Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10778 ⋅ Poprawnie: 649/848 [76%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wykres funkcji
y=f(x).
Aby otrzymać wykres funkcji g(x)=f(x-8)-9 wykres funkcji
f należy przesunąć o wektor o współrzędnych
\vec{u}=[p, q].
Podaj współrzędne p i q.
Odpowiedzi:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11752 ⋅ Poprawnie: 85/111 [76%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wykres funkcji
g(x)=\frac{1}{2}(x+7)^2-5
można otrzymać przesuwając wykres funkcji
f(x)=\frac{1}{2}x^2
o wektor
\vec{u}=[p,q].
Podaj współrzędne wektora p i q.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10787 ⋅ Poprawnie: 576/910 [63%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Na rysunkach przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x):
Funkcja
g określona jest wzorem:
Odpowiedzi:
|
A. g(x)=f(x)+2
|
B. g(x)=f(x+2)
|
|
C. g(x)=f(x)-2
|
D. g(x)=f(x-1)
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10770 ⋅ Poprawnie: 794/1066 [74%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x).
Dziedziną funkcji g, gdzie g(x)=f(x+5), jest zbiór:
Odpowiedzi:
|
A. (-10,1\rangle
|
B. (3,9\rangle
|
|
C. (0,11\rangle
|
D. (-7,-1\rangle
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 363/520 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x):
Funkcja
g określona jest wzorem:
Odpowiedzi:
|
A. g(x)=f(x+2)
|
B. g(x)=f(x)+2
|
|
C. g(x)=f(x-2)
|
D. g(x)=f(x)-2
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x).
Na którym rysunku przedstawiony jest wykres funkcji y=f(x)+1:
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wykres funkcji
f(x)=x^2-3x-5 przesunięto
o wektor
\vec{u}=[1,8] i otrzymano wykres funkcji
określonej wzorem
g(x)=x^2+bx+c.
Podaj liczby b i c.
Odpowiedzi:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11397 ⋅ Poprawnie: 295/523 [56%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=(-8,+\infty) oraz
ZW_f=\langle -7,-5). O funkcji
g wiadomo, że
g(x)=-f(x).
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
|
T/N : D_g=(-\infty,8,)
|
T/N : ZW_g=(5,7\rangle
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10768 ⋅ Poprawnie: 204/319 [63%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x):
Funkcja, której wykres jest symetryczny do tego wykresu względem osi
Ox określona jest wzorem:
Odpowiedzi:
|
A. y=f(-x)
|
B. y=f(-x)+1
|
|
C. g(x)=-f(x)
|
D. y=f(-x)-1
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11395 ⋅ Poprawnie: 302/494 [61%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=7x^2-8x przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=ax^2+bx.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11749 ⋅ Poprawnie: 39/44 [88%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=-8|x|-7 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=a|x|+b.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=(-5,0\rangle oraz
ZW_f=\langle -4,1). O funkcji
g wiadomo, że
g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
|
A. ZW_g=\langle -4,1)
|
B. ZW_g=(-1,4\rangle
|
|
C. D_g=(0,5\rangle
|
D. ZW_g=\langle -1,4)
|