Podgląd testu : lo2@sp-08-planimetria-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Suma miar kątów
n kąta jest równa
3780^{\circ}.
Wyznacz n.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
8 i
17. Trzeci bok tego trójkąta należy do przedziału
(a,b).
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{11}{12},
|BP|=\frac{1}{3} i
|CP|=\frac{11}{4}:
Oblicz długość odcinka DP.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{7},
3\sqrt{7} i
4\sqrt{7} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5}
|
B. \frac{4\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5}
|
|
C. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
|
D. \frac{4\sqrt{7}}{5},\frac{6\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Punkty o współrzędnych
A=(-1,0),
B=(-7,-5) i
C=(5,-5) są
wierzchołkami trójkąta.
Oblicz długość środkowej AD tego trójkąta.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Punkty
A=(x_A, y_A) i
B=(x_B, y_B)
są końcami odcinka, do którego należy punkt
P=(x_P, y_P)
taki, że
|PB|:|AP|=1:3.
Podaj x_P.
Dane
x_A=8
y_A=-4
x_B=2
y_B=8
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 66/253 [26%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Zielony czworokąt na rysunku jest kwadratem oraz
|AC|=48 i
|BC|=73:
Jakim procentem pola powierzchni trójkąta ABC
jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Obwód trójkąta prostokątnego ma długość
\frac{77}{2}, a
stosunek długość przyprostokątnych tego trójkąta jest równy
33:56.
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
78 i ramieniu długości
89, jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
W trójkącie równoramiennym
ABC podstawa
AB
ma długość
30, a wysokość
CD ma
taką samą długośc jak odcinek łączący punkt
D ze środkiem boku
BC.
Oblicz długość wysokości CD.
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=78 i ramieniu
|BC|=89:
Oblicz |MN|.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)