Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10375 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są dwa dowolne z tych punktów jest równa 325.

Wynacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{2}, jest:
Odpowiedzi:
A. jest ostrokątny B. jest prostokątny
C. nie istnieje D. jest rozwartokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 642/835 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinek AB o długości 19 jest równoległy do odcinka CD, przy czym: |PA|=8 i |AC|=16:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 73/126 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle BSN|=|\sphericalangle CAM| B. |\sphericalangle BAM|=|\sphericalangle ASN|
C. |\sphericalangle CAM|=|\sphericalangle ACN| D. |\sphericalangle BAM|=|\sphericalangle BCN|
Zadanie 5.  1 pkt ⋅ Numer: pr-11597 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[m-n-2,-m+4] oraz \vec{v}=[m+n-2, n+4] są przeciwne.

Wyznacz wartości parametrów m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-20777 ⋅ Poprawnie: 145/401 [36%] Rozwiąż 
Podpunkt 6.1 (0.25 pkt)
 « Punkty A=(-3,1), B=(1,4) i C=(2,7) są trzema kolejnymi wierzchołkami równoległoboku ABCD (odwrotnie do wskazówek zegara). Wyznacz współrzedne punktu S=(x_S, y_S), w którym przecinają się przekątne tego równoległoboku.

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
 Oblicz |BD|.
Odpowiedź:
|BD|= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Punkt D jest środkiem boku AB oraz |DC|=|CB|=|BE|.

Wiedząc, że |AC|=2 oblicz |DE|.

Odpowiedź:
|DE|= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Obwód trójkąta prostokątnego ma długość 15, a stosunek długość przyprostokątnych tego trójkąta jest równy 5:12.

Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W trapezie dane są długości podstaw i ramion: |CD|=\frac{15}{4}, |AB|=6, |AD|=3 i |BC|=\frac{9}{4}. Ramiona trapezu przedłużono do przecięcia w punkcie O.

Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt O, a dwa pozostałe są końcami dłuższej podstawy trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 99/200 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wysokości trójkąta prostokątnego mają długości \frac{24}{5}, 6 i 8. Wyznacz długości odcinków, na jakie wysokość opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.

Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « W trójkącie ABC dane są: |AC|=26, |BC|=26 i |AB|=20. Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm