Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W trójkącie prostokątnym przyprostokątne mają długość 5\sqrt{3} i 7.

Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na płaszczyźnie dane są punkty A=\left(10\sqrt{7},10\sqrt{21}\right), B=\left(0,0\right) i C=\left(10\sqrt{7},0\right).

Kąt BAC ma miarę:

Odpowiedzi:
A. 60^{\circ} B. około 55^{\circ}
C. 30^{\circ} D. 45^{\circ}
Zadanie 3.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 45^{\circ}+\cot 45^{\circ} \right)^2-\sin 30^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 8\cos^2\alpha-2=\frac{5}{8}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{10}{9}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dany jest czworokąt, w którym \alpha=45^{\circ}, \beta=60^{\circ} i |DB|=4:

Oblicz długość obwodu czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W pewnym trójkącie prostokątnym przyprostokątne mają długość 3 i 5, a jeden z kątów ostrych tego trójkąta ma miarę \alpha.

Oblicz \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostokątnym ABC kąt przy wierzchołku A jest prosty, a kąt przy wierzchołku B ma miarę \beta.

Oblicz \tan \beta.

Dane
\sin\beta=\frac{1}{7}=0.14285714285714
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 43/96 [44%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Kąty \alpha i \beta są kątami ostrymi w pewnym trójkącie prostokątnym oraz \sin\alpha+\sin\beta=\frac{7}{5}.

Oblicz \sin\alpha\cdot \sin\beta.

Odpowiedź:
\sin\alpha\cdot\sin\beta=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20739 ⋅ Poprawnie: 78/415 [18%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha spełnia warunek \alpha\in(90^{\circ},180^{\circ}) oraz \sin\alpha=\frac{\sqrt{161}}{23}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm