Podgląd testu : lo2@sp-09-trygonom-1-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{2}{5} .
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
30^{\circ} , a podstawy mają długości
4 i
10 .
Oblicz długość wysokości tego trapezu.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
5\sin\alpha-2\sqrt{2}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{\cos\alpha\cdot (3-3\sin^2\beta)\cdot \tan\alpha}
{2\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. \frac{1}{2}\sin\alpha
B. \frac{3}{2}\tan\alpha
C. \frac{3}{2}
D. \frac{3}{2}\cos\alpha
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{60^{\circ}}-\sin{45^{\circ}})(\cot{60^{\circ}}-\cos{30^{\circ}})
.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20257 ⋅ Poprawnie: 69/146 [47%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Kąt
\beta jest ostry oraz
\tan\beta=\frac{5}{12} . Oblicz
\sin\beta+\cos\beta .
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20729 ⋅ Poprawnie: 72/303 [23%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Cięciwa
AB jest średnicą okręgu na rysunku:
Oblicz \tan\sphericalangle ABM .
Dane
|AP|=12
|PB|=3
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\sin\sphericalangle MAB .
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Kąt
\alpha jest ostry i spełnia równość
\frac{3}{\sin^2\alpha}+\frac{3}{\cos^2\alpha}=27
.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha .
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha spełnia warunek
\alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ})
oraz
\sin\alpha=\frac{\sqrt{7}}{4} .
Wyznacz najmniejszą wartość wyrażenia
\cos\alpha+\tan\alpha .
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Wyznacz największą wartość wyrażenia
\cos\alpha+\tan\alpha .
Odpowiedź:
Rozwiąż