Podgląd testu : lo2@sp-08-planimetria-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 281/479 [58%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
10 i
21. Trzeci bok tego trójkąta należy do przedziału
(a,b).
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{7}{12},
|DC|=1 i
|AB|=\frac{5}{6}:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 329/432 [76%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{13},
3\sqrt{13} i
4\sqrt{13} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
|
B. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
|
|
C. \frac{4\sqrt{13}}{5},\frac{6\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
|
D. \frac{4\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Punkt
S=(6,3) jest środkiem odcinka
AB takiego, że punkt
A=(x_A, y_A)
należy do osi
Oy, a punkt
B=(x_B, y_B)
należy do osi
Ox.
Wyznacz współrzędne y_A i x_B.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20780 ⋅ Poprawnie: 70/218 [32%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(2,1),
B=(-7,0)
i
C=(-3,-4). Oblicz długości boków tego trójkąta.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Trójkąt
ABC ma obwód równy
23.
Trójkąt
A_1B_1C_1 jest podobny do trójkąta
ABC w skali
4 aj ego dwa boki mają długość:
|A_1B_1|=28 i
|A_1C_1|=36.
Jaką długość ma najkrótszy bok trójkąta ABC?
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Jaką długość ma najdłuższy bok trójkąta
ABC?
Odpowiedź:
max=
(wpisz liczbę całkowitą)
|
Zadanie 8. 2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Przeciwprostokątna trójkąta prostokątnego ma długość
445, a jedna z przyprostokątnych jest o
193 dłuższa od drugiej.
Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=4,
|DB|=220 i
|BC|=221:
Wyznacz długości odcinków CF i
FB. Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/246 [31%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Dane są długości boków trójkąta
34,
50 i
56. Zbadaj, czy
trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.
Jeśli trójkąt jest prostokątny wpisz 1,
jeśli ostrokątny wpisz 2, jeśli rozwartokątny
wpisz 3.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Punkt
E jest środkiem przeciwprostokątnej
AB trójkąta
ABC.
Odcinek
DE ma długość 1, jak na rysunku.
Oblicz obwód trójkąta ABC.
Odpowiedź:
L_{\triangle ABC}=
+
\cdot
√
(wpisz trzy liczby całkowite)