Podgląd testu : lo2@sp-09-trygonom-1-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{11}}{11} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Dane są długości boków
|BC|=10 i
|AC|=6 trójkąta prostokątnego
ABC o kącie ostrym
\beta .
Oblicz x=\sin\beta .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
19\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
49\sin^2\alpha+\cos^2\beta=1 .
Oblicz \tan\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{8}{7} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz
x-y , gdy
x=\sin^4{45^{\circ}}-\cos^4{45^{\circ}} ,
y=1-4\sin^2{45^{\circ}}\cdot \cos^2{45^{\circ}} .
Odpowiedź:
x-y=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20274 ⋅ Poprawnie: 195/446 [43%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Kąt
\alpha jest ostry. Oblicz wartość wyrażenia
2+\sin^3\alpha+\sin\alpha\cdot \cos^2\alpha .
Dane
\cos\alpha=\frac{\sqrt{5}}{8}=0.27950849718747
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20283 ⋅ Poprawnie: 54/94 [57%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB , a punkt
D jest
środkiem jego podstawy
AB .
Oblicz miarę stopniową najmniejszego kąta tego trójkąta.
Dane
|CD|=\frac{\sqrt{10}}{2}=1.58113883008419
|AC|=\sqrt{10}=3.16227766016838
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 43/96 [44%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Kąty
\alpha i
\beta są
kątami ostrymi w pewnym trójkącie prostokątnym oraz
\sin\alpha+\sin\beta=\frac{3\sqrt{5}}{5} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2} .
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż