Podgląd testu : lo2@sp-08-planimetria-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/1 [0%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
16 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
|
T/N : 4, 5, 6
|
T/N : \sqrt{10}, \sqrt{6}, \sqrt{5}
|
|
T/N : 2, 1, \sqrt{5}
|
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Odcinek
AB o długości
20 jest
równoległy do odcinka
CD, przy czym:
|PA|=10 i
|AC|=13:
Oblicz długość odcinka CD.
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{13},
3\sqrt{13} i
4\sqrt{13} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{4\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
|
B. \frac{4\sqrt{13}}{5},\frac{6\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
|
|
C. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
|
D. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
48^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 3 pkt ⋅ Numer: pr-20832 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Punkty
P=(x_P, y_P),
Q=(x_Q, y_Q)
oraz
R=(x_R, y_R) sa środkami boków trójkąta o
bokach odpowiednio
AB,
BC
i
AC.
Podaj sumę obu współrzędnych wierzchołka A tego
trójkąta.
Dane
x_P=-5
y_P=2
x_Q=-4
y_Q=5
x_R=-9
y_R=3
Odpowiedź:
x_A+y_A=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.
Podaj x_S.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20235 ⋅ Poprawnie: 129/233 [55%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Korzystając z danych na rysunku oraz wiedząc, że
a=11
i
b=8, oblicz długość zielonego odcinka:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
3, a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
1.
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=6,
|DB|=144 i
|BC|=145:
Wyznacz długości odcinków CF i
FB. Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Punkt
E dzieli bok
AB trójkąta
ABC w stosunku
|AE|:|EB|=p. Odcinek
CE
przecina środkową tego trójkąta
AF w punkcie
S.
Oblicz \frac{|SE|}{|CS|}.
Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie
z twierdzenia Talesa
Dane
p=\frac{2}{5}=0.40000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)