« Punkty A=(-2,8),
B=(2,11) i C=(3,14)
są trzema kolejnymi wierzchołkami równoległoboku
ABCD (odwrotnie do wskazówek zegara).
Wyznacz współrzedne punktu S=(x_S, y_S),
w którym przecinają się przekątne tego równoległoboku.
Podaj x_S.
Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
Podaj y_S.
Odpowiedź:
y_S=(wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
Oblicz |BD|.
Odpowiedź:
|BD|=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20872 ⋅ Poprawnie: 15/31 [48%]
Przekątne trapezu ABCD przecinają się w punkcie
S, przez który poprowadzoną prostą prostopadłą do obu podstaw trapezu.
Prosta ta przecięła krótszą podstawę CD w punkcie E,
a podstawę dłuższą AB w punkcie F tak, że
|EF|=21, |SE|=7 i
|EC|=10.
Oblicz długość przekątnej AC tego trapezu.
Odpowiedź:
|AC|=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{15}{2},
|AB|=12,
|AD|=6 i
|BC|=\frac{9}{2}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 100/201 [49%]
» Wysokości trójkąta prostokątnego mają długości
\frac{48}{5}, 16 i
12. Wyznacz długości odcinków, na jakie wysokość
opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.
Podaj długość krótszego z tych odcinków.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat