Punkt S=\left(\frac{13}{2},\frac{31}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-6,-5]. Wyznacz współrzędne punktu A.
Podaj x_A.
Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pr-20573 ⋅ Poprawnie: 0/0
Dane sa wektory:
\vec{a}=[a_x, a_y],
\vec{b}=[b_x, b_y] i
\vec{c}=[c_x, c_y].
Wyznacz liczby rzeczywiste i p i
q takie, że
p\cdot\vec{a}+q\cdot\vec{b}=\vec{c}.
Podaj p.
Dane
a_x=5 a_y=-1 b_x=-4 b_y=1 c_x=-3 c_y=-2
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20248 ⋅ Poprawnie: 85/131 [64%]
» Do jednego z ramion kąta o wierzchołku O
należą punkty A i B, a do
drugiego ramienia kąta punkty C i
D. Wiadomo, że
AC\parallel BD oraz |AO|=5,
|AC|=8 i |BD|=9.
Wyznacz długość odcinka AB.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=50 i |AB|=60.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=105. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/245 [31%]