Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
14 razy większa
od liczby jego boków.
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2+\sqrt{2} , jest:
Odpowiedzi:
A. jest rozwartokątny
B. jest prostokątny
C. jest ostrokątny
D. nie istnieje
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{2}{3} ,
|DC|=\frac{1}{4} i
|AB|=\frac{5}{6} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{5} , przy czym:
P_{\triangle MCE}=1 i
P_{\triangle NFB}=5 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10327 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dane są wektory:
\vec{a}=[1,-3] i
\vec{b}=[2,2] .
Wektor
\vec{p}=[p_x, p_y] spełnia równanie
\frac{1}{2}\vec{b}=-\frac{1}{2}\vec{a}-2\vec{p} .
Podaj liczby p_x i p_y .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(5,-2) ,
B=(-4,-3)
i
C=(0,-7) . Oblicz długości boków tego trójkąta.
Podaj długość boku najkrótszego.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj długość boku najdłuższego.
Odpowiedź:
max=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20025 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Wysokość prostokąta wpisanego w trójkąt o podstawie długości
6 ma długość
h :
Oblicz pole powierzchni tego prostokąta.
Dane
h=2.75
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Oblicz obwód tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Obwód trójkąta prostokątnego ma długość
\frac{35}{2} , a
stosunek długość przyprostokątnych tego trójkąta jest równy
20:21 .
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{25}{4} ,
|AB|=10 ,
|AD|=5 i
|BC|=\frac{15}{4} .
Ramiona trapezu przedłużono
do przecięcia w punkcie
O .
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O , a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 104/224 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
16 , a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
8\sqrt{3} .
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż