Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10778 ⋅ Poprawnie: 649/848 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wykres funkcji y=f(x).

Aby otrzymać wykres funkcji g(x)=f(x+3)+7 wykres funkcji f należy przesunąć o wektor o współrzędnych \vec{u}=[p, q].

Podaj współrzędne p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11753 ⋅ Poprawnie: 45/49 [91%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji g(x)=4\sqrt{x-2}+2 można otrzymać przesuwając wykres funkcji f(x)=4\sqrt{x} o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10787 ⋅ Poprawnie: 576/910 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)-2 B. f(x)=g(x+2)
C. f(x)=g(x-2) D. f(x)=g(x)+2
Zadanie 4.  1 pkt ⋅ Numer: pp-10769 ⋅ Poprawnie: 327/539 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Na rysunku przedstawiony jest wykres funkcji y=f(x).

Które z równań ma dokładnie trzy rozwiązania:

Odpowiedzi:
A. f(x+2)=-2 B. f(x-3)=4
C. f(x-4)=-1 D. f(x+5)+4=0
Zadanie 5.  1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 363/520 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)-2 B. f(x)=g(x-2)
C. f(x)=g(x+2) D. f(x)=g(x)+2
Zadanie 6.  1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Na którym rysunku przedstawiony jest wykres funkcji y=f(x-1):

Odpowiedzi:
A. A B. D
C. C D. B
Zadanie 7.  1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji f(x)=x^2-x+5 przesunięto o wektor \vec{u}=[-2,2] i otrzymano wykres funkcji określonej wzorem g(x)=x^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11397 ⋅ Poprawnie: 295/523 [56%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(-8,+\infty) oraz ZW_f=\langle -6,5). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : D_g=(-\infty,8,) T/N : D_g=(8,+\infty)
Zadanie 9.  1 pkt ⋅ Numer: pp-10786 ⋅ Poprawnie: 157/277 [56%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku 1. przedstawiono wykres funkcji y=f(x) (czerwony), a na rysunku 2. wykres funkcji y=g(x) (zielony):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x-1) B. f(x)=g(-x)-1
C. f(x)=g(x+1) D. f(x)=g(-x-1)
Zadanie 10.  1 pkt ⋅ Numer: pp-10782 ⋅ Poprawnie: 175/318 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x), której miejscem zerowym jest liczba 1 oraz f(0)=-2:
Wskaż funkcję, której wykres jest symetryczny do tego wykresu względem osi Oy:
Odpowiedzi:
A. y=2x+2 B. y=2x-2
C. y=-2x+2 D. y=-2x-2
Zadanie 11.  1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 40/47 [85%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-5\sqrt{x}+6 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=a\sqrt{x}+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(2,3\rangle oraz ZW_f=\langle -4,2). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. D_g=(-3,-2\rangle B. ZW_g=(-2,4\rangle
C. ZW_g=\langle -2,4) D. ZW_g=\langle -4,2)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm