Podgląd testu : lo2@sp-08-planimetria-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
21 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1,
\sqrt{2}+1,
2+\sqrt{2}, jest:
Odpowiedzi:
|
A. jest rozwartokątny
|
B. jest prostokątny
|
|
C. nie istnieje
|
D. jest ostrokątny
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{3}{2},
|BP|=\frac{11}{12} i
|CP|=4:
Oblicz długość odcinka DP.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{3}, przy czym:
P_{\triangle MCE}=4 i
P_{\triangle NFB}=3:
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-11596 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wektory
\vec{u}=[2m+n-3, m-3n+9]
oraz
\vec{v}=[m, -n+8] są równe.
Wyznacz wartości parametrów m i n
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20239 ⋅ Poprawnie: 322/471 [68%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
» Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch
pozostałych kątów, których miary różnią się o
40^{\circ}.
Oblicz miarę najmniejszego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
|AC|=20
|BC|=20
|AB|=24
W trójkącie równoramiennym
ABC dane są długości boków
|AB|=24,
|AC|=20 i
|BC|=20.
Oblicz odległość środka wysokości CD tego trójkąta
od jego ramienia.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{5}:
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0, jeśli ostry wpisz 1,
jeśli rozwarty wpisz 2.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
18 i ramieniu długości
41, jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=20 i
|AC|=21. Odcinek
AE jest środkową tego trójkąta, zaś
odcinek
AF jego wysokością.
Oblicz |EF|.
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
« Trójkąt na rysunku jest równoboczny i obwód trójkąta
SEF
spełnia warunek
L_{SEF}=8:
Wyznacz skalę podobieństwa \triangle EFS
do \triangle AEF.
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Obwód trójkąta
SEF jest równy
8. Wyznacz
|AB| i wynik
zapisz w postaci
a+b\sqrt{c}, gdzie
a,b,c\in \mathbb{Z} i
c
jest najmniejsze możliwe.
Podaj liczby a i b.
Odpowiedzi: