Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« W trójkącie prostokątnym przyprostokątne mają długość
5\sqrt{3} i
7.
Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(10\sqrt{7},10\sqrt{21}\right),
B=\left(0,0\right) i
C=\left(10\sqrt{7},0\right).
Kąt BAC ma miarę:
Odpowiedzi:
|
A. 60^{\circ}
|
B. około 55^{\circ}
|
|
C. 30^{\circ}
|
D. 45^{\circ}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 45^{\circ}+\cot 45^{\circ}
\right)^2-\sin 30^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
8\cos^2\alpha-2=\frac{5}{8}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{10}{9}.
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=45^{\circ},
\beta=60^{\circ} i
|DB|=4:
Oblicz długość obwodu czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
W pewnym trójkącie prostokątnym przyprostokątne mają długość
3 i
5, a jeden z kątów
ostrych tego trójkąta ma miarę
\alpha.
Oblicz \sin\alpha\cdot \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC kąt przy wierzchołku
A jest prosty, a kąt przy wierzchołku
B ma miarę
\beta.
Oblicz \tan \beta.
Dane
\sin\beta=\frac{1}{7}=0.14285714285714
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 43/96 [44%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Kąty
\alpha i
\beta są
kątami ostrymi w pewnym trójkącie prostokątnym oraz
\sin\alpha+\sin\beta=\frac{7}{5}.
Oblicz \sin\alpha\cdot \sin\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20739 ⋅ Poprawnie: 78/415 [18%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\sin\alpha=\frac{\sqrt{161}}{23}.
Oblicz \cos\alpha.
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź: