Podgląd testu : lo2@sp-08-planimetria-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
21 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
10 i
21. Trzeci bok tego trójkąta należy do przedziału
(a,b).
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{1}{3} i
|CE|=\frac{7}{12}:
Oblicz x.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Przedstawione na rysunku trójkąty
ABC i
PQR są podobne.
Oblicz długość boku
AB trójkąta
ABC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3). Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u}.
Zatem:
Odpowiedzi:
|
A. A=(18,14)
|
B. A=(15,-25)
|
|
C. A=(-7,12)
|
D. A=(11,-18)
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
» W trójkącie
ABC dane są:
A=(-7,-2),
C=(-1,1).
Punkt
D jest środkiem boku
AB, a
\overrightarrow{CD}=[-2, -6].
Wierzchołek B tego trójkąta ma współrzędne
B=(x_B, y_B). Podaj x_B.
Odpowiedź:
x_B=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
E=(x_E, y_E) jest środkiem
boku
BC tego trójkąta. Podaj
y_E.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
|AC|=5
|BC|=5
|AB|=6
W trójkącie równoramiennym
ABC dane są długości boków
|AB|=6,
|AC|=5 i
|BC|=5.
Oblicz odległość środka wysokości CD tego trójkąta
od jego ramienia.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
x=15 i
y=\frac{11}{4}:
Długość tego okręgu jest równa p\cdot \pi.
Podaj liczbę p.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 2/2 [100%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
10 i ramieniu długości
13, jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
W trójkącie prostokątnym najkrótszy bok ma długość
\frac{5}{2}, a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
\frac{1}{2}.
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz odległość punktu przecięcia się środkowych tego trójkąta od
wierzchołka kąta prostego.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M.
Oblicz |AM|.
Odpowiedź: