Podgląd testu : lo2@sp-08-planimetria-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 158/207 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Obwód wielokąta jest równy
134 . Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
103
i
105 .
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 8 , 10 , 12
T/N : 14 , 14 , 20
T/N : 2\sqrt{10} , 2\sqrt{6} , 2\sqrt{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{9}{2} i
|BC|=15 :
Oblicz długość odcinka EF .
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{13} ,
3\sqrt{13} i
4\sqrt{13} jest podobny do trójkąta
T_2 . Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
A. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
B. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
C. \frac{4\sqrt{13}}{5},\frac{6\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
D. \frac{4\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
Zadanie 5. 1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Punkty o współrzędnych
A=(4,3) ,
B=(-2,5) i
C=(-4,1) są
wierzchołkami trójkąta.
Oblicz długość środkowej AD tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
A=(x_A, y_A) i
B=(x_B, y_B)
są końcami odcinka, do którego należy punkt
P=(x_P, y_P)
taki, że
|PB|:|AP|=1:3 .
Podaj x_P .
Dane
x_A=1
y_A=-3
x_B=-5
y_B=9
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20725 ⋅ Poprawnie: 33/241 [13%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Trójkąt
ABC na rysunku jest równoramienny, a
zielony czworokąt jest kwadratem, przy czym
|AB|=14 i
|BC|=25 :
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 231/405 [57%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie równoramiennym
AC oraz
BC są ramionami oraz.
|AC|=\sqrt{22} ,
|BC|=\sqrt{22} i
|AB|=4\sqrt{3} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
(2 pkt)
W trójkącie równoramiennym
ABC dane są długości boków:
|AC|=|BC|=50 i
|AB|=60 .
Na przedłużeniu boku
AB zaznaczono taki punkt
D ,
że
|DB|=105 . Przez punkt
A
poprowadzono prostą równoległą do boku
BC , która przecięła odcinek
DC w punkcie
E (zobacz rysunek):
Oblicz |DE| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Podstawa trójkąta równoramiennego ma długość
40 , a punkt
przecięcia się środkowych tego trójkąta znajduje się w odległości
16 od tej podstawy.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=22 i ramieniu
|BC|=61 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż