Punkt S=\left(\frac{3}{2},\frac{7}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[3,-2]. Wyznacz współrzędne punktu A.
Podaj x_A.
Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pr-20831 ⋅ Poprawnie: 1/1 [100%]
Dane są punkty: A=(1, -1),
B=(4,-2) i C=(x_C,y_C).
Wyznacz taki punkt D=(x_D, y_D), aby zachodziła równość
2\cdot\overrightarrow{AB}-3\cdot\overrightarrow{CD}=\overrightarrow{AC}
.
Podaj x_D.
Dane
x_C=-5 y_C=2
Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20725 ⋅ Poprawnie: 33/241 [13%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=80 i |AB|=96.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=168. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/183 [27%]