Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11566  
Podpunkt 1.1 (1 pkt)
 Kąt zewnętrzny wielokąta foremnego ma miarę 8^{\circ}.

Ile przekątnych ma ten wielokąt?

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11560  
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 6, 3, 3\sqrt{5} T/N : 3\sqrt{10}, 3\sqrt{6}, 3\sqrt{5}
T/N : 12, 15, 18  
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11383  
Podpunkt 3.1 (1 pkt)
 Odcinek AB o długości 6 jest równoległy do odcinka CD, przy czym: |PA|=18 i |AC|=24:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11435  
Podpunkt 4.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{19}, 3\sqrt{19} i 4\sqrt{19} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{12\sqrt{19}}{5} B. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
C. \frac{4\sqrt{19}}{5},\frac{6\sqrt{19}}{5},\frac{12\sqrt{19}}{5} D. \frac{4\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10790  
Podpunkt 5.1 (1 pkt)
 » Punkty o współrzędnych A=(7,-2), B=(4,-6) i C=(0,2) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20779  
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(6,-1), B=(-3,-2) i C=(1,-6). Oblicz długości boków tego trójkąta.

Podaj długość boku najkrótszego.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość boku najdłuższego.
Odpowiedź:
max= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20788  
Podpunkt 7.1 (2 pkt)
 » W trójkącie ABC kąt przy wierzchołku A jest prosty. Wysokość tego trojkąta opuszczona z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki BD i DC, których stosunek długości jest większy od 1.

Oblicz |BD|:|DC|.

Dane
|AB|:|AC|=5:4=1.25000000000000
Odpowiedź:
|BD|:|DC|=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20713  
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 3:4, a obwód tego trójkąta ma długość 576.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20878  
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 30 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20710  
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC kąt przy wierzchołku A jest prosty. Odcinek AE jest środkową tego trójkąta, zaś odcinek AF jego wysokością.

Oblicz |EF|.

Dane
|AB|=24
|AC|=32
Odpowiedź:
|EF|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm