Z punktu leżącego na zewnątrz kąta ABC o mierze
53^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow}.
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Na ramieniu kąta ostrego o wierzchołku A zaznaczono
odcinki AB i BC, na
drugim ramieniu odcinki AD i
DE. Odcinki mają długości:
|AB|=4, |BC|=16,
|AD|=5 i |DE|=11.
Wyznacz skalę podobieństwa trójkątów ACD i
ABE.
Podaj skalę k\in(0,1].
Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 1/1 [100%]
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{25}{4},
|AB|=10,
|AD|=5 i
|BC|=\frac{15}{4}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%]