Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11566  
Podpunkt 1.1 (1 pkt)
 Kąt zewnętrzny wielokąta foremnego ma miarę 36^{\circ}.

Ile przekątnych ma ten wielokąt?

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10583  
Podpunkt 2.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 7+2\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10594  
Podpunkt 3.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=\frac{9}{2} i |BE|:|EC|=3:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10589  
Podpunkt 4.1 (1 pkt)
«« Pięciokąt ABCDE jest foremny.

Który z trójkątów nie jest podobny do trójkąta ABD:

Odpowiedzi:
A. EDB B. ABI
C. BGI D. ABG
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10791  
Podpunkt 5.1 (1 pkt)
 Punkt S=\left(\frac{3}{2},\frac{5}{2}\right) jest środkiem odcinka AB, przy czym A=(8,2), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20200  
Podpunkt 6.1 (2 pkt)
Czworokąt ABCD jest kwadratem, a zielone trójkąty są równoboczne:

Podaj miarę najmniejszego kąta między czerwonymi odcinkami.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20788  
Podpunkt 7.1 (2 pkt)
 » W trójkącie ABC kąt przy wierzchołku A jest prosty. Wysokość tego trojkąta opuszczona z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki BD i DC, których stosunek długości jest większy od 1.

Oblicz |BD|:|DC|.

Dane
|AB|:|AC|=5:4=1.25000000000000
Odpowiedź:
|BD|:|DC|=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20027  
Podpunkt 8.1 (2 pkt)
 Przeciwprostokątna trójkąta prostokątnego ma długość c, a jedna z przyprostokątnych jest o d dłuższa od drugiej.

Oblicz obwód tego trójkąta.

Dane
c=365
d=337
Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20252  
Podpunkt 9.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=7, |DB|=105 i |BC|=137:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20234  
Podpunkt 10.1 (1 pkt)
 « Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie środkowe o długościach 10 i 12.

Podaj długość krótszej z przyprostokątnych tego trójkąta.

Odpowiedź:
min= (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm