Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10375 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są dwa dowolne z tych punktów jest równa 351.

Wynacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 14 i 29. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{5}{12}, |DE|=\frac{3}{4} i |AB|=\frac{5}{6}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 329/432 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{13}, 3\sqrt{13} i 4\sqrt{13} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5} B. \frac{4\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
C. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{12\sqrt{13}}{5} D. \frac{4\sqrt{13}}{5},\frac{6\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
Zadanie 5.  1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Punkt S=\left(\frac{5}{2},\frac{33}{2}\right) jest punktem wspólnym odcinka AB i jego symetralnej, przy czym \overrightarrow{BS}=[-2,-5]. Wyznacz współrzędne punktu A.

Podaj x_A.

Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20297 ⋅ Poprawnie: 73/142 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Punkty A=(-1,8) oraz B=(2,4) dzielą odcinek MN na trzy równe części i są położone na odcinku w kolejności M, A, B i N. Wyznacz końce tego odcinka.

Podaj sumę współrzędnych punktu M=(x_M,y_M).

Odpowiedź:
x_M+y_M= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj sumę współrzędnych punktu N=(x_N,y_N).
Odpowiedź:
x_N+y_N= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20870 ⋅ Poprawnie: 30/46 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Podstawa AB trójkąta ostrokątnego ma długość 22 cm, a wysokość opuszczona na tę podstawę ma długość 20 cm. W ten trójkąt wpisano kwadrat tak, że dwa jego wierzchołki należą do jego podstawy AB, a dwa - do boków AC i BC.

Oblicz długość boku tego kwadratu.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 61/135 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym x=20 i y=\frac{39}{4}:

Długość tego okręgu jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 105/209 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=7, CD=\frac{7}{2} i |AD|=6:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/182 [28%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie środkowe o długościach 13 i 10.

Podaj długość krótszej z przyprostokątnych tego trójkąta.

Odpowiedź:
min= (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm