Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W n kącie liczba przekątnych jest 10 razy większa od liczby jego boków.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{2}, jest:
Odpowiedzi:
A. jest rozwartokątny B. jest ostrokątny
C. nie istnieje D. jest prostokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{1}{6} i |AB|=\frac{3}{4}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 W trapezie podstawy mają długość 14 i 16, a wysokość ma długość 12. Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.

Podaj krótszą z tych odległości.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 61^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 (2 pkt) « W trójkącie równoramiennym ABC o podstawie AB, wysokość AD tworzy z jego podstawą kąt o mierze \alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku A w stosunku 1:k. Wiedząc, że liczby k i \alpha są naturalne dodatnie wykaż, że miara kąta \alpha jest dzielnikiem liczby 90.

Wyznacz największą możliwą wartość k, która jest kwadratem liczby naturalnej.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 |AC|=13 |BC|=13 |AB|=10 W trójkącie równoramiennym ABC dane są długości boków |AB|=10, |AC|=13 i |BC|=13.

Oblicz odległość środka wysokości CD tego trójkąta od jego ramienia.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość 8, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 2.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=50 i |AB|=60. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=105. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC kąt przy wierzchołku A jest prosty oraz |AB|=36 i |AC|=27.

Oblicz odległość środka ciężkości trójkąta ABC od punktu A.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm