnej należy punkt \left(-3, \frac{1}{5}\right).

Wyznacz liczbę odwrotną do liczby \sqrt{7} w tej proporcjonalności.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20821 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dana jest funkcja g(x)=\frac{6}{x}. Wyrażenie g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right) zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i n\in\mathbb{N}.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30397 ⋅ Poprawnie: 21/31 [67%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Odległość między dwoma miastami wynosi 39 km. Pociąg pokonuję tę trasę ze średnią prędkością v. Gdyby pociąg jechał o 21 km/h szybciej, to do miasta docelowego przyjechałby o 19 minut szybciej. Gdyby zaś pociąg jechał o 23 km/h wolniej, to pokonywałby tę trasę o 69 minut dłużej.

Z jaką średnią prędkością pociąg zwyczajowo pokonuję tę trasę?

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30831 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta A do miasta B w ustalonym czasie t. Jeśli jechałby z prędkością o 25 większą, to czas przejazdu byłby o 0 godzin i 26 minut krótszy; gdyby zaś jego prędkość była o 15 km/h mniejsza, to czas przejazdu byłby o 0 godzin i 26 minut dłuższy.

Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?

Odpowiedź:
v_{sr}\ [km/h]= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm