Podgląd testu : lo2@sp-09-trygonom-1-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin \alpha=\frac{1}{11} .
Wówczas:
Odpowiedzi:
A. \cos\alpha=\frac{\sqrt{122}}{11}
B. \cos\alpha=\frac{\sqrt{119}}{11}
C. \cos\alpha \lessdot \frac{\sqrt{119}}{11}
D. \cos\alpha > \frac{\sqrt{119}}{11}
Zadanie 2. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
60^{\circ} , a podstawy mają długości
4 i
7 .
Oblicz długość wysokości tego trapezu.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
13\sin\alpha-2\sqrt{2}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{6}{5} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=135^{\circ} ,
\beta=120^{\circ} i
h=10 .
Oblicz obwód czworokąta ABCD .
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 106/199 [53%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Kąt
\beta jest ostry. Oblicz wartość wyrażenia
\sin^2\beta-3\cos^2\beta .
Dane
\sin\beta=\frac{\sqrt{3}}{6}=0.28867513459481
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/253 [42%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Czworokąt na rysunku jest rombem o obwodzie długości
L :
Oblicz \cos\alpha .
Dane
L=136
|DB|=32
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/87 [40%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla pewnego kąta
\alpha\in\langle 0,90^{\circ})
funkcje trygonometryczne sinus i cosinus mają wartości
\sin\alpha=x-\frac{1}{3} i
\cos\alpha=x+\frac{1}{3} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2} .
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż