Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 6300^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{2}, jest:
Odpowiedzi:
A. jest prostokątny B. nie istnieje
C. jest rozwartokątny D. jest ostrokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{2}{3}, |DE|=\frac{1}{4} i |AB|=\frac{1}{3}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{19}, 3\sqrt{19} i 4\sqrt{19} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{12\sqrt{19}}{5} B. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
C. \frac{4\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5} D. \frac{4\sqrt{19}}{5},\frac{6\sqrt{19}}{5},\frac{12\sqrt{19}}{5}
Zadanie 5.  1 pkt ⋅ Numer: pr-11596 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[2m+n+3, m-3n+9] oraz \vec{v}=[m, -n+8] są równe.

Wyznacz wartości parametrów m i n

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20297 ⋅ Poprawnie: 73/142 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Punkty A=(-1,8) oraz B=(2,4) dzielą odcinek MN na trzy równe części i są położone na odcinku w kolejności M, A, B i N. Wyznacz końce tego odcinka.

Podaj sumę współrzędnych punktu M=(x_M,y_M).

Odpowiedź:
x_M+y_M= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj sumę współrzędnych punktu N=(x_N,y_N).
Odpowiedź:
x_N+y_N= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20882 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« W prostokącie ABCD punkt M należy do boku CD i jest tak położony, że AM\perp BD. Przekątna BD przecina odcinek AM w punkcie N oraz |AN|=81 i |NM|=9.

Oblicz długość przekątnej AC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz obwód tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym x=45 i y=\frac{19}{4}:

Długość tego okręgu jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 9.  3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=8, |DB|=144 i |BC|=145:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC kąt przy wierzchołku A jest prosty oraz |AB|=60 i |AC|=11. Odcinek AE jest środkową tego trójkąta, zaś odcinek AF jego wysokością.

Oblicz |EF|.

Odpowiedź:
|EF|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkącie dane są: |AC|=30 oraz |BC|=36. Środkowe tego trójkata AM i BN przecinają się pod kątem prostym.

Oblicz długość boku AB tego trójkąta.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm