Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 834/996 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest ostry i \cos\alpha=\frac{15}{17}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dane są długości boków |BC|=9 i |AC|=2 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\cos\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 27\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{3\sqrt{10}}{19}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 a=7 b=3 « Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{7}}{3}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dany jest czworokąt, w którym \alpha=30^{\circ}, \beta=60^{\circ} i |DB|=7:

Oblicz długość obwodu czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20274 ⋅ Poprawnie: 195/446 [43%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Kąt \alpha jest ostry. Oblicz wartość wyrażenia 2+\sin^3\alpha+\sin\alpha\cdot \cos^2\alpha.
Dane
\cos\alpha=\frac{\sqrt{7}}{3}=0.88191710368820
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Kąty \alpha i \beta są kątami ostrymi w trójkącie prostokątnym.

Oblicz \tan\alpha\cdot \sin\beta.

Dane
\cos\alpha=\frac{2}{9}=0.22222222222222
Odpowiedź:
\tan\alpha\cdot\sin\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wiedząc, że \tan\alpha=\frac{1}{5}, oblicz wartość wyrażenia w= \frac{3\sin\alpha\cos\alpha-2\sin^2\alpha} {7\cos^2\alpha-3\sin\alpha\cos\alpha} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha spełnia warunek \alpha\in(90^{\circ},180^{\circ}) oraz \tan\alpha=-\frac{8}{15}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm