Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
9 razy większa
od liczby jego boków.
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 1+\sqrt{2} , -1+\sqrt{2} , 2\sqrt{2}
T/N : 2 , 1 , \sqrt{5}
T/N : \sqrt{10} , \sqrt{6} , \sqrt{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinek
AB o długości
15 jest
równoległy do odcinka
CD , przy czym:
|PA|=9 i
|AC|=12 :
Oblicz długość odcinka CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{2} , przy czym:
P_{\triangle MCE}=2 i
P_{\triangle NFB}=5 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=\left(-\frac{3}{2},-\frac{9}{2}\right) jest środkiem odcinka
AB , przy czym
A=(-8,-3) ,
a punkt
B ma współrzędne
(x_B, y_B) .
Wyznacz współrzędne punktu B .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Trzy liczby
x ,
+6-x i
4x+4 są długościami boków trójkąta, gdy liczba liczba
x należy do przedziału
(p,q) .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 3 pkt ⋅ Numer: pr-21198 ⋅ Poprawnie: 2/10 [20%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dany jest trójkąt równoramienny
ABC , w którym
|AC|=|AB|=14 , a punkt
D jest środkiem podstawy
AB . Okrąg o środku
D jest styczny do prostej
AC w punkcie
M . Punkt
K
leży na boku
AC , punkt
L leży na boku
BC , odcinek
KL jest styczny do rozważanego okręgu
oraz
|KC|=|LC|=2 (zobacz rysunek).
Oblicz |KL| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
Oblicz
\frac{|AM|}{|MC|} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
6 , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
1 .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=1 ,
|DB|=77 i
|BC|=85 :
Wyznacz długości odcinków CF i
FB . Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:
Podaj miarę stopniową najmniejszego kąta tego trójkąta.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż