Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 48/77 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Z punktu leżącego na zewnątrz kąta ABC o mierze 24^{\circ} poprowadzono prostą równoległą do półprostej BA^{\rightarrow} oraz prostą prostopadłą do półprostej BC^{\rightarrow}.

Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2\sqrt{2}, jest:
Odpowiedzi:
A. jest ostrokątny B. jest prostokątny
C. jest rozwartokątny D. nie istnieje
Zadanie 3.  1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=\frac{1}{4}, |BP|=\frac{1}{6} i |CP|=\frac{5}{6}:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 29. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=\left(-\frac{3}{2},-\frac{9}{2}\right) jest środkiem odcinka AB, przy czym A=(-7,-8), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 (2 pkt) « W trójkącie równoramiennym ABC o podstawie AB, wysokość AD tworzy z jego podstawą kąt o mierze \alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku A w stosunku 1:k. Wiedząc, że liczby k i \alpha są naturalne dodatnie wykaż, że miara kąta \alpha jest dzielnikiem liczby 90.

Wyznacz największą możliwą wartość k.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20882 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« W prostokącie ABCD punkt M należy do boku CD i jest tak położony, że AM\perp BD. Przekątna BD przecina odcinek AM w punkcie N oraz |AN|=40 i |NM|=10.

Oblicz długość przekątnej AC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz obwód tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym x=35 i y=\frac{51}{4}:

Długość tego okręgu jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 4 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt E dzieli bok AB trójkąta ABC w stosunku |AE|:|EB|=p. Odcinek CE przecina środkową tego trójkąta AF w punkcie S.

Oblicz \frac{|SE|}{|CS|}.

Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie z twierdzenia Talesa

Dane
p=\frac{5}{6}=0.83333333333333
Odpowiedź:
\frac{|SE|}{|CS|}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm