Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{1}{2}.
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/176 [65%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS, która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10. Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
|
A. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
|
B. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
|
|
C. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
|
D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
9\sin^2\alpha+\cos^2\beta=1.
Oblicz \tan\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=30^{\circ},
\beta=45^{\circ} i
|DB|=6:
Oblicz długość obwodu czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
W pewnym trójkącie prostokątnym przyprostokątne mają długość
2 i
3, a jeden z kątów
ostrych tego trójkąta ma miarę
\alpha.
Oblicz \sin\alpha\cdot \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20747 ⋅ Poprawnie: 35/99 [35%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« W prostokątnym trójkącie
ABC na
przeciwprostokątnej
AB wybrano punkt
D, a na przyprostokątnej
BC punkt
E w taki sposób,
że
DE||AC.
Wyznacz tangens kąta ECD.
Dane
|AC|=10
|BE|=3
|CE|=5
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Oblicz
\tan\alpha wiedząc, że
4\sin^2\alpha+13\cos^2\alpha=12 i
\alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« O kącie
\alpha wiadomo, że jest ostry i
\sin\alpha=\frac{1}{4}.
Oblicz wartość wyrażenia 2\tan^2\alpha+1.
Odpowiedź:
(wpisz dwie liczby całkowite)