Dany jest trójkąt równoramienny ABC, w którym
|AC|=|AB|=26, a punkt D jest środkiem podstawy
AB. Okrąg o środku D jest styczny do prostej
AC w punkcie M. Punkt K
leży na boku AC, punkt L leży na boku
BC, odcinek KL jest styczny do rozważanego okręgu
oraz |KC|=|LC|=2 (zobacz rysunek).
Oblicz |KL|.
Odpowiedź:
|KL|=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
Oblicz \frac{|AM|}{|MC|}.
Odpowiedź:
|AM|:|MC|=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=20 i |AB|=24.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=42. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 100/201 [49%]
» Wysokości trójkąta prostokątnego mają długości
\frac{24}{5}, 6 i
8. Wyznacz długości odcinków, na jakie wysokość
opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.
Podaj długość krótszego z tych odcinków.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]