« Rzucono kamień z prędkością początkową 33\ [m/s] pionowo do góry.
Wysokość s\ [m], jaką osiągnie kamień po t
sekundach, określona jest w przybliżeniu wzorem funkcji
s(t)=28t-14t^2.
Jaką największą wysokość osiągnie ten kamień?
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/620 [64%]
Liczby -3 i -2 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left\langle -\frac{1}{8},+\infty\right)
Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.
Podaj liczbę p.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%]
« Odległość między dwoma miastami
Odległość między dwoma miastami
wynosi 60 km. Pociąg pokonuję tę trasę w określonym
czasie t. Gdyby pociąg jechał o
20 km/h wolniej, to do miasta docelowego
przyjechałby o 15 minut później. Gdyby zaś pociąg jechał
o 40 km/h szybiej, to pokonywałby tę trasę w czasie o
15 minut krótszym.
Ile minut potrzebuje pociąg na pokonanie tej trasy?
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30831 ⋅ Poprawnie: 0/0
Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta
A do miasta B w ustalonym czasie
t. Jeśli jechałby z prędkością o 4
większą, to czas przejazdu byłby o 0 godzin i 2 minut krótszy;
gdyby zaś jego prędkość była o 16 km/h mniejsza, to czas
przejazdu byłby o 0 godzin
i 10 minut dłuższy.
Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?
Odpowiedź:
v_{sr}\ [km/h]=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat