Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-1, 1) oraz \left(4,1\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11628 ⋅ Poprawnie: 51/74 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-3(x-1)^2+27.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11725 ⋅ Poprawnie: 33/34 [97%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=\left(\frac{1}{16},4\right).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 705/874 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{10}{x} jest:
Odpowiedzi:
A. \mathbb{R} B. \mathbb{R}-\{10\}
C. \mathbb{R}-\{-10\} D. \mathbb{R}-\{0\}
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{30x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(1,-16), a jednym z miejsc zerowych tej funkcji jest liczba 3.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t[s] przebyło drogę s[m], którą opisuje wzór s(t)=t^2+4t+7, gdzie t\in[1,33].

Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?

Odpowiedź:
s[m]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
v_{sr}[m/s]=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/637 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,12).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 38/54 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Brygada 16 robotników wykonuje pewną pracę w czasie 3 godzin i 15 minut. W jakim czasie wykona tę samą pracę brygada liczbąca 24 robotników?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Wykres funkcji g(x)=\frac{m}{x+2} zawiera punkt A=\left(-\frac{3}{2},7\right).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz g\left(\sqrt{3}-3\right). Wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{W} i c\in\mathbb{Z}.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30397 ⋅ Poprawnie: 21/31 [67%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Odległość między dwoma miastami wynosi 142 km. Pociąg pokonuję tę trasę ze średnią prędkością v. Gdyby pociąg jechał o 17 km/h szybciej, to do miasta docelowego przyjechałby o 7 minut szybciej. Gdyby zaś pociąg jechał o 17 km/h wolniej, to pokonywałby tę trasę o 9 minut dłużej.

Z jaką średnią prędkością pociąg zwyczajowo pokonuję tę trasę?

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30831 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta A do miasta B w ustalonym czasie t. Jeśli jechałby z prędkością o 5 większą, to czas przejazdu byłby o 0 godzin i 14 minut krótszy; gdyby zaś jego prędkość była o 27 km/h mniejsza, to czas przejazdu byłby o 3 godzin i 30 minut dłuższy.

Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?

Odpowiedź:
v_{sr}\ [km/h]= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm