Podgląd testu : lo2@sp-09-trygonom-1-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{3}{5} .
Wówczas:
Odpowiedzi:
A. \alpha\in(25^{\circ},29^{\circ})
B. \alpha\in(29^{\circ},33^{\circ})
C. \alpha\in(39^{\circ},43^{\circ})
D. \alpha\in(33^{\circ},39^{\circ})
Zadanie 2. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/176 [65%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS , która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10 . Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
A. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
B. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
C. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
Zadanie 3. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
9\sin^2\alpha+\cos^2\beta=1 .
Oblicz \tan\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{7}{5} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{30^{\circ}}-\sin{45^{\circ}})(\cot{30^{\circ}}-\cos{60^{\circ}})
.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20255 ⋅ Poprawnie: 132/288 [45%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Kąt
\beta jest ostry. Oblicz wartość wyrażenia
3+2\tan^2\beta .
Dane
\sin\beta=\frac{2}{5}=0.40000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/160 [21%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC o
przeciwprostokątnej
AB kąt
CAB ma miarę
\alpha .
Oblicz pole koła opisanego na tym trójkącie.
Dane
\sin\alpha=\frac{6}{13}=0.46153846153846
|AC|=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/87 [40%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla pewnego kąta
\alpha\in\langle 0,90^{\circ})
funkcje trygonometryczne sinus i cosinus mają wartości
\sin\alpha=x-\frac{1}{2} i
\cos\alpha=x+\frac{1}{2} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąty
\alpha i
\beta są kątami ostrymi w trójkącie prostokątnym i spełniają.
warunek
\sin\alpha+\sin\beta=\frac{8}{7} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
\cos\alpha\cdot \cos\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż