Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{19}{21}.
Wówczas:
Odpowiedzi:
|
A. \alpha\in(50^{\circ},54^{\circ})
|
B. \alpha\in(36^{\circ},40^{\circ})
|
|
C. \alpha\in(44^{\circ},50^{\circ})
|
D. \alpha\in(40^{\circ},44^{\circ})
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Przeciwprostokątna
AB trójkąta
ABC ma długość
26,
a
\cos \sphericalangle B=\frac{12}{13}.
Oblicz długość przyprostokątnej BC tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}60^{\circ}-\sin 30^{\circ}\cdot \cos 60^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
13\sin\alpha-\sqrt{3}\cos\alpha=0.
Oblicz \tan\alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=45^{\circ},
\beta=60^{\circ} i
|DB|=6:
Oblicz długość obwodu czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20274 ⋅ Poprawnie: 195/446 [43%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Kąt
\alpha jest ostry. Oblicz wartość wyrażenia
2+\sin^3\alpha+\sin\alpha\cdot \cos^2\alpha.
Dane
\cos\alpha=\frac{\sqrt{7}}{4}=0.66143782776615
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 197/415 [47%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Przyprostokątne trójkąta mają długości
2 i
8, a jeden z kątów ostrych tego trójkąta ma miarę
\beta.
Oblicz \sin\beta\cdot \cos\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Oblicz
\tan\alpha wiedząc, że
6\sin^2\alpha+21\cos^2\alpha=16 i
\alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\tan\alpha=-\frac{28}{45}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)