Podgląd testu : lo2@sp-09-trygonom-1-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 518/733 [70%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{4\sqrt{17}}{17}.
Oblicz \cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach
2 i
10.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 60^{\circ}+\cot 30^{\circ}
\right)^2-\sin 30^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{16}.
Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
a=8
b=3
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{2\sqrt{2}}{3}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Oblicz
x-y, gdy
x=\sin^4{60^{\circ}}-\cos^4{60^{\circ}},
y=1-4\sin^2{60^{\circ}}\cdot \cos^2{60^{\circ}}.
Odpowiedź:
x-y=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 106/199 [53%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Kąt
\beta jest ostry. Oblicz wartość wyrażenia
\sin^2\beta-3\cos^2\beta.
Dane
\sin\beta=\frac{\sqrt{3}}{10}=0.17320508075689
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/253 [42%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Czworokąt na rysunku jest rombem o obwodzie długości
L:
Oblicz \cos\alpha.
Dane
L=416
|DB|=80
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Kąt
\alpha jest ostry i spełnia równość
\frac{4}{\sin^2\alpha}+\frac{4}{\cos^2\alpha}=36
.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.
Odpowiedź:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha spełnia warunek
\alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ})
oraz
\sin\alpha=\frac{\sqrt{5}}{3}.
Wyznacz najmniejszą wartość wyrażenia
\cos\alpha+\tan\alpha.
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Wyznacz największą wartość wyrażenia
\cos\alpha+\tan\alpha.
Odpowiedź: