Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne
trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są
dwa dowolne z tych punktów jest równa 210.
Wynacz liczbę n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
W trapezie podstawy mają długość 16 i
30, a wysokość ma długość 16.
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%]
Punkty P=(x_p, y_p),
Q=(x_q, y_q) i
R=(x_r, y_r) są środkami boków odpowiednio
AB, BC i
AC trójkąta ABC.
Wierzchołek C tego trójkąta ma współrzędne
C=(x_c, y_c).
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{5}{2},
|AB|=4,
|AD|=2 i
|BC|=\frac{3}{2}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 99/200 [49%]
» Wysokości trójkąta prostokątnego mają długości
\frac{24}{5}, 6 i
8. Wyznacz długości odcinków, na jakie wysokość
opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.
Podaj długość krótszego z tych odcinków.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat