Podgląd testu : lo2@sp-08-planimetria-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 281/479 [58%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
24 i
49. Trzeci bok tego trójkąta należy do przedziału
(a,b).
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{11}{12},
|DC|=\frac{5}{12} i
|AB|=\frac{5}{12}:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
11\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3.
Oblicz obwód prostokąta ABCD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3). Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u}.
Zatem:
Odpowiedzi:
|
A. A=(-7,12)
|
B. A=(11,-18)
|
|
C. A=(15,-25)
|
D. A=(18,14)
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20877 ⋅ Poprawnie: 15/24 [62%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Trzy liczby
2x-3,
x+2 i
4x-17 są długościami boków trójkąta równoramiennego.
Wyznacz najmniejszy możliwy L_{min} i największy możliwy
L_{max} obwód tego trójkąta.
Odpowiedzi:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20235 ⋅ Poprawnie: 129/233 [55%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Korzystając z danych na rysunku oraz wiedząc, że
a=25
i
b=6, oblicz długość zielonego odcinka:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{6}:
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0, jeśli ostry wpisz 1,
jeśli rozwarty wpisz 2.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=6,
|DB|=132 i
|BC|=157:
Wyznacz długości odcinków CF i
FB. Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/182 [28%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie
środkowe o długościach
10 i
12.
Podaj długość krótszej z przyprostokątnych tego trójkąta.
Odpowiedź:
min=
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)