Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 833/995 [83%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest ostry i
\cos\alpha=\frac{45}{53}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach
8 i
9.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3}.
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
10\cos^2\alpha-3=\frac{7}{10}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
a=7
b=10
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{7}}{10}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{45^{\circ}}-\sin{60^{\circ}})(\cot{45^{\circ}}-\cos{30^{\circ}})
.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20257 ⋅ Poprawnie: 69/146 [47%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Kąt
\beta jest ostry oraz
\tan\beta=\frac{28}{45}. Oblicz
\sin\beta+\cos\beta.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20729 ⋅ Poprawnie: 72/303 [23%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Cięciwa
AB jest średnicą okręgu na rysunku:
Oblicz \tan\sphericalangle ABM.
Dane
|AP|=18
|PB|=8
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\sin\sphericalangle MAB.
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Kąt
\alpha jest ostry i spełnia równość
\frac{2}{\sin^2\alpha}+\frac{2}{\cos^2\alpha}=18
.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.
Odpowiedź:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąty
\alpha i
\beta są kątami ostrymi w trójkącie prostokątnym i spełniają.
warunek
\sin\alpha+\sin\beta=\frac{10}{9}.
Oblicz \sin\alpha\cdot \sin\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
\cos\alpha\cdot \cos\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)