Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 3780^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 8 i 17. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=\frac{11}{12}, |BP|=\frac{1}{3} i |CP|=\frac{11}{4}:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{7}, 3\sqrt{7} i 4\sqrt{7} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5} B. \frac{4\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5}
C. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{12\sqrt{7}}{5} D. \frac{4\sqrt{7}}{5},\frac{6\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
Zadanie 5.  1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Punkty o współrzędnych A=(-1,0), B=(-7,-5) i C=(5,-5) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty A=(x_A, y_A) i B=(x_B, y_B) są końcami odcinka, do którego należy punkt P=(x_P, y_P) taki, że |PB|:|AP|=1:3.

Podaj x_P.

Dane
x_A=8
y_A=-4
x_B=2
y_B=8
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 66/253 [26%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Zielony czworokąt na rysunku jest kwadratem oraz |AC|=48 i |BC|=73:

Jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Obwód trójkąta prostokątnego ma długość \frac{77}{2}, a stosunek długość przyprostokątnych tego trójkąta jest równy 33:56.

Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości 78 i ramieniu długości 89, jest prostokątem:

Oblicz jego obwód.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 W trójkącie równoramiennym ABC podstawa AB ma długość 30, a wysokość CD ma taką samą długośc jak odcinek łączący punkt D ze środkiem boku BC.

Oblicz długość wysokości CD.

Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=78 i ramieniu |BC|=89:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm