Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 461/655 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Przeciwprostokątna trójkąta ma długość 20, zaś \alpha jest jednym z dwóch kątów ostrych tego trójkąta i \sin\alpha=\frac{\sqrt{6}}{4}.

Oblicz długość a przyprostokątnej przyległej do kąta \alpha.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa 10, zaś długość przeciwprostokątnej jest równa 14.

Oblicz tangens mniejszego kąta ostrego w tym trójkącie.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 30^{\circ}+\cot 30^{\circ} \right)^2-\sin 45^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{5}{4}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 a=3 b=5 « Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{5}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dany jest czworokąt, w którym \alpha=30^{\circ}, \beta=45^{\circ} i |DB|=7:

Oblicz długość obwodu czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20255 ⋅ Poprawnie: 132/288 [45%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \beta jest ostry. Oblicz wartość wyrażenia 3+2\tan^2\beta.
Dane
\sin\beta=\frac{3}{4}=0.75000000000000
Odpowiedź:
3+2\tan^2\beta=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostokątnym ABC kąt przy wierzchołku A jest prosty, a kąt przy wierzchołku B ma miarę \beta.

Oblicz \tan \beta.

Dane
\sin\beta=\frac{1}{4}=0.25000000000000
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wiedząc, że \tan\alpha=\frac{2}{5}, oblicz wartość wyrażenia w= \frac{3\sin\alpha\cos\alpha-2\sin^2\alpha} {7\cos^2\alpha-3\sin\alpha\cos\alpha} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
» Kąt ostry \alpha spełnia równanie \sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2}.

Oblicz (\sin\alpha-\cos\alpha)^2

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm