Podgląd testu : lo2@sp-08-planimetria-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
16 razy większa
od liczby jego boków.
Wyznacz n.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
8+10\sqrt{2}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{5}{6},
|DC|=1 i
|AB|=\frac{2}{3}:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{17},
3\sqrt{17} i
4\sqrt{17} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{6\sqrt{17}}{5},\frac{9\sqrt{17}}{5},\frac{8\sqrt{17}}{5}
|
B. \frac{4\sqrt{17}}{5},\frac{6\sqrt{17}}{5},\frac{12\sqrt{17}}{5}
|
|
C. \frac{4\sqrt{17}}{5},\frac{9\sqrt{17}}{5},\frac{8\sqrt{17}}{5}
|
D. \frac{6\sqrt{17}}{5},\frac{9\sqrt{17}}{5},\frac{12\sqrt{17}}{5}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pr-11597 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wektory
\vec{u}=[m-n+5,-m-3]
oraz
\vec{v}=[m+n+5, n+4] są przeciwne.
Wyznacz wartości parametrów m i n.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(7,7),
B=(-2,6)
i
C=(2,2). Oblicz długości boków tego trójkąta.
Podaj długość boku najkrótszego.
Odpowiedź:
min=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj długość boku najdłuższego.
Odpowiedź:
max=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
|AC|=26
|BC|=26
|AB|=48
W trójkącie równoramiennym
ABC dane są długości boków
|AB|=48,
|AC|=26 i
|BC|=26.
Oblicz odległość środka wysokości CD tego trójkąta
od jego ramienia.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku
7:24, a obwód tego trójkąta ma długość
560.
Wyznacz długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=11,
CD=\frac{19}{2} i
|AD|=5:
O ile należy wydłużyć ramię AD, aby przecięło
się z przedłużeniem ramienia BC:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=14 i
|AC|=48. Odcinek
AE jest środkową tego trójkąta, zaś
odcinek
AF jego wysokością.
Oblicz |EF|.
Odpowiedź: