Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych jest równa 34 boków.

Ile boków ma wielokąt o mniejszej liczbie boków?

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 26 i 53. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{15}{2} i |BC|=13:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle BSN|=|\sphericalangle CAM| B. |\sphericalangle BAM|=|\sphericalangle ASN|
C. |\sphericalangle CAM|=|\sphericalangle ACN| D. |\sphericalangle BAM|=|\sphericalangle BCN|
Zadanie 5.  1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Punkty o współrzędnych A=(7,1), B=(8,-7) i C=(-2,3) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20780 ⋅ Poprawnie: 70/218 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(3,7), B=(-6,6) i C=(-2,2). Oblicz długości boków tego trójkąta.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 66/253 [26%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Zielony czworokąt na rysunku jest kwadratem oraz |AC|=20 i |BC|=29:

Jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Przeciwprostokątna trójkąta prostokątnego ma długość 233, a jedna z przyprostokątnych jest o 103 dłuższa od drugiej.

Oblicz obwód tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości 96 i ramieniu długości 80, jest prostokątem:

Oblicz jego obwód.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 W trójkącie równoramiennym ABC podstawa AB ma długość 30, a wysokość CD ma taką samą długośc jak odcinek łączący punkt D ze środkiem boku BC.

Oblicz długość wysokości CD.

Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm