Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Drabinę o długości
4 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
1 metrów od
tego muru.
Kąt \alpha, pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
|
A. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
|
B. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
|
|
C. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
|
D. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dane są długości boków
|BC|=7 i
|AC|=3 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\cos\beta.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
22\sqrt{3}, tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
64\sin^2\alpha+\cos^2\beta=1.
Oblicz \tan\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=150^{\circ},
\beta=120^{\circ} i
h=11.
Oblicz obwód czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Kąt
\alpha jest ostry oraz
\tan\alpha+36\cot\alpha=12.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/160 [21%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC o
przeciwprostokątnej
AB kąt
CAB ma miarę
\alpha.
Oblicz pole koła opisanego na tym trójkącie.
Dane
\sin\alpha=\frac{4}{7}=0.57142857142857
|AC|=11
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Oblicz wartość wyrażenia
\left(\frac{1}{7}-\frac{1}{7}\sin^2\alpha\right)(1+\tan^2\alpha)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« O kącie
\alpha wiadomo, że jest ostry i
\sin\alpha=\frac{1}{4}.
Oblicz wartość wyrażenia 2\tan^2\alpha+1.
Odpowiedź:
(wpisz dwie liczby całkowite)