Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne
trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są
dwa dowolne z tych punktów jest równa 378.
Wynacz liczbę n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
« Punkty A=(-9,1),
B=(-5,4) i C=(-4,7)
są trzema kolejnymi wierzchołkami równoległoboku
ABCD (odwrotnie do wskazówek zegara).
Wyznacz współrzedne punktu S=(x_S, y_S),
w którym przecinają się przekątne tego równoległoboku.
Podaj x_S.
Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
Podaj y_S.
Odpowiedź:
y_S=(wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
Oblicz |BD|.
Odpowiedź:
|BD|=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%]
W trójkącie ABC poprowadzono trzy proste równoległe do podstawy
AB, które podzieliły bok BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
20 większa od długości jego podstawy AB.
Oblicz |AB|.
Odpowiedź:
|AB|=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%]