Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10375 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na płaszczyźnie zaznaczono
n punktów w taki sposób, że żadne
trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są
dwa dowolne z tych punktów jest równa
903 .
Wynacz liczbę n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 16 , 20 , 24
T/N : 8 , 4 , 4\sqrt{5}
T/N : 4\sqrt{10} , 4\sqrt{6} , 4\sqrt{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=1 ,
|DC|=\frac{5}{6} i
|DE|=\frac{1}{3} :
Oblicz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{23} ,
3\sqrt{23} i
4\sqrt{23} jest podobny do trójkąta
T_2 . Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
A. \frac{6\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{12\sqrt{23}}{5}
B. \frac{6\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{8\sqrt{23}}{5}
C. \frac{4\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{8\sqrt{23}}{5}
D. \frac{4\sqrt{23}}{5},\frac{6\sqrt{23}}{5},\frac{12\sqrt{23}}{5}
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3) . Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u} .
Zatem:
Odpowiedzi:
A. A=(-7,12)
B. A=(11,-18)
C. A=(18,14)
D. A=(15,-25)
Zadanie 6. 3 pkt ⋅ Numer: pr-20832 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
P=(x_P, y_P) ,
Q=(x_Q, y_Q)
oraz
R=(x_R, y_R) sa środkami boków trójkąta o
bokach odpowiednio
AB ,
BC
i
AC .
Podaj sumę obu współrzędnych wierzchołka A tego
trójkąta.
Dane
x_P=7
y_P=8
x_Q=8
y_Q=11
x_R=3
y_R=9
Odpowiedź:
x_A+y_A=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20235 ⋅ Poprawnie: 129/233 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Korzystając z danych na rysunku oraz wiedząc, że
a=27
i
b=12 , oblicz długość zielonego odcinka:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 231/405 [57%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie równoramiennym
AC oraz
BC są ramionami oraz.
|AC|=\sqrt{41} ,
|BC|=\sqrt{41} i
|AB|=4\sqrt{7} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
(2 pkt)
W trójkącie równoramiennym
ABC dane są długości boków:
|AC|=|BC|=90 i
|AB|=108 .
Na przedłużeniu boku
AB zaznaczono taki punkt
D ,
że
|DB|=189 . Przez punkt
A
poprowadzono prostą równoległą do boku
BC , która przecięła odcinek
DC w punkcie
E (zobacz rysunek):
Oblicz |DE| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
W trójkącie równoramiennym
ABC podstawa
AB
ma długość
30 , a wysokość
CD ma
taką samą długośc jak odcinek łączący punkt
D ze środkiem boku
BC .
Oblicz długość wysokości CD .
Odpowiedź:
Rozwiąż