Podgląd testu : lo2@sp-08-planimetria-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
7+2\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=1 ,
|BP|=\frac{1}{3} ,
|CP|=1 ,
|DP|=3 ,
|AB|=\frac{9}{4} :
Oblicz długość odcinka CD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC .
Zatem:
Odpowiedzi:
A. |\sphericalangle CAM|=|\sphericalangle ACN|
B. |\sphericalangle BAM|=|\sphericalangle BCN|
C. |\sphericalangle BAM|=|\sphericalangle ASN|
D. |\sphericalangle BSN|=|\sphericalangle CAM|
Zadanie 5. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=\left(\frac{1}{2},-\frac{9}{2}\right) jest środkiem odcinka
AB , przy czym
A=(2,-7) ,
a punkt
B ma współrzędne
(x_B, y_B) .
Wyznacz współrzędne punktu B .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
A=(x_A, y_A) i
B=(x_B, y_B)
są końcami odcinka, do którego należy punkt
P=(x_P, y_P)
taki, że
|PB|:|AP|=1:3 .
Podaj x_P .
Dane
x_A=4
y_A=-11
x_B=-2
y_B=1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20788 ⋅ Poprawnie: 35/86 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» W trójkącie
ABC kąt przy wierzchołku
A jest prosty i zachodzi warunek
|AB|:|AC|=\frac{5}{4} . Wysokość tego trojkąta opuszczona
z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki
BD i
DC , których stosunek
długości jest większy od
1 .
Oblicz |BD|:|DC| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Boki trójkąta prostokątnego mają długości:
a ,
6 i
14 .
Podaj najmniejszą możliwą wartość a .
Odpowiedź:
a_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość
a .
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=15 ,
CD=\frac{47}{4} i
|AD|=13 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
16 , a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
8\sqrt{3} .
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż