Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
16 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 1+\sqrt{2} , -1+\sqrt{2} , 2\sqrt{2}
T/N : 4 , 5 , 6
T/N : \sqrt{10} , \sqrt{6} , \sqrt{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinek
AB o długości
30 jest
równoległy do odcinka
CD , przy czym:
|PA|=10 i
|AC|=20 :
Oblicz długość odcinka CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
45
i
6 . Najdłuższy bok trójkąta
T_2 ma długość
4 .
Oblicz długość najdłuższego boku trójkąta T_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 30/32 [93%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
« Dane są punkty
A=(-11,10) i
B=(-6,5) .
Na odcinku
AB wyznacz taki punkt
P ,
aby
\overrightarrow{AP}=\overrightarrow{PB} . Wyznacz współrzędne punktu
P .
Podaj x_P .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-20777 ⋅ Poprawnie: 145/401 [36%]
Rozwiąż
Podpunkt 6.1 (0.25 pkt)
« Punkty
A=(-1,8) ,
B=(3,11) i
C=(4,14)
są trzema kolejnymi wierzchołkami równoległoboku
ABCD (odwrotnie do wskazówek zegara).
Wyznacz współrzedne punktu
S=(x_S, y_S) ,
w którym przecinają się przekątne tego równoległoboku.
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
Odpowiedź:
y_S=
(wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trójkąt
ABC ma obwód równy
33 .
Trójkąt
A_1B_1C_1 jest podobny do trójkąta
ABC w skali
4 aj ego dwa boki mają długość:
|A_1B_1|=64 i
|A_1C_1|=56 .
Jaką długość ma najkrótszy bok trójkąta ABC ?
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Jaką długość ma najdłuższy bok trójkąta
ABC ?
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
x=42 i
y=\frac{95}{4} :
Długość tego okręgu jest równa p\cdot \pi .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
96 i ramieniu długości
80 , jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
4 , a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
2\sqrt{3} .
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż