Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{112}{15}.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta, w którym
\sin\alpha=\frac{\sqrt{22}}{11}.
Oblicz \cot \beta.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3}.
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
16\sin^2\alpha+\cos^2\beta=1.
Oblicz \tan\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{1}{6}.
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Oblicz
x-y, gdy
x=\sin^4{30^{\circ}}-\cos^4{30^{\circ}},
y=1-4\sin^2{30^{\circ}}\cdot \cos^2{30^{\circ}}.
Odpowiedź:
x-y=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Kąt
\alpha jest ostry oraz
\tan\alpha+9\cot\alpha=6.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/160 [21%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC o
przeciwprostokątnej
AB kąt
CAB ma miarę
\alpha.
Oblicz pole koła opisanego na tym trójkącie.
Dane
\sin\alpha=\frac{4}{17}=0.23529411764706
|AC|=12
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Oblicz wartość wyrażenia
\left(\frac{1}{3}-\frac{1}{3}\sin^2\alpha\right)(1+\tan^2\alpha)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\tan\alpha=-\frac{15}{112}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)