Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąty ostre \alpha i \beta trójkąta prostokątnego spełniają warunek \frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{11}}{11}. Oblicz \cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}.

Podaj liczby a, b i c.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 3 i 5.

Oblicz sinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{7}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kąt \alpha jest ostry i spełnia warunek \sin\alpha=\frac{2}{7}. Oblicz wartość wyrażenia \sin^2\alpha-\cos^2\alpha.
Odpowiedź:
\sin^2\alpha-\cos^2\alpha=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w= (\tan{45^{\circ}}-\sin{30^{\circ}})(\cot{45^{\circ}}-\cos{60^{\circ}}) .
Odpowiedź:
w= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20274 ⋅ Poprawnie: 195/446 [43%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Kąt \alpha jest ostry. Oblicz wartość wyrażenia 2+\sin^3\alpha+\sin\alpha\cdot \cos^2\alpha.
Dane
\cos\alpha=\frac{\sqrt{5}}{4}=0.55901699437495
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20729 ⋅ Poprawnie: 72/303 [23%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Cięciwa AB jest średnicą okręgu na rysunku:

Oblicz \tan\sphericalangle ABM.

Dane
|AP|=8
|PB|=2
Odpowiedź:
\tan\sphericalangle ABM= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \sin\sphericalangle MAB.
Odpowiedź:
\sin\sphericalangle MAB= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20263 ⋅ Poprawnie: 71/142 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Podaj wartość \tan\alpha wiedząc, że \frac{-\sin\alpha -2\cos\alpha+1}{3\sin\alpha-7\cos\alpha-4}=-\frac{1}{4} :
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
» Kąt ostry \alpha spełnia równanie \sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2}.

Oblicz (\sin\alpha-\cos\alpha)^2

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm