Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 368/443 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 30 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 18 i 37. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 639/861 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{11}{2} i |BC|=19:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 51. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 « Dane są punkty A=(-2,12) i B=(3,7). Na odcinku AB wyznacz taki punkt P, aby \overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu P.

Podaj x_P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20831 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są punkty: A=(1, -1), B=(4,-2) i C=(x_C,y_C). Wyznacz taki punkt D=(x_D, y_D), aby zachodziła równość 2\cdot\overrightarrow{AB}-3\cdot\overrightarrow{CD}=\overrightarrow{AC} .

Podaj x_D.

Dane
x_C=-2
y_C=-3
Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20725 ⋅ Poprawnie: 32/240 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Trójkąt ABC na rysunku jest równoramienny, a zielony czworokąt jest kwadratem, przy czym |AB|=10 i |BC|=13:

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 40:9, a obwód tego trójkąta ma długość 630.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 32/49 [65%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 26 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 104/224 [46%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Jedna z przyprostokątnych trójkąta prostokątnego ma długość 16, a wysokość opuszczona na przeciwprostokątną tego trójkata długość 8\sqrt{3}.

Oblicz długość drugiej przyprostokątnej tego trójkąta.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
« Punkt E jest środkiem przeciwprostokątnej AB trójkąta ABC. Odcinek DE ma długość 1, jak na rysunku.

Oblicz obwód trójkąta ABC.

Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm