Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Drabinę o długości 3 metrów oparto o pionowy mur, a jej podstawę umieszczono w odległości 1 metrów od tego muru.

Kąt \alpha, pod jakim ustawiono drabinę, spełnia warunek:

Odpowiedzi:
A. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ} B. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
C. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ} D. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
Zadanie 2.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 74/119 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 3 i 5.

Oblicz cosinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości 1 oraz \sqrt{3}.

Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 10\cos^2\alpha-6=\frac{7}{10}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{3\cos\alpha\cdot (2-2\sin^2\beta)\cdot \tan\alpha} {6\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. 1 B. 1\cos\alpha
C. 1\tan\alpha D. \frac{1}{2}\sin\alpha
Zadanie 6.  2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz wysokości trójkata ABC, w którym a=24

Podaj długość najkrótszej z wysokości tego trójkąta.

Odpowiedź:
h_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
h_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20269 ⋅ Poprawnie: 156/399 [39%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Kąt \alpha jest ostry oraz \cos\alpha=\frac{5}{6}.

Oblicz średnią arytmetyczną liczb a=\sin\alpha, b=\frac{1}{2} i c=\frac{1}{3}\tan\alpha.

Odpowiedź:
\overline{x}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/253 [42%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Czworokąt na rysunku jest rombem o obwodzie długości L:

Oblicz \cos\alpha.

Dane
L=136
|DB|=32
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \tan\beta.
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Kąt \alpha jest ostry oraz \sin\alpha=\frac{8}{17}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20737 ⋅ Poprawnie: 171/260 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{15}{8}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm