Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W n kącie liczba przekątnych jest 9 razy większa od liczby jego boków.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 1+\sqrt{2}, -1+\sqrt{2}, 2\sqrt{2} T/N : 2, 1, \sqrt{5}
T/N : \sqrt{10}, \sqrt{6}, \sqrt{5}  
Zadanie 3.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinek AB o długości 15 jest równoległy do odcinka CD, przy czym: |PA|=9 i |AC|=12:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{2}, przy czym: P_{\triangle MCE}=2 i P_{\triangle NFB}=5:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=\left(-\frac{3}{2},-\frac{9}{2}\right) jest środkiem odcinka AB, przy czym A=(-8,-3), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Trzy liczby x, +6-x i 4x+4 są długościami boków trójkąta, gdy liczba liczba x należy do przedziału (p,q).

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  3 pkt ⋅ Numer: pr-21198 ⋅ Poprawnie: 2/10 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dany jest trójkąt równoramienny ABC, w którym |AC|=|AB|=14, a punkt D jest środkiem podstawy AB. Okrąg o środku D jest styczny do prostej AC w punkcie M. Punkt K leży na boku AC, punkt L leży na boku BC, odcinek KL jest styczny do rozważanego okręgu oraz |KC|=|LC|=2 (zobacz rysunek).

Oblicz |KL|.

Odpowiedź:
|KL|=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
 Oblicz \frac{|AM|}{|MC|}.
Odpowiedź:
|AM|:|MC|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość 6, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 1.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=1, |DB|=77 i |BC|=85:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm