Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 461/655 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Przeciwprostokątna trójkąta ma długość 18, zaś \alpha jest jednym z dwóch kątów ostrych tego trójkąta i \sin\alpha=\frac{\sqrt{3}}{2}.

Oblicz długość a przyprostokątnej przyległej do kąta \alpha.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt A zaznaczony na rysunku ma współrzędne A=(-3,2):
Oblicz tangens kąta \alpha zaznaczonego na rysunku.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}45^{\circ}-\sin 45^{\circ}\cdot \cos 30^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość \cos\alpha=-\frac{1}{11}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-2=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{45^{\circ}}-\cos^4{45^{\circ}}, y=1-4\sin^2{45^{\circ}}\cdot \cos^2{45^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W równoległoboku dany jest sinus kąta ostrego \alpha oraz wysokość h opuszczona na dłuższy bok tego równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku wynosi k.

Oblicz długość obwodu tego równoległoboku.

Dane
\sin\alpha=\frac{9}{10}=0.90000000000000
h=20
k=\frac{15}{2}=7.50000000000000
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20740 ⋅ Poprawnie: 46/387 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest trójkąt:

Oblicz |AC|. Do obliczeń użyj przybliżeń wartości funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.

Dane
\alpha=46^{\circ}
\beta=98^{\circ}
h=10
Odpowiedź:
|AC|=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz |AB|. Do obliczeń użyj przybliżeń wartości funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20263 ⋅ Poprawnie: 71/142 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Podaj wartość \tan\alpha wiedząc, że \frac{\sin\alpha -\cos\alpha+1}{3\sin\alpha-7\cos\alpha-4}=-\frac{1}{4} :
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=5.

Oblicz wartość wyrażenia \frac{10\sin\alpha+7\cos\alpha}{9\cos\alpha-2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm