Podgląd testu : lo2@sp-09-trygonom-1-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10617 ⋅ Poprawnie: 398/560 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{4\sqrt{41}}{41} .
Oblicz wartość wyrażenia
1+\tan\alpha\cdot\cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 395/648 [60%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{3}{5} i
|AB|=10 .
Oblicz długość boku BC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
17\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
9\sin\alpha-\sqrt{7}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=10\sin\alpha .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{45^{\circ}}-\sin{30^{\circ}})(\cot{45^{\circ}}-\cos{60^{\circ}})
.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 106/199 [53%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Kąt
\beta jest ostry. Oblicz wartość wyrażenia
\sin^2\beta-3\cos^2\beta .
Dane
\sin\beta=\frac{\sqrt{3}}{7}=0.24743582965270
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC kąt przy wierzchołku
A jest prosty, a kąt przy wierzchołku
B ma miarę
\beta .
Oblicz \tan \beta .
Dane
\sin\beta=\frac{1}{7}=0.14285714285714
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz wartość wyrażenia
w=
\frac{-6\sin\alpha -2\cos\alpha}
{-2\cos\alpha +\sin\alpha}
,
jeśli wiadomo, że
\alpha jest kątem ostrym
oraz
\tan\alpha=4 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąty
\alpha i
\beta są kątami ostrymi w trójkącie prostokątnym i spełniają.
warunek
\sin\alpha+\sin\beta=\frac{8}{7} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
\cos\alpha\cdot \cos\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż