Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych jest równa 22 boków.

Ile boków ma wielokąt o mniejszej liczbie boków?

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 4, 2, 2\sqrt{5} T/N : 8, 10, 12
T/N : 2\sqrt{10}, 2\sqrt{6}, 2\sqrt{5}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=\frac{1}{3}, |BP|=\frac{2}{3}, |CP|=\frac{8}{3}, |DP|=\frac{4}{3}, |AB|=\frac{11}{3}:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 (1 pkt) W trójkącie prostokątnym ABC przyprostokątna AC ma długość 2\sqrt{5}, a wysokość AD opuszczona z wierzchołka kąta prostego A ma długość 4:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 61^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20239 ⋅ Poprawnie: 322/471 [68%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, których miary różnią się o 45^{\circ}.

Oblicz miarę najmniejszego kąta tego trójkąta.

Odpowiedź:
\beta_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
\beta_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20867 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Obwód trójkąta prostokątnego jest równy 4 cm. Spodek najkrótszej wysokości dzieli przeciwprostokątną na dwa odcinki w stosunku 9:16.

Podaj długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Czworokąt na rysunku jest prostokątem, w którym |DP|:|PC|=\frac{1}{5}: Oceń, czy kąt \alpha jest prosty, ostry czy rozwarty:

Jeśli kąt \alpha jest prosty wpisz 0, jeśli ostry wpisz 1, jeśli rozwarty wpisz 2.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=4, |DB|=112 i |BC|=113:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 100/201 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wysokości trójkąta prostokątnego mają długości \frac{48}{5}, 16 i 12. Wyznacz długości odcinków, na jakie wysokość opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.

Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm