Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-3, 2) oraz \left(6,2\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11627 ⋅ Poprawnie: 56/84 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-\frac{1}{2}x^2+8x-32.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11723 ⋅ Poprawnie: 16/31 [51%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Dane są potęgi \left(\frac{1}{11}\right)^{2}, \left(\frac{1}{11}\right)^{-1}, \left(\frac{1}{11}\right)^{\sqrt{5}}, \left(\frac{1}{11}\right)^{-2}, \left(\frac{1}{11}\right)^{-\sqrt{3}}, \left(\frac{1}{11}\right)^{\frac{\sqrt{3}}{2}} i \left(\frac{1}{11}\right)^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/619 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{5}{x}.

Oblicz wartość tej funkcji w punkcie \sqrt{11}-\sqrt{6} i zapisz wynik w postaci m\sqrt{11}+n\sqrt{6}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{-10x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(0,8), a jednym z miejsc zerowych tej funkcji jest liczba 2.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-17n-168, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 1428 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},-\frac{3}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20879 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 100 km/h pokonuje pewną drogę w czasie 2 godzin i 18 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 20 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 3 godzin i 50 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Wykres funkcji g(x)=\frac{m}{x+2} zawiera punkt A=\left(-\frac{3}{2},4\right).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz g\left(\sqrt{3}-3\right). Wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{W} i c\in\mathbb{Z}.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30397 ⋅ Poprawnie: 21/31 [67%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Odległość między dwoma miastami wynosi 126 km. Pociąg pokonuję tę trasę ze średnią prędkością v. Gdyby pociąg jechał o 20 km/h szybciej, to do miasta docelowego przyjechałby o 24 minut szybciej. Gdyby zaś pociąg jechał o 14 km/h wolniej, to pokonywałby tę trasę o 27 minut dłużej.

Z jaką średnią prędkością pociąg zwyczajowo pokonuję tę trasę?

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30831 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta A do miasta B w ustalonym czasie t. Jeśli jechałby z prędkością o 15 większą, to czas przejazdu byłby o 0 godzin i 18 minut krótszy; gdyby zaś jego prędkość była o 20 km/h mniejsza, to czas przejazdu byłby o 0 godzin i 36 minut dłuższy.

Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?

Odpowiedź:
v_{sr}\ [km/h]= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm