Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha spełnia warunki: \alpha\in(0^{\circ},90^{\circ}) i \tan\alpha=\frac{28}{45}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 2 i 9.

Oblicz sinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 12\cos^2\alpha-1=\frac{1}{2}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha+3=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w= (\tan{60^{\circ}}-\sin{45^{\circ}})(\cot{60^{\circ}}-\cos{30^{\circ}}) .
Odpowiedź:
w= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Przekątne prostokąta maja długość d i przecinają się pod kątem o mierze \alpha.

Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do trzech miejsc po przecinku).

Dane
d=4
\alpha=55^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Kąty \alpha i \beta są kątami ostrymi w trójkącie prostokątnym.

Oblicz \tan\alpha\cdot \sin\beta.

Dane
\cos\alpha=\frac{1}{9}=0.11111111111111
Odpowiedź:
\tan\alpha\cdot\sin\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Kąt \alpha jest ostry i spełnia równość \frac{2}{\sin^2\alpha}+\frac{2}{\cos^2\alpha}=18 .

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot \cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha spełnia warunek \alpha\in(90^{\circ},180^{\circ}) oraz \tan\alpha=-\frac{28}{45}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm