Podgląd testu : lo2@sp-08-planimetria-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
27 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
|
T/N : 12, 15, 18
|
T/N : 3\sqrt{10}, 3\sqrt{6}, 3\sqrt{5}
|
|
T/N : 3+3\sqrt{2}, -3+3\sqrt{2}, 6\sqrt{2}
|
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{4} i
|AB|=\frac{5}{6}:
Oblicz x.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/249 [44%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
W trójkącie równoramiennym
ABC o wysokościach
CD i
AE podstawa
AB ma długość
40,
a odcinek
BE ma długość
\frac{200}{13}.
Oblicz długość odcinka AC.
Odpowiedź:
|AC|=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10327 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dane są wektory:
\vec{a}=[0,3] i
\vec{b}=[-3,2].
Wektor
\vec{p}=[p_x, p_y] spełnia równanie
\frac{1}{2}\vec{b}=-\frac{1}{2}\vec{a}-2\vec{p}.
Podaj liczby p_x i p_y.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20780 ⋅ Poprawnie: 70/218 [32%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(0,5),
B=(-9,4)
i
C=(-5,0). Oblicz długości boków tego trójkąta.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20235 ⋅ Poprawnie: 129/233 [55%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Korzystając z danych na rysunku oraz wiedząc, że
a=17
i
b=12, oblicz długość zielonego odcinka:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
\frac{11}{2}, a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
\frac{1}{2}.
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=5,
|AB|=8,
|AD|=4 i
|BC|=3.
Ramiona trapezu przedłużono
do przecięcia w punkcie
O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:
Podaj miarę stopniową najmniejszego kąta tego trójkąta.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max=
(wpisz liczbę całkowitą)