Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/256 [81%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wykres funkcji
g(x)=|x+1|-4
można otrzymać przesuwając wykres funkcji
f(x)=|x|
o wektor
\vec{u}=[p,q].
Podaj współrzędne wektora p i q.
Odpowiedzi:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11753 ⋅ Poprawnie: 45/49 [91%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wykres funkcji
g(x)=4\sqrt{x-7}+4
można otrzymać przesuwając wykres funkcji
f(x)=4\sqrt{x}
o wektor
\vec{u}=[p,q].
Podaj współrzędne wektora p i q.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x):
Funkcja
g określona jest wzorem:
Odpowiedzi:
|
A. g(x)=f(x+2)+3
|
B. g(x)=f(x+3)-2
|
|
C. g(x)=f(x-2)-3
|
D. g(x)=f(x-2)+3
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10772 ⋅ Poprawnie: 350/495 [70%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x):
Funkcja
g określona jest wzorem:
Odpowiedzi:
|
A. g(x)=f(x)+1
|
B. g(x)=f(x-1)
|
|
C. g(x)=f(x)-1
|
D. g(x)=f(x+1)
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 363/520 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x):
Funkcja
g określona jest wzorem:
Odpowiedzi:
|
A. g(x)=f(x-2)
|
B. g(x)=f(x)+2
|
|
C. g(x)=f(x+2)
|
D. g(x)=f(x)-2
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x).
Na którym rysunku przedstawiony jest wykres funkcji y=f(x)-1:
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wykres funkcji
f(x)=x^2+2x+2 przesunięto
o wektor
\vec{u}=[-8,-4] i otrzymano wykres funkcji
określonej wzorem
g(x)=x^2+bx+c.
Podaj liczby b i c.
Odpowiedzi:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10783 ⋅ Poprawnie: 409/519 [78%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Na rysunku 1. jest przedstawiony wykres funkcji
f,
a na rysunku 2. – wykres funkcji
g.
Funkcja g jest określona wzorem:
Odpowiedzi:
|
A. g(x)=-f(x)
|
B. g(x)=f(x)-4
|
|
C. g(x)=f(-x)
|
D. g(x)=f(x)+4
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10768 ⋅ Poprawnie: 204/319 [63%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x):
Funkcja, której wykres jest symetryczny do tego wykresu względem osi
Ox określona jest wzorem:
Odpowiedzi:
|
A. y=f(-x)+1
|
B. g(x)=-f(x)
|
|
C. y=f(-x)-1
|
D. y=f(-x)
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10781 ⋅ Poprawnie: 193/257 [75%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Funkcja
f ma
n=3 miejsc zerowych.
Ile miejsc zerowych ma funkcja określona wzorem g(x)=-f(x-1)?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 40/47 [85%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=4\sqrt{x}+3 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=a\sqrt{x}+b.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=(-1,4\rangle oraz
ZW_f=\langle -1,3). O funkcji
g wiadomo, że
g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
|
A. ZW_g=\langle -3,1)
|
B. ZW_g=\langle -1,3)
|
|
C. D_g=(-4,1\rangle
|
D. ZW_g=(-3,1\rangle
|