Punkt S=\left(\frac{21}{2},\frac{37}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-3,-6]. Wyznacz współrzędne punktu A.
Podaj x_A.
Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%]
(2 pkt)
« W trójkącie równoramiennym ABC o podstawie
AB, wysokość AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku 1:k.
Wiedząc, że liczby k i \alpha
są naturalne dodatnie wykaż, że miara kąta \alpha
jest dzielnikiem liczby 90.
Podaj ilość takich k, które są liczbami nieparzystymi.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20870 ⋅ Poprawnie: 30/46 [65%]
« Podstawa AB trójkąta ostrokątnego ma długość 44 cm,
a wysokość opuszczona na tę podstawę ma długość 42 cm. W ten trójkąt
wpisano kwadrat tak, że dwa jego wierzchołki należą do jego podstawy AB,
a dwa - do boków AC i BC.
Oblicz długość boku tego kwadratu.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 1/1 [100%]
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{35}{4},
|AB|=14,
|AD|=7 i
|BC|=\frac{21}{4}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%]