Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11751 ⋅ Poprawnie: 55/72 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji
g(x)=(x-8)^5+4
można otrzymać przesuwając wykres funkcji
f(x)=x^5
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11753 ⋅ Poprawnie: 45/49 [91%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wykres funkcji
g(x)=2\sqrt{x-7}-8
można otrzymać przesuwając wykres funkcji
f(x)=2\sqrt{x}
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x-2)-3
B. g(x)=f(x+2)+3
C. g(x)=f(x+3)-2
D. g(x)=f(x-2)+3
Zadanie 4. 1 pkt ⋅ Numer: pp-10772 ⋅ Poprawnie: 350/495 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)-1
B. f(x)=g(x-1)
C. f(x)=g(x)+1
D. f(x)=g(x+1)
Zadanie 5. 1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 357/509 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x+2)
B. f(x)=g(x)+2
C. f(x)=g(x)-2
D. f(x)=g(x-2)
Zadanie 6. 1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Na którym rysunku przedstawiony jest wykres funkcji y=f(x-1) :
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11746 ⋅ Poprawnie: 26/37 [70%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wykres funkcji
f(x)=3x+3 przesunięto
o wektor
\vec{u}=[7,-8] i otrzymano wykres funkcji
określonej wzorem
g(x)=bx+c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=\langle -8,-6\rangle oraz
ZW_f=\langle 7,+\infty) . O funkcji
g wiadomo, że
g(x)=-f(x) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : ZW_g=(-\infty,-7)
T/N : ZW_g=(-\infty,7)
T/N : D_g=\langle6,8\rangle
Zadanie 9. 1 pkt ⋅ Numer: pp-10768 ⋅ Poprawnie: 204/319 [63%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x) :
Funkcja, której wykres jest symetryczny do tego wykresu względem osi
Oy określona jest wzorem:
Odpowiedzi:
A. y=f(-x)+1
B. y=f(x)+1
C. y=-f(x)
D. g(x)=f(-x)
Zadanie 10. 1 pkt ⋅ Numer: pp-11395 ⋅ Poprawnie: 302/494 [61%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=-x^2+8x przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=ax^2+bx .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 11. 1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 40/47 [85%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=4\sqrt{x}+7 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=a\sqrt{x}+b .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykres funkcji
g jest symetryczny do wykresu
funkcji
f określonej wzorem
f(x)=\frac{-1}{8x+4}
względem początku układu współrzędnych.
Zapisz wzór funkcji
g w postaci
g(x)=\frac{a}{x+b} .
Podaj liczby a i b .
Odpowiedzi:
Rozwiąż