Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10617 ⋅ Poprawnie: 398/560 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \sin\alpha=\frac{3\sqrt{10}}{10}.

Oblicz wartość wyrażenia 1+\tan\alpha\cdot\cos\alpha.

Odpowiedź:
1+\tan\alpha\cdot\cos\alpha= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dane są długości boków |BC|=4 i |AC|=1 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\sin\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wiadomo, że \alpha i \beta są miarami kątów ostrych trójkąta prostokątnego oraz 25\sin^2\alpha+\cos^2\beta=1.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha+2=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dany jest czworokąt, w którym \alpha=30^{\circ}, \beta=45^{\circ} i |DB|=3:

Oblicz długość obwodu czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W równoległoboku dany jest sinus kąta ostrego \alpha oraz wysokość h opuszczona na dłuższy bok tego równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku wynosi k.

Oblicz długość obwodu tego równoległoboku.

Dane
\sin\alpha=\frac{1}{6}=0.16666666666667
h=18
k=\frac{11}{2}=5.50000000000000
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostokątnym ABC kąt przy wierzchołku A jest prosty, a kąt przy wierzchołku B ma miarę \beta.

Oblicz \tan \beta.

Dane
\sin\beta=\frac{1}{5}=0.20000000000000
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 43/96 [44%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Kąty \alpha i \beta są kątami ostrymi w pewnym trójkącie prostokątnym oraz \sin\alpha+\sin\beta=\frac{5\sqrt{17}}{17}.

Oblicz \sin\alpha\cdot \sin\beta.

Odpowiedź:
\sin\alpha\cdot\sin\beta=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha spełnia warunek \alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ}) oraz \sin\alpha=\frac{\sqrt{7}}{4}.

Wyznacz najmniejszą wartość wyrażenia \cos\alpha+\tan\alpha.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Wyznacz największą wartość wyrażenia \cos\alpha+\tan\alpha.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm