Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 462/656 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Przeciwprostokątna trójkąta ma długość 10, zaś \alpha jest jednym z dwóch kątów ostrych tego trójkąta i \sin\alpha=\frac{\sqrt{2}}{5}.

Oblicz długość a przyprostokątnej przyległej do kąta \alpha.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwprostokątna AB trójkąta ABC ma długość \frac{13}{2}, a \cos \sphericalangle B=\frac{12}{13}.

Oblicz długość przyprostokątnej BC tego trójkąta.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 10\cos^2\alpha-2=\frac{3}{10}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia \log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}} .
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem. Wiadomo, że \alpha=150^{\circ}, \beta=135^{\circ} i h=5.

Oblicz obwód czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W równoległoboku dany jest sinus kąta ostrego \alpha oraz wysokość h opuszczona na dłuższy bok tego równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku wynosi k.

Oblicz długość obwodu tego równoległoboku.

Dane
\sin\alpha=\frac{4}{5}=0.80000000000000
h=10
k=\frac{5}{2}=2.50000000000000
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20740 ⋅ Poprawnie: 46/387 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest trójkąt:

Oblicz |AC|. Do obliczeń użyj przybliżeń wartości funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.

Dane
\alpha=48^{\circ}
\beta=98^{\circ}
h=10
Odpowiedź:
|AC|=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz |AB|. Do obliczeń użyj przybliżeń wartości funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia w= \frac{-5\sin\alpha -3\cos\alpha} {-3\cos\alpha +3\sin\alpha} , jeśli wiadomo, że \alpha jest kątem ostrym oraz \tan\alpha=3.
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha spełnia warunek \alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ}) oraz \sin\alpha=\frac{\sqrt{7}}{4}.

Wyznacz najmniejszą wartość wyrażenia \cos\alpha+\tan\alpha.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Wyznacz największą wartość wyrażenia \cos\alpha+\tan\alpha.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm