Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego dzieli
przeciwprostokątną na dwa odcinki, z których jeden jest o 14 krótszy od tej wysokości,
a drugi o 21 od niej dłuższy.
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość najkrótszej wysokości tego trójkąta.
Odpowiedź:
h=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 1/1 [100%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=20 i |AB|=24.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=42. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/246 [31%]