Podgląd testu : lo2@sp-08-planimetria-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
24^{\circ} .
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 3\sqrt{10} , 3\sqrt{6} , 3\sqrt{5}
T/N : 6 , 9 , 12
T/N : 21 , 21 , 30
Zadanie 3. 1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=1 ,
|DE|=\frac{7}{12} i
|AB|=\frac{5}{6} :
Oblicz długość odcinka DC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
180
i
24 . Najdłuższy bok trójkąta
T_2 ma długość
15 .
Oblicz długość najdłuższego boku trójkąta T_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Punkt
S=\left(\frac{13}{2},\frac{31}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-4,-5] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20573 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dane sa wektory:
\vec{a}=[a_x, a_y] ,
\vec{b}=[b_x, b_y] i
\vec{c}=[c_x, c_y] .
Wyznacz liczby rzeczywiste i
p i
q takie, że
p\cdot\vec{a}+q\cdot\vec{b}=\vec{c} .
Podaj p .
Dane
a_x=1
a_y=2
b_x=2
b_y=3
c_x=-1
c_y=-1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Punkt
D jest środkiem boku
AB oraz
|DC|=|CB|=|BE| .
Wiedząc, że |AC|=2 oblicz
|DE| .
Odpowiedź:
|DE|=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Przeciwprostokątna trójkąta prostokątnego ma długość
397 , a jedna z przyprostokątnych jest o
97 dłuższa od drugiej.
Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
32 i ramieniu długości
34 , jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=16 i
|AC|=12 . Odcinek
AE jest środkową tego trójkąta, zaś
odcinek
AF jego wysokością.
Oblicz |EF| .
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=20 ,
|BC|=20 i
|AB|=32 .
Wyznacz długości środkowych trójkąta
ABC .
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
Rozwiąż