Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 281/479 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
16 i
33 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB , przy czym
|AB|=\frac{9}{2} i
|BE|:|EC|=4 :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%]
Rozwiąż
Podpunkt 4.1 (0.5 pkt)
W trapezie podstawy mają długość
9 i
16 , a wysokość ma długość
12 .
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10327 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dane są wektory:
\vec{a}=[0,-2] i
\vec{b}=[-3,0] .
Wektor
\vec{p}=[p_x, p_y] spełnia równanie
\frac{1}{2}\vec{b}=-\frac{1}{2}\vec{a}-2\vec{p} .
Podaj liczby p_x i p_y .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20200 ⋅ Poprawnie: 60/116 [51%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD jest kwadratem, a zielone trójkąty
są równoboczne:
Podaj miarę najmniejszego kąta między czerwonymi odcinkami.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20235 ⋅ Poprawnie: 129/233 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Korzystając z danych na rysunku oraz wiedząc, że
a=16
i
b=6 , oblicz długość zielonego odcinka:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 230/404 [56%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie równoramiennym
AC oraz
BC są ramionami oraz.
|AC|=\sqrt{22} ,
|BC|=\sqrt{22} i
|AB|=8 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 106/210 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=18 ,
CD=\frac{57}{4} i
|AD|=14 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 100/201 [49%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wysokości trójkąta prostokątnego mają długości
\frac{12}{5} ,
4 i
3 . Wyznacz długości odcinków, na jakie wysokość
opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.
Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż