Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10481  
Podpunkt 1.1 (1 pkt)
 Obwód wielokąta jest równy 108. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 97 i 99.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11462  
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{2}, jest:
Odpowiedzi:
A. nie istnieje B. jest ostrokątny
C. jest rozwartokątny D. jest prostokątny
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10594  
Podpunkt 3.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=\frac{9}{2} i |BE|:|EC|=3:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10592  
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka x:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11604  
Podpunkt 5.1 (0.5 pkt)
 « Dane są punkty A=(-1,0) i B=(4,-5). Na odcinku AB wyznacz taki punkt P, aby \overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu P.

Podaj x_P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20239  
Podpunkt 6.1 (1 pkt)
 » Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, których miary różnią się o \alpha.

Oblicz miarę najmniejszego kąta tego trójkąta.

Dane
\alpha=30^{\circ}
Odpowiedź:
\beta_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
\beta_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20248  
Podpunkt 7.1 (2 pkt)
 » Do jednego z ramion kąta o wierzchołku O należą punkty A i B, a do drugiego ramienia kąta punkty C i D. Wiadomo, że AC\parallel BD oraz |AO|=7, |AC|=3 i |BD|=5.

Wyznacz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20714  
Podpunkt 8.1 (2 pkt)
 « Czworokąt na rysunku jest prostokątem, w którym |DP|:|PC|=\frac{1}{5}: Oceń, czy kąt \alpha jest prosty, ostry czy rozwarty:

Jeśli kąt \alpha jest prosty wpisz 0, jeśli ostry wpisz 1, jeśli rozwarty wpisz 2.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20863  
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=70 i |AB|=84. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=147. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20240  
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm