Podgląd testu : lo2@sp-08-planimetria-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
|
T/N : 8, 10, 12
|
T/N : 4, 6, 8
|
|
T/N : 4, 2, 2\sqrt{5}
|
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{5}{6},
|BP|=\frac{3}{4} i
|CP|=\frac{10}{9}:
Oblicz długość odcinka DP.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka
x:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Punkt
S=(2,-6) jest środkiem odcinka
AB takiego, że punkt
A=(x_A, y_A)
należy do osi
Oy, a punkt
B=(x_B, y_B)
należy do osi
Ox.
Wyznacz współrzędne y_A i x_B.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Trzy liczby
x+7,
-1-x i
4x+32 są długościami boków trójkąta, gdy liczba liczba
x należy do przedziału
(p,q).
Podaj liczbę p.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20917 ⋅ Poprawnie: 35/51 [68%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Trójkąt
ABC jest prostokątny.
Na boku
AC tego trójkąta zbudowano kwadrat,
natomiast bok
AB przedłużono tak, że
|\angle EHA|=90^{\circ}.
Wiedząc, że |BC|=30 oraz bok kwadratu ma długość
16 oblicz pole powierzchni trójkąta EHA.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Boki trójkąta prostokątnego mają długości:
a,
6 i
12.
Podaj najmniejszą możliwą wartość a.
Odpowiedź:
a_{min}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość
a.
Odpowiedź:
a_{max}=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=2,
|DB|=80 i
|BC|=89:
Wyznacz długości odcinków CF i
FB. Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Punkt
E dzieli bok
AB trójkąta
ABC w stosunku
|AE|:|EB|=p. Odcinek
CE
przecina środkową tego trójkąta
AF w punkcie
S.
Oblicz \frac{|SE|}{|CS|}.
Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie
z twierdzenia Talesa
Dane
p=\frac{5}{6}=0.83333333333333
Odpowiedź:
(wpisz dwie liczby całkowite)