Podgląd testu : lo2@sp-08-planimetria-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
22 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2+\sqrt{2} , jest:
Odpowiedzi:
A. jest prostokątny
B. jest rozwartokątny
C. jest ostrokątny
D. nie istnieje
Zadanie 3. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{5}{12} ,
|DC|=\frac{1}{3} i
|DE|=\frac{3}{4} :
Oblicz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka
x :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
60^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» W trójkącie
ABC dane są:
A=(-7,-1) ,
C=(-1,2) .
Punkt
D jest środkiem boku
AB , a
\overrightarrow{CD}=[-2, -6] .
Wierzchołek B tego trójkąta ma współrzędne
B=(x_B, y_B) . Podaj x_B .
Odpowiedź:
x_B=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
E=(x_E, y_E) jest środkiem
boku
BC tego trójkąta. Podaj
y_E .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20246 ⋅ Poprawnie: 80/121 [66%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Odcinki
AD i
BE
przecinają się w punkcie
C . W trójkątach
ABC i
CDE zachodzą
związki:
|\sphericalangle CAB|=|\sphericalangle CED| ,
|AC|=5 ,
|BC|=3 ,
|CE|=10 , jak na rysunku.
Oblicz długość boku CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Boki trójkąta prostokątnego mają długości:
a ,
6 i
11 .
Podaj najmniejszą możliwą wartość a .
Odpowiedź:
a_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość
a .
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=1 ,
|DB|=105 i
|BC|=137 :
Wyznacz długości odcinków CF i
FB . Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=16 i
|AC|=12 .
Oblicz odległość środka ciężkości trójkąta ABC
od punktu A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Punkt
E jest środkiem przeciwprostokątnej
AB trójkąta
ABC .
Odcinek
DE ma długość 1, jak na rysunku.
Oblicz obwód trójkąta ABC .
Odpowiedź:
L_{\triangle ABC}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż