Dane są punkty: A=(1, -1),
B=(4,-2) i C=(x_C,y_C).
Wyznacz taki punkt D=(x_D, y_D), aby zachodziła równość
2\cdot\overrightarrow{AB}-3\cdot\overrightarrow{CD}=\overrightarrow{AC}
.
Podaj x_D.
Dane
x_C=-5 y_C=-3
Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20248 ⋅ Poprawnie: 85/131 [64%]
» Do jednego z ramion kąta o wierzchołku O
należą punkty A i B, a do
drugiego ramienia kąta punkty C i
D. Wiadomo, że
AC\parallel BD oraz |AO|=4,
|AC|=2 i |BD|=8.
Wyznacz długość odcinka AB.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=20 i |AB|=24.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=42. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%]