Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 374/475 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 7560^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{3}, jest:
Odpowiedzi:
A. jest prostokątny B. nie istnieje
C. jest ostrokątny D. jest rozwartokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 325/461 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinki DE i AB są równoległe, przy czym |CD|=\frac{5}{12} i |CE|=\frac{17}{12}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości 11\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 « Dane są punkty A=(3,0) i B=(8,-5). Na odcinku AB wyznacz taki punkt P, aby \overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu P.

Podaj x_P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty A=(x_A, y_A) i B=(x_B, y_B) są końcami odcinka, do którego należy punkt P=(x_P, y_P) taki, że |PB|:|AP|=1:3.

Podaj x_P.

Dane
x_A=7
y_A=-9
x_B=1
y_B=3
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20869 ⋅ Poprawnie: 42/89 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Boki trójkąta rozwartokątnego ABC mają długości: |AB|=17, |BC|=10 i |AC|=9. Na boku AB zaznaczono punkt D w taki sposób, że |\sphericalangle CDB|=|\sphericalangle ACB|.

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz długość odcinka DB.
Odpowiedź:
|BD|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 28:45, a obwód tego trójkąta ma długość 252.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 32/49 [65%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 36 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Podstawa trójkąta równoramiennego ma długość 56, a punkt przecięcia się środkowych tego trójkąta znajduje się w odległości 15 od tej podstawy.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
« Punkt E jest środkiem przeciwprostokątnej AB trójkąta ABC. Odcinek DE ma długość 1, jak na rysunku.

Oblicz obwód trójkąta ABC.

Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm