Trójkąt ABC ma obwód o długości
51. Punkty A_1,
B_1 i C_1 są środkami
boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta
A_1B_1C_1 w skali \frac{3}{2}.
Oblicz długość obwodu trójkąta PQR.
Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%]
Dane są punkty: A=(1, -1),
B=(4,-2) i C=(x_C,y_C).
Wyznacz taki punkt D=(x_D, y_D), aby zachodziła równość
2\cdot\overrightarrow{AB}-3\cdot\overrightarrow{CD}=\overrightarrow{AC}
.
Podaj x_D.
Dane
x_C=-2 y_C=-3
Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20725 ⋅ Poprawnie: 32/240 [13%]
W trójkącie ABC poprowadzono trzy proste równoległe do podstawy
AB, które podzieliły bok BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
26 większa od długości jego podstawy AB.
Oblicz |AB|.
Odpowiedź:
|AB|=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 104/224 [46%]