Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 374/475 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 7380^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 16, 20, 24 T/N : 8, 4, 4\sqrt{5}
T/N : 8, 12, 16  
Zadanie 3.  1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{5}{6}, |DC|=\frac{3}{4} i |DE|=\frac{3}{4}:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 329/432 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{23}, 3\sqrt{23} i 4\sqrt{23} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{4\sqrt{23}}{5},\frac{6\sqrt{23}}{5},\frac{12\sqrt{23}}{5} B. \frac{4\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{8\sqrt{23}}{5}
C. \frac{6\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{12\sqrt{23}}{5} D. \frac{6\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{8\sqrt{23}}{5}
Zadanie 5.  1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(4,-5) jest środkiem odcinka AB takiego, że punkt A=(x_A, y_A) należy do osi Oy, a punkt B=(x_B, y_B) należy do osi Ox.

Wyznacz współrzędne y_A i x_B.

Odpowiedzi:
y_A= (wpisz liczbę całkowitą)
x_B= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty A=(x_A, y_A) i B=(x_B, y_B) są końcami odcinka, do którego należy punkt P=(x_P, y_P) taki, że |PB|:|AP|=1:3.

Podaj x_P.

Dane
x_A=6
y_A=0
x_B=0
y_B=12
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20025 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wysokość prostokąta wpisanego w trójkąt o podstawie długości 6 ma długość h:

Oblicz pole powierzchni tego prostokąta.

Dane
h=3.50
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz obwód tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 60:11, a obwód tego trójkąta ma długość 792.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 32/49 [65%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 34 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/182 [28%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie środkowe o długościach 5 i 8.

Podaj długość krótszej z przyprostokątnych tego trójkąta.

Odpowiedź:
min= (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm