Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10477  
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 30 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11463  
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 18 i 37. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10601  
Podpunkt 3.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{11}{2} i |BC|=14:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11583  
Podpunkt 4.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{5}, przy czym: P_{\triangle MCE}=3 i P_{\triangle NFB}=1:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10790  
Podpunkt 5.1 (1 pkt)
 » Punkty o współrzędnych A=(-2,3), B=(8,-6) i C=(0,-4) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20853  
Podpunkt 6.1 (2 pkt)
 (2 pkt) « W trójkącie równoramiennym ABC o podstawie AB, wysokość AD tworzy z jego podstawą kąt o mierze \alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku A w stosunku 1:k. Wiedząc, że liczby k i \alpha są naturalne dodatnie wykaż, że miara kąta \alpha jest dzielnikiem liczby 90.

Podaj ilość takich k, które są liczbami pierwszymi.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20247  
Podpunkt 7.1 (2 pkt)
Punkt D jest środkiem boku AB oraz |DC|=|CB|=|BE|.

Wiedząc, że |AC|=2 oblicz |DE|.

Odpowiedź:
|DE|= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20875  
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość \frac{9}{2}, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o \frac{1}{2}.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20878  
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 26 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20871  
Podpunkt 10.1 (2 pkt)
 Podstawa trójkąta równoramiennego ma długość 18, a punkt przecięcia się środkowych tego trójkąta znajduje się w odległości \frac{40}{3} od tej podstawy.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm