Podgląd testu : lo2@sp-08-planimetria-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
14 razy większa
od liczby jego boków.
Wyznacz n.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
18 i
37. Trzeci bok tego trójkąta należy do przedziału
(a,b).
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB, przy czym
|AB|=\frac{9}{2} i
|BE|:|EC|=4:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 569/1176 [48%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{41}, a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
5:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%] |
Rozwiąż |
Podpunkt 5.1 (0.5 pkt)
« Dane są punkty
A=(-2,4) i
B=(3,-1).
Na odcinku
AB wyznacz taki punkt
P,
aby
\overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu
P.
Podaj x_P.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20200 ⋅ Poprawnie: 59/115 [51%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD jest kwadratem, a zielone trójkąty
są równoboczne:
Podaj miarę najmniejszego kąta między czerwonymi odcinkami.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20235 ⋅ Poprawnie: 129/233 [55%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Korzystając z danych na rysunku oraz wiedząc, że
a=20
i
b=8, oblicz długość zielonego odcinka:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Przeciwprostokątna trójkąta prostokątnego ma długość
485, a jedna z przyprostokątnych jest o
383 dłuższa od drugiej.
Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
40 i ramieniu długości
52, jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/245 [31%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Dane są długości boków trójkąta
68,
100 i
112. Zbadaj, czy
trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.
Jeśli trójkąt jest prostokątny wpisz 1,
jeśli ostrokątny wpisz 2, jeśli rozwartokątny
wpisz 3.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Punkt
E jest środkiem przeciwprostokątnej
AB trójkąta
ABC.
Odcinek
DE ma długość 1, jak na rysunku.
Oblicz obwód trójkąta ABC.
Odpowiedź:
L_{\triangle ABC}=
+
\cdot
√
(wpisz trzy liczby całkowite)