Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne
trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są
dwa dowolne z tych punktów jest równa 946.
Wynacz liczbę n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/349 [55%]
« Punkty A=(-5,1),
B=(-1,4) i C=(0,7)
są trzema kolejnymi wierzchołkami równoległoboku
ABCD (odwrotnie do wskazówek zegara).
Wyznacz współrzedne punktu S=(x_S, y_S),
w którym przecinają się przekątne tego równoległoboku.
Podaj x_S.
Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
Podaj y_S.
Odpowiedź:
y_S=(wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
Oblicz |BD|.
Odpowiedź:
|BD|=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20869 ⋅ Poprawnie: 42/89 [47%]
Boki trójkąta rozwartokątnego ABC mają długości:
|AB|=17, |BC|=10 i
|AC|=9. Na boku AB zaznaczono
punkt D w taki sposób, że
|\sphericalangle CDB|=|\sphericalangle ACB|.
Oblicz długość odcinka CD.
Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Oblicz długość odcinka DB.
Odpowiedź:
|BD|=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%]