Z punktu leżącego na zewnątrz kąta ABC o mierze
68^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow}.
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Punkty P=(x_p, y_p),
Q=(x_q, y_q) i
R=(x_r, y_r) są środkami boków odpowiednio
AB, BC i
AC trójkąta ABC.
Wierzchołek C tego trójkąta ma współrzędne
C=(x_c, y_c).
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=90 i |AB|=108.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=189. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/183 [27%]