Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Proste k i l są równoległe.

Podaj miarę stopniową kąta \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 2, 3, 4 T/N : 4, 5, 6
T/N : 1+\sqrt{2}, -1+\sqrt{2}, 2\sqrt{2}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{5}{2} i |BC|=16:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 48, a odcinek BE ma długość \frac{144}{5}.

Oblicz długość odcinka AC.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Dany jest punkt B=(-4,-1) oraz wektor \overrightarrow{AB}=[1, -3]. Wyznacz środek odcinka S_{AB}=(x_S, y_S).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20573 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane sa wektory: \vec{a}=[a_x, a_y], \vec{b}=[b_x, b_y] i \vec{c}=[c_x, c_y]. Wyznacz liczby rzeczywiste i p i q takie, że p\cdot\vec{a}+q\cdot\vec{b}=\vec{c}.

Podaj p.

Dane
a_x=2
a_y=3
b_x=-1
b_y=-2
c_x=-4
c_y=6
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20248 ⋅ Poprawnie: 85/131 [64%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Do jednego z ramion kąta o wierzchołku O należą punkty A i B, a do drugiego ramienia kąta punkty C i D. Wiadomo, że AC\parallel BD oraz |AO|=2, |AC|=7 i |BD|=9.

Wyznacz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Obwód trójkąta prostokątnego ma długość \frac{63}{2}, a stosunek długość przyprostokątnych tego trójkąta jest równy 28:45.

Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=21, CD=14 i |AD|=7:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt E dzieli bok AB trójkąta ABC w stosunku |AE|:|EB|=p. Odcinek CE przecina środkową tego trójkąta AF w punkcie S.

Oblicz \frac{|SE|}{|CS|}.

Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie z twierdzenia Talesa

Dane
p=\frac{5}{11}=0.45454545454545
Odpowiedź:
\frac{|SE|}{|CS|}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=64 i ramieniu |BC|=68:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm