Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
31 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2+\sqrt{3} , jest:
Odpowiedzi:
A. nie istnieje
B. jest prostokątny
C. jest ostrokątny
D. jest rozwartokątny
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{11}{12} ,
|DC|=\frac{1}{4} i
|AB|=\frac{1}{6} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{6} , przy czym:
P_{\triangle MCE}=4 i
P_{\triangle NFB}=5 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3) . Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u} .
Zatem:
Odpowiedzi:
A. A=(18,14)
B. A=(11,-18)
C. A=(-7,12)
D. A=(15,-25)
Zadanie 6. 2 pkt ⋅ Numer: pp-20780 ⋅ Poprawnie: 70/218 [32%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(8,6) ,
B=(-1,5)
i
C=(3,1) . Oblicz długości boków tego trójkąta.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20249 ⋅ Poprawnie: 40/141 [28%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Na ramieniu kąta ostrego o wierzchołku
A zaznaczono
odcinki
AB i
BC , na
drugim ramieniu odcinki
AD i
DE . Odcinki mają długości:
|AB|=8 ,
|BC|=\frac{32}{5} ,
|AD|=9 i
|DE|=\frac{19}{5} .
Wyznacz skalę podobieństwa trójkątów
ACD i
ABE .
Podaj skalę k\in(0,1] .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku
7:24 , a obwód tego trójkąta ma długość
224 .
Wyznacz długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
6 i ramieniu długości
5 , jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
20 , a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
10\sqrt{3} .
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż