Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 374/475 [78%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma miar kątów
n kąta jest równa
7380^{\circ} .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 16 , 20 , 24
T/N : 8 , 4 , 4\sqrt{5}
T/N : 8 , 12 , 16
Zadanie 3. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{5}{6} ,
|DC|=\frac{3}{4} i
|DE|=\frac{3}{4} :
Oblicz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 329/432 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{23} ,
3\sqrt{23} i
4\sqrt{23} jest podobny do trójkąta
T_2 . Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
A. \frac{4\sqrt{23}}{5},\frac{6\sqrt{23}}{5},\frac{12\sqrt{23}}{5}
B. \frac{4\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{8\sqrt{23}}{5}
C. \frac{6\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{12\sqrt{23}}{5}
D. \frac{6\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{8\sqrt{23}}{5}
Zadanie 5. 1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(4,-5) jest środkiem odcinka
AB takiego, że punkt
A=(x_A, y_A)
należy do osi
Oy , a punkt
B=(x_B, y_B)
należy do osi
Ox .
Wyznacz współrzędne y_A i x_B .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
A=(x_A, y_A) i
B=(x_B, y_B)
są końcami odcinka, do którego należy punkt
P=(x_P, y_P)
taki, że
|PB|:|AP|=1:3 .
Podaj x_P .
Dane
x_A=6
y_A=0
x_B=0
y_B=12
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20025 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Wysokość prostokąta wpisanego w trójkąt o podstawie długości
6 ma długość
h :
Oblicz pole powierzchni tego prostokąta.
Dane
h=3.50
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Oblicz obwód tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku
60:11 , a obwód tego trójkąta ma długość
792 .
Wyznacz długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 32/49 [65%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W trójkącie
ABC poprowadzono trzy proste równoległe do podstawy
AB , które podzieliły bok
BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
34 większa od długości jego podstawy
AB .
Oblicz |AB| .
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/182 [28%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie
środkowe o długościach
5 i
8 .
Podaj długość krótszej z przyprostokątnych tego trójkąta.
Odpowiedź:
min=
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Rozwiąż