Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10481  
Podpunkt 1.1 (1 pkt)
 Obwód wielokąta jest równy 101. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 76 i 75.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11560  
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 1+\sqrt{2}, -1+\sqrt{2}, 2\sqrt{2} T/N : 4, 5, 6
T/N : 2, 1, \sqrt{5}  
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11383  
Podpunkt 3.1 (1 pkt)
 Odcinek AB o długości 28 jest równoległy do odcinka CD, przy czym: |PA|=6 i |AC|=30:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11435  
Podpunkt 4.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{3}, 3\sqrt{3} i 4\sqrt{3} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{6\sqrt{3}}{5},\frac{9\sqrt{3}}{5},\frac{12\sqrt{3}}{5} B. \frac{4\sqrt{3}}{5},\frac{6\sqrt{3}}{5},\frac{12\sqrt{3}}{5}
C. \frac{6\sqrt{3}}{5},\frac{9\sqrt{3}}{5},\frac{8\sqrt{3}}{5} D. \frac{4\sqrt{3}}{5},\frac{9\sqrt{3}}{5},\frac{8\sqrt{3}}{5}
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11394  
Podpunkt 5.1 (0.5 pkt)
 Dany jest punkt B=(-4,-4) oraz wektor \overrightarrow{AB}=[1, -3]. Wyznacz środek odcinka S_{AB}=(x_S, y_S).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20297  
Podpunkt 6.1 (1 pkt)
Punkty A=(-1,8) oraz B=(2,4) dzielą odcinek MN na trzy równe części i są położone na odcinku w kolejności M, A, B i N. Wyznacz końce tego odcinka.

Podaj sumę współrzędnych punktu M=(x_M,y_M).

Odpowiedź:
x_M+y_M= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj sumę współrzędnych punktu N=(x_N,y_N).
Odpowiedź:
x_N+y_N= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20726  
Podpunkt 7.1 (2 pkt)
 Zielony czworokąt na rysunku jest kwadratem:

Jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.

Dane
|AC|=60
|BC|=109
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20712  
Podpunkt 8.1 (2 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym x=36 i y=27:

Długość tego okręgu jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20251  
Podpunkt 9.1 (2 pkt)
 « W trapezie dane są długości podstaw i ramion: |CD|=\frac{5}{4}, |AB|=2, |AD|=1 i |BC|=\frac{3}{4}. Ramiona trapezu przedłużono do przecięcia w punkcie O.

Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt O, a dwa pozostałe są końcami dłuższej podstawy trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20708  
Podpunkt 10.1 (1 pkt)
 » Wysokości trójkąta prostokątnego mają długości \frac{24}{5}, 6 i 8. Wyznacz długości odcinków, na jakie wysokość opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.

Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm