Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąty ostre \alpha i \beta trójkąta prostokątnego spełniają warunek \frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{11}}{11}. Oblicz \cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}.

Podaj liczby a, b i c.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Oblicz długość wysokości trapezu równoramiennego o kącie ostrym 30^{\circ} i ramieniu długości 7\sqrt{2}.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2}{3}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia \log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}} .
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{45^{\circ}}-\cos^4{45^{\circ}}, y=1-4\sin^2{45^{\circ}}\cdot \cos^2{45^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 106/199 [53%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Kąt \beta jest ostry. Oblicz wartość wyrażenia \sin^2\beta-3\cos^2\beta.
Dane
\sin\beta=\frac{\sqrt{3}}{6}=0.28867513459481
Odpowiedź:
\sin^2\beta-3\cos^2\beta=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/160 [21%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostokątnym ABC o przeciwprostokątnej AB kąt CAB ma miarę \alpha.

Oblicz pole koła opisanego na tym trójkącie.

Dane
\sin\alpha=\frac{5}{9}=0.55555555555556
|AC|=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz \tan\alpha wiedząc, że 8\sin^2\alpha+18\cos^2\alpha=17 i \alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \sin\alpha=\frac{20}{29}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm