Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/256 [81%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji
g(x)=|x-1|-1
można otrzymać przesuwając wykres funkcji
f(x)=|x|
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11752 ⋅ Poprawnie: 85/111 [76%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wykres funkcji
g(x)=\frac{1}{2}(x-1)^2-1
można otrzymać przesuwając wykres funkcji
f(x)=\frac{1}{2}x^2
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x-2)-3
B. f(x)=g(x+2)-3
C. f(x)=g(x-2)+3
D. f(x)=g(x+3)-2
Zadanie 4. 1 pkt ⋅ Numer: pp-10770 ⋅ Poprawnie: 794/1066 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Dziedziną funkcji g , gdzie g(x)=f(x+5) , jest zbiór:
Odpowiedzi:
A. (0,11\rangle
B. (-7,-1\rangle
C. (-10,1\rangle
D. (3,9\rangle
Zadanie 5. 1 pkt ⋅ Numer: pp-10774 ⋅ Poprawnie: 472/595 [79%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Na którym rysunku przedstawiony jest wykres funkcji y=f(x)-2 :
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Na którym rysunku przedstawiony jest wykres funkcji y=f(x)-1 :
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wykres funkcji
f(x)=x^2+2x+1 przesunięto
o wektor
\vec{u}=[-4,1] i otrzymano wykres funkcji
określonej wzorem
g(x)=x^2+bx+c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-10783 ⋅ Poprawnie: 409/519 [78%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Na rysunku 1. jest przedstawiony wykres funkcji
f ,
a na rysunku 2. – wykres funkcji
g .
Funkcja g jest określona wzorem:
Odpowiedzi:
A. g(x)=-f(x)
B. g(x)=f(-x)
C. g(x)=f(x)+4
D. g(x)=f(x)-4
Zadanie 9. 1 pkt ⋅ Numer: pp-10785 ⋅ Poprawnie: 309/415 [74%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Na rysunkach przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(-x)-1
B. g(x)=f(-x)
C. g(x)=-f(-x)
D. g(x)=-f(x)
Zadanie 10. 1 pkt ⋅ Numer: pp-10781 ⋅ Poprawnie: 193/257 [75%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Funkcja
f ma
n=4 miejsc zerowych.
Ile miejsc zerowych ma funkcja określona wzorem g(x)=-f(x+10) ?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 1 pkt ⋅ Numer: pp-11749 ⋅ Poprawnie: 39/44 [88%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=-|x|+5 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=a|x|+b .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykres funkcji
g jest symetryczny do wykresu
funkcji
f określonej wzorem
f(x)=\frac{-1}{5x+1}
względem początku układu współrzędnych.
Zapisz wzór funkcji
g w postaci
g(x)=\frac{a}{x+b} .
Podaj liczby a i b .
Odpowiedzi:
Rozwiąż