Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
22 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
5+9\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB , przy czym
|AB|=\frac{15}{4} i
|BE|:|EC|=6 :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
2\sqrt{13} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
4 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Punkt
S=\left(-\frac{7}{2},\frac{11}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[3,5] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pr-20832 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
P=(x_P, y_P) ,
Q=(x_Q, y_Q)
oraz
R=(x_R, y_R) sa środkami boków trójkąta o
bokach odpowiednio
AB ,
BC
i
AC .
Podaj sumę obu współrzędnych wierzchołka A tego
trójkąta.
Dane
x_P=-1
y_P=8
x_Q=0
y_Q=11
x_R=-5
y_R=9
Odpowiedź:
x_A+y_A=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20917 ⋅ Poprawnie: 35/51 [68%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Trójkąt
ABC jest prostokątny.
Na boku
AC tego trójkąta zbudowano kwadrat,
natomiast bok
AB przedłużono tak, że
|\angle EHA|=90^{\circ} .
Wiedząc, że |BC|=4 oraz bok kwadratu ma długość
3 oblicz pole powierzchni trójkąta EHA .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Boki trójkąta prostokątnego mają długości:
a ,
6 i
11 .
Podaj najmniejszą możliwą wartość a .
Odpowiedź:
a_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość
a .
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=6 ,
CD=\frac{19}{4} i
|AD|=6 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Podstawa trójkąta równoramiennego ma długość
6 , a punkt
przecięcia się środkowych tego trójkąta znajduje się w odległości
\frac{4}{3} od tej podstawy.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Rozwiąż