Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{13}{15}.
Wówczas:
Odpowiedzi:
|
A. \alpha\in(35^{\circ},39^{\circ})
|
B. \alpha\in(39^{\circ},43^{\circ})
|
|
C. \alpha\in(49^{\circ},53^{\circ})
|
D. \alpha\in(43^{\circ},49^{\circ})
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta, w którym
\sin\alpha=\frac{\sqrt{22}}{11}.
Oblicz \cot \beta.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 45^{\circ}+\cot 45^{\circ}
\right)^2-\sin 60^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{7}.
Oblicz wartość wyrażenia \cos^2\alpha-2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=150^{\circ},
\beta=120^{\circ} i
h=8.
Oblicz obwód czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20257 ⋅ Poprawnie: 69/146 [47%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Kąt
\beta jest ostry oraz
\tan\beta=\frac{8}{15}. Oblicz
\sin\beta+\cos\beta.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/160 [21%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC o
przeciwprostokątnej
AB kąt
CAB ma miarę
\alpha.
Oblicz pole koła opisanego na tym trójkącie.
Dane
\sin\alpha=\frac{7}{8}=0.87500000000000
|AC|=13
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20263 ⋅ Poprawnie: 71/142 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Podaj wartość
\tan\alpha wiedząc, że
\frac{-\sin\alpha -\cos\alpha+1}{3\sin\alpha-7\cos\alpha-4}=-\frac{1}{4}
:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\tan\alpha=-\frac{8}{15}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)