Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{2}{7}.

Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.

Odpowiedź:
\sin\alpha+\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na płaszczyźnie dane są punkty A=\left(10\sqrt{7},10\sqrt{21}\right), B=\left(0,0\right) i C=\left(10\sqrt{7},0\right).

Kąt CBA ma miarę:

Odpowiedzi:
A. 60^{\circ} B. 45^{\circ}
C. około 55^{\circ} D. 30^{\circ}
Zadanie 3.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{8}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-3=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{45^{\circ}}-\cos^4{45^{\circ}}, y=1-4\sin^2{45^{\circ}}\cdot \cos^2{45^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Przekątne prostokąta maja długość d i przecinają się pod kątem o mierze \alpha.

Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do trzech miejsc po przecinku).

Dane
d=32
\alpha=47^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/160 [21%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostokątnym ABC o przeciwprostokątnej AB kąt CAB ma miarę \alpha.

Oblicz pole koła opisanego na tym trójkącie.

Dane
\sin\alpha=\frac{8}{11}=0.72727272727273
|AC|=12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia w= \frac{\sin\alpha -3\cos\alpha} {-3\cos\alpha +2\sin\alpha} , jeśli wiadomo, że \alpha jest kątem ostrym oraz \tan\alpha=2.
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20742 ⋅ Poprawnie: 24/91 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Kąt \alpha jest kątem rozwartym oraz \sin\alpha=\frac{\sqrt{2}}{2}.

Wyznacz rozwiązanie równania (x-1)\cos^2\alpha=x+\tan\alpha .

Odpowiedź:
x= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm