Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 7 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Dane są długości boków |BC|=10 i |AC|=7 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\cos\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{5}{6}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 a=6 b=11 « Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{6}}{11}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem. Wiadomo, że \alpha=135^{\circ}, \beta=150^{\circ} i h=10.

Oblicz obwód czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \alpha jest ostry oraz \tan\alpha+36\cot\alpha=12.

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Kąty \alpha i \beta są kątami ostrymi w trójkącie prostokątnym.

Oblicz \tan\alpha\cdot \sin\beta.

Dane
\cos\alpha=\frac{5}{9}=0.55555555555556
Odpowiedź:
\tan\alpha\cdot\sin\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia w= \frac{-4\sin\alpha +5\cos\alpha} {5\cos\alpha +2\sin\alpha} , jeśli wiadomo, że \alpha jest kątem ostrym oraz \tan\alpha=5.
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha spełnia warunek \alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ}) oraz \sin\alpha=\frac{\sqrt{7}}{4}.

Wyznacz najmniejszą wartość wyrażenia \cos\alpha+\tan\alpha.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Wyznacz największą wartość wyrażenia \cos\alpha+\tan\alpha.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm