Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W trójkącie prostokątnym przyprostokątne mają długość 7\sqrt{3} i 5.

Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Trapez na rysunku jest prostokątny:

Miara kąta \alpha spełnia warunek:

Odpowiedzi:
A. \alpha=30^{\circ} B. 50^{\circ} \lessdot \alpha < 60^{\circ}
C. \alpha=45^{\circ} D. 30^{\circ} \lessdot \alpha < 35^{\circ}
Zadanie 3.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{3\sqrt{10}}{19}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{6\cos\alpha\cdot (2-2\sin^2\beta)\cdot \tan\alpha} {4\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. 3 B. \frac{3}{2}\sin\alpha
C. 3\tan\alpha D. 3\cos\alpha
Zadanie 6.  2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz wysokości trójkata ABC, w którym a=44

Podaj długość najkrótszej z wysokości tego trójkąta.

Odpowiedź:
h_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
h_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20257 ⋅ Poprawnie: 69/146 [47%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Kąt \beta jest ostry oraz \tan\beta=\frac{48}{55}. Oblicz \sin\beta+\cos\beta.
Odpowiedź:
\sin\beta+\cos\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20288 ⋅ Poprawnie: 128/193 [66%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W prostokątnym trójkącie ABC na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób, że DE||AC oraz |BE|=|CE|=d.

Wyznacz tangens kąta EDC.

Dane
|AC|=36
d=18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 43/96 [44%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Kąty \alpha i \beta są kątami ostrymi w pewnym trójkącie prostokątnym oraz \sin\alpha+\sin\beta=\frac{7\sqrt{29}}{29}.

Oblicz \sin\alpha\cdot \sin\beta.

Odpowiedź:
\sin\alpha\cdot\sin\beta=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=6.

Oblicz wartość wyrażenia \frac{8\sin\alpha+8\cos\alpha}{13\cos\alpha-2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm