Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt zewnętrzny wielokąta foremnego ma miarę 36^{\circ}.

Ile przekątnych ma ten wielokąt?

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 24 i 49. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{1}{6}, |DC|=\frac{2}{3} i |AB|=\frac{3}{4}:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle BAM|=|\sphericalangle ASN| B. |\sphericalangle CAM|=|\sphericalangle ACN|
C. |\sphericalangle BAM|=|\sphericalangle BCN| D. |\sphericalangle BSN|=|\sphericalangle CAM|
Zadanie 5.  1 pkt ⋅ Numer: pr-10327 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są wektory: \vec{a}=[3,4] i \vec{b}=[0,-4]. Wektor \vec{p}=[p_x, p_y] spełnia równanie \frac{1}{2}\vec{b}=-\frac{1}{2}\vec{a}-2\vec{p}.

Podaj liczby p_x i p_y.

Odpowiedzi:
p_x= (dwie liczby całkowite)

p_y= (dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Trzy liczby x+14, -8-x i 4x+60 są długościami boków trójkąta, gdy liczba liczba x należy do przedziału (p,q).

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20249 ⋅ Poprawnie: 40/141 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Na ramieniu kąta ostrego o wierzchołku A zaznaczono odcinki AB i BC, na drugim ramieniu odcinki AD i DE. Odcinki mają długości: |AB|=10, |BC|=12, |AD|=11 i |DE|=9. Wyznacz skalę podobieństwa trójkątów ACD i ABE.

Podaj skalę k\in(0,1].

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 21:20, a obwód tego trójkąta ma długość 560.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W trapezie dane są długości podstaw i ramion: |CD|=\frac{35}{4}, |AB|=14, |AD|=7 i |BC|=\frac{21}{4}. Ramiona trapezu przedłużono do przecięcia w punkcie O.

Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt O, a dwa pozostałe są końcami dłuższej podstawy trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W trójkącie prostokątnym najkrótszy bok ma długość 4, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 1.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz odległość punktu przecięcia się środkowych tego trójkąta od wierzchołka kąta prostego.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm