Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Obwód wielokąta jest równy 127. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 107 i 122.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 8, 12, 16 T/N : 16, 20, 24
T/N : 4\sqrt{10}, 4\sqrt{6}, 4\sqrt{5}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 325/461 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinki DE i AB są równoległe, przy czym |CD|=\frac{1}{3} i |CE|=\frac{4}{3}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 61. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-11596 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[2m+n, m-3n+3] oraz \vec{v}=[m, -n+8] są równe.

Wyznacz wartości parametrów m i n

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Trzy liczby x+14, -8-x i 4x+60 są długościami boków trójkąta, gdy liczba liczba x należy do przedziału (p,q).

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20722 ⋅ Poprawnie: 69/145 [47%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Trójkąt na rysunku jest równoramienny o podstawie AB, przy czym |CD|=\frac{1081}{37} oraz |DB|=\frac{288}{37}:

Oblicz |AB|.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Obwód trójkąta prostokątnego ma długość 28, a stosunek długość przyprostokątnych tego trójkąta jest równy 7:24.

Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 9.  3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=2, |DB|=132 i |BC|=157:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « W trójkącie ABC dane są: |AC|=50, |BC|=50 i |AB|=28. Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm