Podgląd testu : lo2@sp-09-trygonom-1-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« W trójkącie prostokątnym przyprostokątne mają długość
4\sqrt{5} i
3 .
Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dany jest trójkąt:
Oblicz długość odcinka BD .
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 45^{\circ}+\cot 30^{\circ}
\right)^2-\sin 45^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
7\cos^2\alpha-1=\frac{4}{7} .
Oblicz
\sin\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=2\sin\alpha .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{45^{\circ}}-\sin{60^{\circ}})(\cot{45^{\circ}}-\cos{30^{\circ}})
.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W równoległoboku dany jest sinus kąta ostrego
\alpha
oraz wysokość
h opuszczona na dłuższy bok tego
równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku
wynosi
k .
Oblicz długość obwodu tego równoległoboku.
Dane
\sin\alpha=\frac{1}{3}=0.33333333333333
h=18
k=\frac{19}{2}=9.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20288 ⋅ Poprawnie: 128/193 [66%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W prostokątnym trójkącie
ABC na przeciwprostokątnej
AB wybrano punkt
D , a na
przyprostokątnej
BC punkt
E w taki sposób, że
DE||AC oraz
|BE|=|CE|=d .
Wyznacz tangens kąta EDC .
Dane
|AC|=22
d=11
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 43/96 [44%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Kąty
\alpha i
\beta są
kątami ostrymi w pewnym trójkącie prostokątnym oraz
\sin\alpha+\sin\beta=\frac{4\sqrt{34}}{17} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Kąt
\alpha jest kątem ostrym oraz zachodzi
równość
2\cos^2\alpha+6\sin^2\alpha=5 .
Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż