Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest ostry i \sin \alpha=\frac{1}{15}.

Wówczas:

Odpowiedzi:
A. \cos\alpha \lessdot \frac{\sqrt{223}}{15} B. \cos\alpha=\frac{\sqrt{223}}{15}
C. \cos\alpha > \frac{\sqrt{223}}{15} D. \cos\alpha=\frac{\sqrt{226}}{15}
Zadanie 2.  1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach 8 i 10.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 25\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{6\sqrt{2}}{17}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{9}{7}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w= (\tan{45^{\circ}}-\sin{30^{\circ}})(\cot{45^{\circ}}-\cos{60^{\circ}}) .
Odpowiedź:
w= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W równoległoboku dany jest sinus kąta ostrego \alpha oraz wysokość h opuszczona na dłuższy bok tego równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku wynosi k.

Oblicz długość obwodu tego równoległoboku.

Dane
\sin\alpha=\frac{11}{13}=0.84615384615385
h=20
k=\frac{23}{2}=11.50000000000000
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/253 [42%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Czworokąt na rysunku jest rombem o obwodzie długości L:

Oblicz \cos\alpha.

Dane
L=164
|DB|=18
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \tan\beta.
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20263 ⋅ Poprawnie: 71/142 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Podaj wartość \tan\alpha wiedząc, że \frac{2\sin\alpha +4\cos\alpha+1}{3\sin\alpha-7\cos\alpha-4}=-\frac{1}{4} :
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \sin\alpha=\frac{15}{113}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm