Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Proste k i l są równoległe.

Podaj miarę stopniową kąta \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 7+2\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=1, |BP|=\frac{1}{3}, |CP|=1, |DP|=3, |AB|=\frac{9}{4}:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle CAM|=|\sphericalangle ACN| B. |\sphericalangle BAM|=|\sphericalangle BCN|
C. |\sphericalangle BAM|=|\sphericalangle ASN| D. |\sphericalangle BSN|=|\sphericalangle CAM|
Zadanie 5.  1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=\left(\frac{1}{2},-\frac{9}{2}\right) jest środkiem odcinka AB, przy czym A=(2,-7), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty A=(x_A, y_A) i B=(x_B, y_B) są końcami odcinka, do którego należy punkt P=(x_P, y_P) taki, że |PB|:|AP|=1:3.

Podaj x_P.

Dane
x_A=4
y_A=-11
x_B=-2
y_B=1
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20788 ⋅ Poprawnie: 35/86 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W trójkącie ABC kąt przy wierzchołku A jest prosty i zachodzi warunek |AB|:|AC|=\frac{5}{4}. Wysokość tego trojkąta opuszczona z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki BD i DC, których stosunek długości jest większy od 1.

Oblicz |BD|:|DC|.

Odpowiedź:
|BD|:|DC|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Boki trójkąta prostokątnego mają długości: a, 6 i 14.

Podaj najmniejszą możliwą wartość a.

Odpowiedź:
a_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą możliwą wartość a.
Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=15, CD=\frac{47}{4} i |AD|=13:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Jedna z przyprostokątnych trójkąta prostokątnego ma długość 16, a wysokość opuszczona na przeciwprostokątną tego trójkata długość 8\sqrt{3}.

Oblicz długość drugiej przyprostokątnej tego trójkąta.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm