Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
10+6\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinek
AB o długości
17 jest
równoległy do odcinka
CD , przy czym:
|PA|=9 i
|AC|=27 :
Oblicz długość odcinka CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
198
i
36 . Najdłuższy bok trójkąta
T_2 ma długość
26 .
Oblicz długość najdłuższego boku trójkąta T_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 30/32 [93%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
« Dane są punkty
A=(-2,1) i
B=(3,-4) .
Na odcinku
AB wyznacz taki punkt
P ,
aby
\overrightarrow{AP}=\overrightarrow{PB} . Wyznacz współrzędne punktu
P .
Podaj x_P .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20831 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dane są punkty:
A=(1, -1) ,
B=(4,-2) i
C=(x_C,y_C) .
Wyznacz taki punkt
D=(x_D, y_D) , aby zachodziła równość
2\cdot\overrightarrow{AB}-3\cdot\overrightarrow{CD}=\overrightarrow{AC}
.
Podaj x_D .
Dane
x_C=1
y_C=-1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20867 ⋅ Poprawnie: 39/60 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Obwód trójkąta prostokątnego jest równy
10 cm.
Spodek najkrótszej wysokości dzieli przeciwprostokątną na dwa odcinki w stosunku
9:16 .
Podaj długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 231/405 [57%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie równoramiennym
AC oraz
BC są ramionami oraz.
|AC|=\sqrt{37} ,
|BC|=\sqrt{37} i
|AB|=4\sqrt{7} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=10 ,
|DB|=140 i
|BC|=149 :
Wyznacz długości odcinków CF i
FB . Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/183 [27%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie
środkowe o długościach
13 i
10 .
Podaj długość krótszej z przyprostokątnych tego trójkąta.
Odpowiedź:
min=
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Rozwiąż