Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych jest równa 32 boków.

Ile boków ma wielokąt o mniejszej liczbie boków?

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 24 i 49. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/702 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=\frac{1}{2}, |BP|=\frac{3}{4}, |CP|=\frac{9}{4}, |DP|=\frac{3}{2}, |AB|=1:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{6}, przy czym: P_{\triangle MCE}=2 i P_{\triangle NFB}=4:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10327 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są wektory: \vec{a}=[3,0] i \vec{b}=[1,-4]. Wektor \vec{p}=[p_x, p_y] spełnia równanie \frac{1}{2}\vec{b}=-\frac{1}{2}\vec{a}-2\vec{p}.

Podaj liczby p_x i p_y.

Odpowiedzi:
p_x= (dwie liczby całkowite)

p_y= (dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20297 ⋅ Poprawnie: 73/142 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Punkty A=(-1,8) oraz B=(2,4) dzielą odcinek MN na trzy równe części i są położone na odcinku w kolejności M, A, B i N. Wyznacz końce tego odcinka.

Podaj sumę współrzędnych punktu M=(x_M,y_M).

Odpowiedź:
x_M+y_M= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj sumę współrzędnych punktu N=(x_N,y_N).
Odpowiedź:
x_N+y_N= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trójkąt ABC ma obwód równy 37. Trójkąt A_1B_1C_1 jest podobny do trójkąta ABC w skali 3 aj ego dwa boki mają długość: |A_1B_1|=36 i |A_1C_1|=30.

Jaką długość ma najkrótszy bok trójkąta ABC?

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Jaką długość ma najdłuższy bok trójkąta ABC?
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 12:5, a obwód tego trójkąta ma długość 600.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=9, |DB|=63 i |BC|=65:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Jedna z przyprostokątnych trójkąta prostokątnego ma długość 20, a wysokość opuszczona na przeciwprostokątną tego trójkata długość 10\sqrt{3}.

Oblicz długość drugiej przyprostokątnej tego trójkąta.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=66 i ramieniu |BC|=65:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm