Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 368/443 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 15 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 6 i 13. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{5}{6}, |DE|=\frac{1}{3} i |AB|=\frac{5}{12}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 31. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-11596 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[2m+n+9, m-3n+12] oraz \vec{v}=[m, -n+8] są równe.

Wyznacz wartości parametrów m i n

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-20777 ⋅ Poprawnie: 145/401 [36%] Rozwiąż 
Podpunkt 6.1 (0.25 pkt)
 « Punkty A=(0,2), B=(4,5) i C=(5,8) są trzema kolejnymi wierzchołkami równoległoboku ABCD (odwrotnie do wskazówek zegara). Wyznacz współrzedne punktu S=(x_S, y_S), w którym przecinają się przekątne tego równoległoboku.

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
 Oblicz |BD|.
Odpowiedź:
|BD|= (wpisz liczbę całkowitą)
Zadanie 7.  3 pkt ⋅ Numer: pr-21198 ⋅ Poprawnie: 2/9 [22%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dany jest trójkąt równoramienny ABC, w którym |AC|=|AB|=26, a punkt D jest środkiem podstawy AB. Okrąg o środku D jest styczny do prostej AC w punkcie M. Punkt K leży na boku AC, punkt L leży na boku BC, odcinek KL jest styczny do rozważanego okręgu oraz |KC|=|LC|=2 (zobacz rysunek).

Oblicz |KL|.

Odpowiedź:
|KL|=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
 Oblicz \frac{|AM|}{|MC|}.
Odpowiedź:
|AM|:|MC|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Boki trójkąta prostokątnego mają długości: a, 6 i 8.

Podaj najmniejszą możliwą wartość a.

Odpowiedź:
a_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą możliwą wartość a.
Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości 14 i ramieniu długości 25, jest prostokątem:

Oblicz jego obwód.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt E dzieli bok AB trójkąta ABC w stosunku |AE|:|EB|=p. Odcinek CE przecina środkową tego trójkąta AF w punkcie S.

Oblicz \frac{|SE|}{|CS|}.

Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie z twierdzenia Talesa

Dane
p=\frac{2}{11}=0.18181818181818
Odpowiedź:
\frac{|SE|}{|CS|}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm