Wierzchołek paraboli ma współrzedne W=(-8,4),
a punkt A=\left(-\frac{7}{2}, -1\right) należy do jej
wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i
jest symetryczny do punktu A względem osi symetrii tej paraboli.
Wyznacz współrzedne punktu B.
Odpowiedzi:
x_B
=
(dwie liczby całkowite)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11625 ⋅ Poprawnie: 151/266 [56%]
« Dana jest funkcja g(x)=\frac{11}{x}.
Wyrażenie
g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right)
zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i
n\in\mathbb{N}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30397 ⋅ Poprawnie: 21/31 [67%]
Odległość między dwoma miastami
wynosi 46 km. Pociąg pokonuję tę trasę ze średnią
prędkością v. Gdyby pociąg jechał o
24 km/h szybciej, to do miasta docelowego
przyjechałby o 24 minut szybciej. Gdyby zaś pociąg jechał
o 14 km/h wolniej, to pokonywałby tę trasę o
33 minut dłużej.
Z jaką średnią prędkością pociąg zwyczajowo pokonuję tę trasę?
Odpowiedź:
v[km/h]=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30831 ⋅ Poprawnie: 0/0
Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta
A do miasta B w ustalonym czasie
t. Jeśli jechałby z prędkością o 8
większą, to czas przejazdu byłby o 0 godzin i 15 minut krótszy;
gdyby zaś jego prędkość była o 13 km/h mniejsza, to czas
przejazdu byłby o 0 godzin
i 39 minut dłuższy.
Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?
Odpowiedź:
v_{sr}\ [km/h]=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat