Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 48/77 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Z punktu leżącego na zewnątrz kąta ABC o mierze 53^{\circ} poprowadzono prostą równoległą do półprostej BA^{\rightarrow} oraz prostą prostopadłą do półprostej BC^{\rightarrow}.

Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 12, 15, 18 T/N : 21, 21, 30
T/N : 3+3\sqrt{2}, -3+3\sqrt{2}, 6\sqrt{2}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinki DE i AB są równoległe, przy czym |CD|=1 i |CE|=\frac{13}{12}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{5}, przy czym: P_{\triangle MCE}=3 i P_{\triangle NFB}=6:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-11596 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[2m+n-6, m-3n-3] oraz \vec{v}=[m, -n+8] są równe.

Wyznacz wartości parametrów m i n

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Trzy liczby x+11, -5-x i 4x+48 są długościami boków trójkąta, gdy liczba liczba x należy do przedziału (p,q).

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20249 ⋅ Poprawnie: 40/141 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Na ramieniu kąta ostrego o wierzchołku A zaznaczono odcinki AB i BC, na drugim ramieniu odcinki AD i DE. Odcinki mają długości: |AB|=4, |BC|=16, |AD|=5 i |DE|=11. Wyznacz skalę podobieństwa trójkątów ACD i ABE.

Podaj skalę k\in(0,1].

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Przeciwprostokątna trójkąta prostokątnego ma długość 613, a jedna z przyprostokątnych jest o 577 dłuższa od drugiej.

Oblicz obwód tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W trapezie dane są długości podstaw i ramion: |CD|=\frac{25}{4}, |AB|=10, |AD|=5 i |BC|=\frac{15}{4}. Ramiona trapezu przedłużono do przecięcia w punkcie O.

Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt O, a dwa pozostałe są końcami dłuższej podstawy trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC kąt przy wierzchołku A jest prosty oraz |AB|=84 i |AC|=13.

Oblicz odległość środka ciężkości trójkąta ABC od punktu A.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkącie dane są: |AC|=20 oraz |BC|=24. Środkowe tego trójkata AM i BN przecinają się pod kątem prostym.

Oblicz długość boku AB tego trójkąta.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm