Podgląd testu : lo2@sp-08-planimetria-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
20^{\circ}.
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
|
T/N : 6, 3, 3\sqrt{5}
|
T/N : 3\sqrt{10}, 3\sqrt{6}, 3\sqrt{5}
|
|
T/N : 12, 15, 18
|
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB, przy czym
|AB|=\frac{21}{4} i
|BE|:|EC|=3:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{7},
3\sqrt{7} i
4\sqrt{7} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{4\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5}
|
B. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5}
|
|
C. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
|
D. \frac{4\sqrt{7}}{5},\frac{6\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Punkt
S=\left(-\frac{5}{2},-\frac{3}{2}\right) jest środkiem odcinka
AB, przy czym
A=(3,-5),
a punkt
B ma współrzędne
(x_B, y_B).
Wyznacz współrzędne punktu B.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Punkty
A=(x_A, y_A) i
B=(x_B, y_B)
są końcami odcinka, do którego należy punkt
P=(x_P, y_P)
taki, że
|PB|:|AP|=1:3.
Podaj x_P.
Dane
x_A=5
y_A=-9
x_B=-1
y_B=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20752 ⋅ Poprawnie: 1/1 [100%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Dany jest trójkąt:
Oblicz \frac{|EF|}{|AB|}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Obwód trójkąta prostokątnego ma długość
\frac{35}{2}, a
stosunek długość przyprostokątnych tego trójkąta jest równy
20:21.
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
48 i ramieniu długości
40, jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
W trójkącie prostokątnym najkrótszy bok ma długość
10, a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
4.
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz odległość punktu przecięcia się środkowych tego trójkąta od
wierzchołka kąta prostego.
Odpowiedź:
(wpisz dwie liczby całkowite)