Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 158/207 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Obwód wielokąta jest równy 128. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 96 i 108.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 2\sqrt{10}, 2\sqrt{6}, 2\sqrt{5} T/N : 8, 10, 12
T/N : 14, 14, 20  
Zadanie 3.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{1}{2}, |DE|=\frac{1}{3} i |AB|=\frac{5}{6}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości 7\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-11596 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[2m+n+6, m-3n+9] oraz \vec{v}=[m, -n+8] są równe.

Wyznacz wartości parametrów m i n

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  3 pkt ⋅ Numer: pr-20832 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty P=(x_P, y_P), Q=(x_Q, y_Q) oraz R=(x_R, y_R) sa środkami boków trójkąta o bokach odpowiednio AB, BC i AC.

Podaj sumę obu współrzędnych wierzchołka A tego trójkąta.

Dane
x_P=0
y_P=0
x_Q=1
y_Q=3
x_R=-4
y_R=1
Odpowiedź:
x_A+y_A= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Punkt S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20723 ⋅ Poprawnie: 101/159 [63%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są punkty na okręgu takie, że |AP|=\frac{7}{2}, |PB|=6 i |CP|=3:

Oblicz |PD|.

Odpowiedź:
|PD|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 231/405 [57%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie równoramiennym AC oraz BC są ramionami oraz. |AC|=\sqrt{19}, |BC|=\sqrt{19} i |AB|=2\sqrt{14}:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 18 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC kąt przy wierzchołku A jest prosty oraz |AB|=24 i |AC|=7.

Oblicz odległość środka ciężkości trójkąta ABC od punktu A.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm