Podgląd testu : lo2@sp-08-planimetria-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Obwód wielokąta jest równy
111. Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
101
i
94.
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
|
T/N : 6, 3, 3\sqrt{5}
|
T/N : 12, 15, 18
|
|
T/N : 21, 21, 30
|
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{7}{12},
|DC|=\frac{2}{3} i
|AB|=\frac{5}{6}:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{4}, przy czym:
P_{\triangle MCE}=2 i
P_{\triangle NFB}=4:
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3). Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u}.
Zatem:
Odpowiedzi:
|
A. A=(-7,12)
|
B. A=(15,-25)
|
|
C. A=(18,14)
|
D. A=(11,-18)
|
|
Zadanie 6. 3 pkt ⋅ Numer: pr-20832 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Punkty
P=(x_P, y_P),
Q=(x_Q, y_Q)
oraz
R=(x_R, y_R) sa środkami boków trójkąta o
bokach odpowiednio
AB,
BC
i
AC.
Podaj sumę obu współrzędnych wierzchołka A tego
trójkąta.
Dane
x_P=2
y_P=2
x_Q=3
y_Q=5
x_R=-2
y_R=3
Odpowiedź:
x_A+y_A=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.
Podaj x_S.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 65/252 [25%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Zielony czworokąt na rysunku jest kwadratem oraz
|AC|=6 i
|BC|=10:
Jakim procentem pola powierzchni trójkąta ABC
jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Obwód trójkąta prostokątnego ma długość
20, a
stosunek długość przyprostokątnych tego trójkąta jest równy
8:15.
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
32 i ramieniu długości
34, jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=48 i
|AC|=20.
Oblicz odległość środka ciężkości trójkąta ABC
od punktu A.
Odpowiedź:
(wpisz dwie liczby całkowite)