Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 801/972 [82%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest ostry i \cos\alpha=\frac{24}{25}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Oblicz długość wysokości trapezu równoramiennego o kącie ostrym 45^{\circ} i ramieniu długości 8\sqrt{3}.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 45^{\circ}+\cot 30^{\circ} \right)^2-\sin 45^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{8}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 a=5 b=6 « Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{5}}{6}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz (\tan\alpha-\sin\beta)(\cot\alpha-\cos\gamma) .
Dane
\alpha=60^{\circ}
\beta=30^{\circ}
\gamma=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Przekątne prostokąta maja długość d i przecinają się pod kątem o mierze \alpha.

Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do trzech miejsc po przecinku).

Dane
d=32
\alpha=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20740 ⋅ Poprawnie: 46/387 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest trójkąt:

Oblicz |AC|. Do obliczeń użyj przybliżeń wartości funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.

Dane
\alpha=46^{\circ}
\beta=96^{\circ}
h=14
Odpowiedź:
|AC|=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz |AB|. Do obliczeń użyj przybliżeń wartości funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wiedząc, że \tan\alpha=a, oblicz \frac{3\sin\alpha\cos\alpha-2\sin^2\alpha} {7\cos^2\alpha-3\sin\alpha\cos\alpha} .
Dane
a=\frac{2}{7}=0.285714285714
Odpowiedź:
m\sqrt{n}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
« O kącie \alpha wiadomo, że jest ostry i \sin\alpha=\frac{1}{4}.

Oblicz wartość wyrażenia 2\tan^2\alpha+1.

Odpowiedź:
2\tan^2\alpha+1=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm