«« W prostokącie ABCD punkt M należy do boku
CD i jest tak położony, że AM\perp BD.
Przekątna BD przecina odcinek AM
w punkcie N oraz |AN|=24 i
|NM|=6.
Oblicz długość przekątnej AC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Oblicz obwód tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=50 i |AB|=60.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=105. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%]