Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych jest równa 29 boków.

Ile boków ma wielokąt o mniejszej liczbie boków?

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{3}, jest:
Odpowiedzi:
A. jest rozwartokątny B. jest ostrokątny
C. nie istnieje D. jest prostokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{7}{2} i |BC|=8:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 55. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 74^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Trzy liczby x+12, -6-x i 4x+52 są długościami boków trójkąta, gdy liczba liczba x należy do przedziału (p,q).

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20246 ⋅ Poprawnie: 80/121 [66%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Odcinki AD i BE przecinają się w punkcie C. W trójkątach ABC i CDE zachodzą związki: |\sphericalangle CAB|=|\sphericalangle CED|, |AC|=5, |BC|=3, |CE|=10, jak na rysunku.

Oblicz długość boku CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Obwód trójkąta prostokątnego ma długość 3, a stosunek długość przyprostokątnych tego trójkąta jest równy 3:4.

Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości 28 i ramieniu długości 50, jest prostokątem:

Oblicz jego obwód.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/246 [31%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dane są długości boków trójkąta 13, 20 i 21. Zbadaj, czy trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.

Jeśli trójkąt jest prostokątny wpisz 1, jeśli ostrokątny wpisz 2, jeśli rozwartokątny wpisz 3.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm