Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne
trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są
dwa dowolne z tych punktów jest równa 435.
Wynacz liczbę n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Odcinki AD i BE
przecinają się w punkcie C. W trójkątach
ABC i CDE zachodzą
związki: |\sphericalangle CAB|=|\sphericalangle CED|,
|AC|=5, |BC|=3,
|CE|=10, jak na rysunku.
Oblicz długość boku CD.
Odpowiedź:
|CD|=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
W trójkącie ABC poprowadzono trzy proste równoległe do podstawy
AB, które podzieliły bok BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
22 większa od długości jego podstawy AB.
Oblicz |AB|.
Odpowiedź:
|AB|=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 104/224 [46%]