Podgląd testu : lo2@sp-09-trygonom-1-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 444/634 [70%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{36}{77} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 261/358 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta , w którym
\sin\alpha=\frac{\sqrt{30}}{10} .
Oblicz \cot \beta .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/494 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 30^{\circ}+\cot 45^{\circ}
\right)^2-\sin 30^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 419/996 [42%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{2\sqrt{3}}{7} .
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 225/360 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha+3=m
gdzie
\alpha jest kątem ostrym.
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 111/396 [28%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC , w którym
a=16
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/112 [28%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Kąt
\alpha jest ostry oraz
\tan\alpha+9\cot\alpha=6 .
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha .
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 198/416 [47%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Przyprostokątne trójkąta mają długości
3 i
7 , a jeden z kątów ostrych tego trójkąta ma miarę
\beta .
Oblicz \sin\beta\cdot \cos\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/90 [38%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla pewnego kąta
\alpha\in\langle 0,90^{\circ})
funkcje trygonometryczne sinus i cosinus mają wartości
\sin\alpha=x-\frac{1}{3} i
\cos\alpha=x+\frac{1}{3} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/124 [58%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Kąt
\alpha jest kątem ostrym oraz zachodzi
równość
5\cos^2\alpha+9\sin^2\alpha=8 .
Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż