Z punktu leżącego na zewnątrz kąta ABC o mierze
30^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow}.
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Punkt S=\left(\frac{1}{2},\frac{15}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-3,-2]. Wyznacz współrzędne punktu A.
Podaj x_A.
Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%]
(2 pkt)
« W trójkącie równoramiennym ABC o podstawie
AB, wysokość AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku 1:k.
Wiedząc, że liczby k i \alpha
są naturalne dodatnie wykaż, że miara kąta \alpha
jest dzielnikiem liczby 90.
Wyznacz największą możliwą wartość k, która jest liczbą pierwszą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=30 i |AB|=36.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=63. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%]