Podgląd testu : lo2@sp-09-trygonom-1-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Drabinę o długości
5 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
2 metrów od
tego muru.
Kąt \alpha , pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
A. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
B. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
C. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
D. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
Zadanie 2. 1 pkt ⋅ Numer: pp-10649 ⋅ Poprawnie: 291/488 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« W trójkącie prostokątnym najdłuższy bok ma długość
41 , a najkrótszy
9 .
Oblicz tangens największego kąta ostrego tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{13} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{2}{7} .
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{30^{\circ}}-\sin{45^{\circ}})(\cot{30^{\circ}}-\cos{60^{\circ}})
.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W równoległoboku dany jest sinus kąta ostrego
\alpha
oraz wysokość
h opuszczona na dłuższy bok tego
równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku
wynosi
k .
Oblicz długość obwodu tego równoległoboku.
Dane
\sin\alpha=\frac{2}{9}=0.22222222222222
h=18
k=\frac{17}{2}=8.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20288 ⋅ Poprawnie: 128/193 [66%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W prostokątnym trójkącie
ABC na przeciwprostokątnej
AB wybrano punkt
D , a na
przyprostokątnej
BC punkt
E w taki sposób, że
DE||AC oraz
|BE|=|CE|=d .
Wyznacz tangens kąta EDC .
Dane
|AC|=32
d=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=\frac{2}{9} , oblicz wartość wyrażenia
w=
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2} .
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż