Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych jest równa 24 boków.

Ile boków ma wielokąt o mniejszej liczbie boków?

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{2}, jest:
Odpowiedzi:
A. jest rozwartokątny B. jest ostrokątny
C. nie istnieje D. jest prostokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 644/837 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinek AB o długości 12 jest równoległy do odcinka CD, przy czym: |PA|=24 i |AC|=16:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 20, a odcinek BE ma długość \frac{100}{13}.

Oblicz długość odcinka CD.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt B=(2,-3). Punkt A spełnia równanie \overrightarrow{AB}=-3\vec{u}. Zatem:
Odpowiedzi:
A. A=(15,-25) B. A=(18,14)
C. A=(11,-18) D. A=(-7,12)
Zadanie 6.  2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 (2 pkt) « W trójkącie równoramiennym ABC o podstawie AB, wysokość AD tworzy z jego podstawą kąt o mierze \alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku A w stosunku 1:k. Wiedząc, że liczby k i \alpha są naturalne dodatnie wykaż, że miara kąta \alpha jest dzielnikiem liczby 90.

Wyznacz największą możliwą wartość k, która jest kwadratem liczby naturalnej.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 66/253 [26%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Zielony czworokąt na rysunku jest kwadratem oraz |AC|=18 i |BC|=82:

Jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 230/404 [56%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie równoramiennym AC oraz BC są ramionami oraz. |AC|=\sqrt{23}, |BC|=\sqrt{23} i |AB|=2\sqrt{14}:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W trapezie dane są długości podstaw i ramion: |CD|=5, |AB|=8, |AD|=4 i |BC|=3. Ramiona trapezu przedłużono do przecięcia w punkcie O.

Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt O, a dwa pozostałe są końcami dłuższej podstawy trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/182 [28%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie środkowe o długościach 5 i 8.

Podaj długość krótszej z przyprostokątnych tego trójkąta.

Odpowiedź:
min= (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm