Podgląd testu : lo2@sp-08-planimetria-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 281/479 [58%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
14 i
29. Trzeci bok tego trójkąta należy do przedziału
(a,b).
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 476/701 [67%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{2}{3},
|BP|=\frac{3}{4},
|CP|=\frac{3}{2},
|DP|=\frac{4}{3},
|AB|=\frac{3}{2}:
Oblicz długość odcinka CD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{4}, przy czym:
P_{\triangle MCE}=1 i
P_{\triangle NFB}=5:
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3). Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u}.
Zatem:
Odpowiedzi:
|
A. A=(-7,12)
|
B. A=(15,-25)
|
|
C. A=(11,-18)
|
D. A=(18,14)
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(6,-2),
B=(-3,-3)
i
C=(1,-7). Oblicz długości boków tego trójkąta.
Podaj długość boku najkrótszego.
Odpowiedź:
min=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj długość boku najdłuższego.
Odpowiedź:
max=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20238 ⋅ Poprawnie: 125/170 [73%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Na boku
AC trójkąta równobocznego
ABC wybrano punkt
M
w taki sposób, że
|AM|=|CN| oraz
|MB|=6\sqrt{2}.
Oblicz |MN|.
Odpowiedź:
|MN|=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
4, a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
1.
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=5,
|AB|=8,
|AD|=4 i
|BC|=3.
Ramiona trapezu przedłużono
do przecięcia w punkcie
O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Punkt
E dzieli bok
AB trójkąta
ABC w stosunku
|AE|:|EB|=p. Odcinek
CE
przecina środkową tego trójkąta
AF w punkcie
S.
Oblicz \frac{|SE|}{|CS|}.
Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie
z twierdzenia Talesa
Dane
p=\frac{3}{11}=0.27272727272727
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=16 i ramieniu
|BC|=17:
Oblicz |MN|.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)