Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 461/655 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Przeciwprostokątna trójkąta ma długość 18, zaś \alpha jest jednym z dwóch kątów ostrych tego trójkąta i \sin\alpha=\frac{\sqrt{6}}{3}.

Oblicz długość a przyprostokątnej przyległej do kąta \alpha.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Trapez na rysunku jest prostokątny:

Miara kąta \alpha spełnia warunek:

Odpowiedzi:
A. 30^{\circ} \lessdot \alpha < 35^{\circ} B. \alpha=30^{\circ}
C. 50^{\circ} \lessdot \alpha < 60^{\circ} D. \alpha=45^{\circ}
Zadanie 3.  1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości 1 oraz \sqrt{3}.

Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{\sqrt{42}}{13}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-5=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem. Wiadomo, że \alpha=135^{\circ}, \beta=150^{\circ} i h=8.

Oblicz obwód czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W pewnym trójkącie prostokątnym przyprostokątne mają długość 6 i 9, a jeden z kątów ostrych tego trójkąta ma miarę \alpha.

Oblicz \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20288 ⋅ Poprawnie: 128/193 [66%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W prostokątnym trójkącie ABC na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób, że DE||AC oraz |BE|=|CE|=d.

Wyznacz tangens kąta EDC.

Dane
|AC|=26
d=13
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wiedząc, że \tan\alpha=\frac{1}{4}, oblicz wartość wyrażenia w= \frac{3\sin\alpha\cos\alpha-2\sin^2\alpha} {7\cos^2\alpha-3\sin\alpha\cos\alpha} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \sin\alpha=\frac{39}{89}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm