Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
29 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
20 i
41 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 325/461 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{1}{4} i
|CE|=\frac{7}{6} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3) . Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u} .
Zatem:
Odpowiedzi:
A. A=(11,-18)
B. A=(18,14)
C. A=(15,-25)
D. A=(-7,12)
Zadanie 6. 2 pkt ⋅ Numer: pp-20780 ⋅ Poprawnie: 70/218 [32%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(7,-2) ,
B=(-2,-3)
i
C=(2,-7) . Oblicz długości boków tego trójkąta.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20867 ⋅ Poprawnie: 39/60 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Obwód trójkąta prostokątnego jest równy
5 cm.
Spodek najkrótszej wysokości dzieli przeciwprostokątną na dwa odcinki w stosunku
9:16 .
Podaj długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
6 , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
1 .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{15}{2} ,
|AB|=12 ,
|AD|=6 i
|BC|=\frac{9}{2} .
Ramiona trapezu przedłużono
do przecięcia w punkcie
O .
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O , a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/182 [28%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie
środkowe o długościach
5 i
8 .
Podaj długość krótszej z przyprostokątnych tego trójkąta.
Odpowiedź:
min=
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Rozwiąż