Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11751 ⋅ Poprawnie: 55/72 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji
g(x)=(x+1)^4+2
można otrzymać przesuwając wykres funkcji
f(x)=x^4
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11752 ⋅ Poprawnie: 85/111 [76%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wykres funkcji
g(x)=\frac{1}{2}(x-2)^2+1
można otrzymać przesuwając wykres funkcji
f(x)=\frac{1}{2}x^2
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10787 ⋅ Poprawnie: 576/910 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunkach przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x-1)
B. g(x)=f(x)-2
C. g(x)=f(x+2)
D. g(x)=f(x)+2
Zadanie 4. 1 pkt ⋅ Numer: pp-10772 ⋅ Poprawnie: 350/495 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x-1)
B. g(x)=f(x+1)
C. g(x)=f(x)-1
D. g(x)=f(x)+1
Zadanie 5. 1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 363/520 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x)-2
B. g(x)=f(x-2)
C. g(x)=f(x+2)
D. g(x)=f(x)+2
Zadanie 6. 1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Na którym rysunku przedstawiony jest wykres funkcji y=f(x)-1 :
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wykres funkcji
f(x)=x^2+2x-1 przesunięto
o wektor
\vec{u}=[2,1] i otrzymano wykres funkcji
określonej wzorem
g(x)=x^2+bx+c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11397 ⋅ Poprawnie: 295/523 [56%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=(5,+\infty) oraz
ZW_f=\langle -1,2) . O funkcji
g wiadomo, że
g(x)=-f(x) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : ZW_g=(-2,1\rangle
T/N : D_g=(-5,+\infty)
Zadanie 9. 1 pkt ⋅ Numer: pp-10768 ⋅ Poprawnie: 204/319 [63%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x) :
Funkcja, której wykres jest symetryczny do tego wykresu względem osi
Ox określona jest wzorem:
Odpowiedzi:
A. y=f(-x)-1
B. y=f(-x)
C. g(x)=-f(x)
D. y=f(-x)+1
Zadanie 10. 1 pkt ⋅ Numer: pp-10782 ⋅ Poprawnie: 175/318 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x) , której miejscem zerowym jest liczba
1 oraz
f(0)=-2 :
Wskaż funkcję, której wykres jest symetryczny do tego wykresu względem osi
Ox :
Odpowiedzi:
A. y=2x+2
B. y=-2x-2
C. y=2x-2
D. y=-2x+2
Zadanie 11. 1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 40/47 [85%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=2\sqrt{x}+1 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=a\sqrt{x}+b .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykres funkcji
g jest symetryczny do wykresu
funkcji
f określonej wzorem
f(x)=\frac{5}{-x+2}
względem początku układu współrzędnych.
Zapisz wzór funkcji
g w postaci
g(x)=\frac{a}{x+b} .
Podaj liczby a i b .
Odpowiedzi:
Rozwiąż