Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym w trójkącie prostokątnym.
Przeciwprostokątna tego trójkąta ma długość
20, a
\cos\alpha=\frac{1}{10}.
Wynika z tego, że:
Odpowiedzi:
|
A. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
|
B. przyprostokatna tego trójkąta ma długość 1
|
|
C. \sin\alpha=\frac{9}{10}
|
D. jedna z przyprostokątnych jest 10 razy krótsza od przeciwprostokątnej
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
|
A. 50^{\circ} \lessdot \alpha < 60^{\circ}
|
B. 30^{\circ} \lessdot \alpha < 35^{\circ}
|
|
C. \alpha=30^{\circ}
|
D. \alpha=45^{\circ}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 60^{\circ}+\cot 30^{\circ}
\right)^2-\sin 45^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{5}{3}.
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
a=7
b=3
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{7}}{3}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC, w którym
a=40
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
W pewnym trójkącie prostokątnym przyprostokątne mają długość
8 i
3, a jeden z kątów
ostrych tego trójkąta ma miarę
\alpha.
Oblicz \sin\alpha\cdot \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC kąt przy wierzchołku
A jest prosty, a kąt przy wierzchołku
B ma miarę
\beta.
Oblicz \tan \beta.
Dane
\sin\beta=\frac{1}{10}=0.10000000000000
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Oblicz wartość wyrażenia
\left(\frac{1}{8}-\frac{1}{8}\sin^2\alpha\right)(1+\tan^2\alpha)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\tan\alpha=-\frac{8}{15}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)