Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 374/475 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 6840^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 12, 15, 18 T/N : 3+3\sqrt{2}, -3+3\sqrt{2}, 6\sqrt{2}
T/N : 3\sqrt{10}, 3\sqrt{6}, 3\sqrt{5}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=\frac{7}{6}, |BP|=\frac{1}{4} i |CP|=\frac{35}{9}:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 570/1177 [48%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 (1 pkt) W trójkącie prostokątnym ABC przyprostokątna AC ma długość 2\sqrt{10}, a wysokość AD opuszczona z wierzchołka kąta prostego A ma długość 6:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 75^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20780 ⋅ Poprawnie: 70/218 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(7,-2), B=(-2,-3) i C=(2,-7). Oblicz długości boków tego trójkąta.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Punkt D jest środkiem boku AB oraz |DC|=|CB|=|BE|.

Wiedząc, że |AC|=2 oblicz |DE|.

Odpowiedź:
|DE|= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 61/135 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym x=20 i y=21:

Długość tego okręgu jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 105/209 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=22, CD=3 i |AD|=19:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Podstawa trójkąta równoramiennego ma długość 24, a punkt przecięcia się środkowych tego trójkąta znajduje się w odległości \frac{35}{3} od tej podstawy.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm