Z punktu leżącego na zewnątrz kąta ABC o mierze
58^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow}.
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
(2 pkt)
« W trójkącie równoramiennym ABC o podstawie
AB, wysokość AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku 1:k.
Wiedząc, że liczby k i \alpha
są naturalne dodatnie wykaż, że miara kąta \alpha
jest dzielnikiem liczby 90.
Podaj, ile rozwiązań ma to zadanie.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20723 ⋅ Poprawnie: 101/159 [63%]
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{15}{2},
|AB|=12,
|AD|=6 i
|BC|=\frac{9}{2}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%]