Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{3}{5}.
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
|
A. \alpha=45^{\circ}
|
B. 30^{\circ} \lessdot \alpha < 35^{\circ}
|
|
C. \alpha=30^{\circ}
|
D. 50^{\circ} \lessdot \alpha < 60^{\circ}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
16\sqrt{3}, tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
36\sin^2\alpha+\cos^2\beta=1.
Oblicz \tan\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/336 [59%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{3}{5}.
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=150^{\circ},
\beta=120^{\circ} i
h=10.
Oblicz obwód czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20269 ⋅ Poprawnie: 156/399 [39%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Kąt
\alpha jest ostry oraz
\cos\alpha=\frac{3}{5}.
Oblicz średnią
arytmetyczną liczb a=\sin\alpha,
b=\frac{1}{2} i
c=\frac{1}{3}\tan\alpha.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20740 ⋅ Poprawnie: 46/387 [11%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Dany jest trójkąt:
Oblicz |AC|. Do obliczeń użyj przybliżeń wartości
funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Dane
\alpha=44^{\circ}
\beta=102^{\circ}
h=16
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
|AB|. Do obliczeń użyj przybliżeń wartości
funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{28}{53}.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20742 ⋅ Poprawnie: 24/91 [26%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
«« Kąt
\alpha jest kątem rozwartym oraz
\sin\alpha=\frac{\sqrt{3}}{2}.
Wyznacz rozwiązanie
równania
(x-4)\cos^2\alpha=x+\tan\alpha-3
.
Odpowiedź:
x=
(liczba zapisana dziesiętnie)