Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 461/655 [70%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
18, zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{\sqrt{6}}{3}.
Oblicz długość a przyprostokątnej przyległej do kąta \alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
|
A. 30^{\circ} \lessdot \alpha < 35^{\circ}
|
B. \alpha=30^{\circ}
|
|
C. 50^{\circ} \lessdot \alpha < 60^{\circ}
|
D. \alpha=45^{\circ}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3}.
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{\sqrt{42}}{13}.
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-5=m
gdzie
\alpha jest kątem ostrym.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=135^{\circ},
\beta=150^{\circ} i
h=8.
Oblicz obwód czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
W pewnym trójkącie prostokątnym przyprostokątne mają długość
6 i
9, a jeden z kątów
ostrych tego trójkąta ma miarę
\alpha.
Oblicz \sin\alpha\cdot \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20288 ⋅ Poprawnie: 128/193 [66%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
W prostokątnym trójkącie
ABC na przeciwprostokątnej
AB wybrano punkt
D, a na
przyprostokątnej
BC punkt
E w taki sposób, że
DE||AC oraz
|BE|=|CE|=d.
Wyznacz tangens kąta EDC.
Dane
|AC|=26
d=13
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=\frac{1}{4}, oblicz wartość wyrażenia
w=
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{39}{89}.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)