Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10374  
Podpunkt 1.1 (1 pkt)
 Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych jest równa 33 boków.

Ile boków ma wielokąt o mniejszej liczbie boków?

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10583  
Podpunkt 2.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 10+5\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10602  
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=1, |BP|=\frac{1}{2}, |CP|=\frac{3}{2}, |DP|=3, |AB|=\frac{9}{4}:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10578  
Podpunkt 4.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 80, a odcinek BE ma długość \frac{1600}{29}.

Oblicz długość odcinka CD.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10664  
Podpunkt 5.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 83^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20832  
Podpunkt 6.1 (1 pkt)
 Punkty P=(x_P, y_P), Q=(x_Q, y_Q) oraz R=(x_R, y_R) sa środkami boków trójkąta o bokach odpowiednio AB, BC i AC.

Podaj sumę obu współrzędnych wierzchołka A tego trójkąta.

Dane
x_P=7
y_P=2
x_Q=8
y_Q=5
x_R=3
y_R=3
Odpowiedź:
x_A+y_A= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Punkt S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20843  
Podpunkt 7.1 (2 pkt)
 W trójkącie równoramiennym ABC dane są długości boków AB, AC i BC.

Oblicz odległość środka wysokości CD tego trójkąta od jego ramienia.

Dane
|AC|=29
|BC|=29
|AB|=42
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20241  
Podpunkt 8.1 (2 pkt)
 W trójkącie równoramiennym AC oraz BC są ramionami oraz. |AC|=\sqrt{35}, |BC|=\sqrt{35} i |AB|=4\sqrt{7}:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20250  
Podpunkt 9.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=5, CD=\frac{11}{4} i |AD|=18:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20710  
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC kąt przy wierzchołku A jest prosty. Odcinek AE jest środkową tego trójkąta, zaś odcinek AF jego wysokością.

Oblicz |EF|.

Dane
|AB|=42
|AC|=40
Odpowiedź:
|EF|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30302  
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Dane
L_{SEF}=128
Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Obwód trójkąta SEF jest równy L. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{C} i c jest najmniejsze możliwe.

Podaj a.

Dane
L_{SEF}=128
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm