Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 834/996 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest ostry i \cos\alpha=\frac{16}{65}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Trapez na rysunku jest prostokątny:

Miara kąta \alpha spełnia warunek:

Odpowiedzi:
A. 50^{\circ} \lessdot \alpha < 60^{\circ} B. \alpha=45^{\circ}
C. \alpha=30^{\circ} D. 30^{\circ} \lessdot \alpha < 35^{\circ}
Zadanie 3.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}45^{\circ}-\sin 60^{\circ}\cdot \cos 30^{\circ}-\sin 45^{\circ}\cdot \tan 45^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz 7\sin\alpha-\sqrt{2}\cos\alpha=0.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 a=8 b=9 « Kąt \alpha jest ostry i \sin\alpha=\frac{2\sqrt{2}}{9}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem. Wiadomo, że \alpha=135^{\circ}, \beta=150^{\circ} i h=6.

Oblicz obwód czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \alpha jest ostry oraz \tan\alpha+16\cot\alpha=8.

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 197/415 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Przyprostokątne trójkąta mają długości 5 i 7, a jeden z kątów ostrych tego trójkąta ma miarę \beta.

Oblicz \sin\beta\cdot \cos\beta.

Odpowiedź:
\sin\beta\cdot\cos\beta=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20263 ⋅ Poprawnie: 71/142 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Podaj wartość \tan\alpha wiedząc, że \frac{-\sin\alpha +2\cos\alpha+1}{3\sin\alpha-7\cos\alpha-4}=-\frac{1}{4} :
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20737 ⋅ Poprawnie: 171/260 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{63}{16}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm