Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/255 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=|x+2|+6 można otrzymać przesuwając wykres funkcji f(x)=|x| o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11753 ⋅ Poprawnie: 45/49 [91%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji g(x)=3\sqrt{x-8}+7 można otrzymać przesuwając wykres funkcji f(x)=3\sqrt{x} o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x-2)-3 B. g(x)=f(x-2)+3
C. g(x)=f(x+2)+3 D. g(x)=f(x+3)-2
Zadanie 4.  1 pkt ⋅ Numer: pp-10772 ⋅ Poprawnie: 350/495 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)+1 B. f(x)=g(x)-1
C. f(x)=g(x-1) D. f(x)=g(x+1)
Zadanie 5.  1 pkt ⋅ Numer: pp-10774 ⋅ Poprawnie: 451/575 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Na którym rysunku przedstawiony jest wykres funkcji y=f(x-2):

Odpowiedzi:
A. C B. A
C. B D. D
Zadanie 6.  1 pkt ⋅ Numer: pp-10780 ⋅ Poprawnie: 308/424 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przestawiono wykres funkcji y=g(x).

Wykres powstał z przesunięcia wykresu funkcji f(x)=\frac{2}{x}. Zatem funkcja g określona jest wzorem:

Odpowiedzi:
A. g(x)=\frac{2}{x+1}-3 B. g(x)=\frac{2}{x+1}+3
C. g(x)=\frac{2}{x-1}+3 D. g(x)=\frac{2}{x-1}-3
Zadanie 7.  1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji f(x)=x^2-x+4 przesunięto o wektor \vec{u}=[-6,8] i otrzymano wykres funkcji określonej wzorem g(x)=x^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=\langle 4,5\rangle oraz ZW_f=\langle -4,+\infty). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : D_g=\langle4,5\rangle T/N : ZW_g=(-\infty,4)
T/N : D_g=\langle-5,-4\rangle  
Zadanie 9.  1 pkt ⋅ Numer: pp-10786 ⋅ Poprawnie: 144/257 [56%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku 1. przedstawiono wykres funkcji y=f(x) (czerwony), a na rysunku 2. wykres funkcji y=g(x) (zielony):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x-1) B. f(x)=g(-x-1)
C. f(x)=g(-x)-1 D. f(x)=g(x+1)
Zadanie 10.  1 pkt ⋅ Numer: pp-10782 ⋅ Poprawnie: 175/318 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x), której miejscem zerowym jest liczba 1 oraz f(0)=-2:
Wskaż funkcję, której wykres jest symetryczny do tego wykresu względem osi Oy:
Odpowiedzi:
A. y=-2x-2 B. y=-2x+2
C. y=2x+2 D. y=2x-2
Zadanie 11.  1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 39/46 [84%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-6\sqrt{x}+8 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=a\sqrt{x}+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 179/443 [40%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=\frac{-2}{6x-6} względem początku układu współrzędnych. Zapisz wzór funkcji g w postaci g(x)=\frac{a}{x+b}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm