Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 368/443 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
40 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
26 i
53 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 325/461 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{13}{12} i
|CE|=\frac{3}{2} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka
x :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10327 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dane są wektory:
\vec{a}=[4,1] i
\vec{b}=[3,2] .
Wektor
\vec{p}=[p_x, p_y] spełnia równanie
\frac{1}{2}\vec{b}=-\frac{1}{2}\vec{a}-2\vec{p} .
Podaj liczby p_x i p_y .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20574 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
P=(x_p, y_p) ,
Q=(x_q, y_q) i
R=(x_r, y_r) są środkami boków odpowiednio
AB ,
BC i
AC trójkąta
ABC .
Wierzchołek
C tego trójkąta ma współrzędne
C=(x_c, y_c) .
Podaj y_c .
Dane
x_p=11=11.0000000000
y_p=\frac{25}{4}=6.25000000000000
x_q=\frac{45}{4}=11.25000000000000
y_q=9=9.0000000000
x_r=\frac{53}{4}=13.25000000000000
y_r=\frac{51}{4}=12.75000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Punkt
S=(x_s, y_s) jest środkiem ciężkości
tego trójkąta.
Podaj x_s .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
|AC|=41
|BC|=41
|AB|=18
W trójkącie równoramiennym
ABC dane są długości boków
|AB|=18 ,
|AC|=41 i
|BC|=41 .
Oblicz odległość środka wysokości CD tego trójkąta
od jego ramienia.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku
35:12 , a obwód tego trójkąta ma długość
1008 .
Wyznacz długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=8 ,
|DB|=176 i
|BC|=185 :
Wyznacz długości odcinków CF i
FB . Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 104/224 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
22 , a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
11\sqrt{3} .
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż