Z punktu leżącego na zewnątrz kąta ABC o mierze
37^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow}.
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Dane są punkty: A=(1, -1),
B=(4,-2) i C=(x_C,y_C).
Wyznacz taki punkt D=(x_D, y_D), aby zachodziła równość
2\cdot\overrightarrow{AB}-3\cdot\overrightarrow{CD}=\overrightarrow{AC}
.
Podaj x_D.
Dane
x_C=-8 y_C=-6
Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%]
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{15}{4},
|AB|=6,
|AD|=3 i
|BC|=\frac{9}{4}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 100/201 [49%]
» Wysokości trójkąta prostokątnego mają długości
\frac{12}{5}, 4 i
3. Wyznacz długości odcinków, na jakie wysokość
opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.
Podaj długość krótszego z tych odcinków.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat