Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/256 [81%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji
g(x)=|x-7|+5
można otrzymać przesuwając wykres funkcji
f(x)=|x|
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11752 ⋅ Poprawnie: 85/111 [76%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wykres funkcji
g(x)=\frac{1}{2}(x+2)^2-2
można otrzymać przesuwając wykres funkcji
f(x)=\frac{1}{2}x^2
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10788 ⋅ Poprawnie: 476/669 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Na rysunkach przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)+2
B. f(x)=g(x-2)
C. f(x)=g(x)-2
D. f(x)=g(x+2)
Zadanie 4. 1 pkt ⋅ Numer: pp-10772 ⋅ Poprawnie: 350/495 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)+1
B. f(x)=g(x-1)
C. f(x)=g(x)-1
D. f(x)=g(x+1)
Zadanie 5. 1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 363/520 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)-2
B. f(x)=g(x+2)
C. f(x)=g(x-2)
D. f(x)=g(x)+2
Zadanie 6. 1 pkt ⋅ Numer: pp-10780 ⋅ Poprawnie: 308/424 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przestawiono wykres funkcji
y=g(x) .
Wykres powstał z przesunięcia wykresu funkcji
f(x)=\frac{2}{x} . Zatem funkcja
g określona jest wzorem:
Odpowiedzi:
A. g(x)=\frac{2}{x-1}+3
B. g(x)=\frac{2}{x-1}-3
C. g(x)=\frac{2}{x+1}-3
D. g(x)=\frac{2}{x+1}+3
Zadanie 7. 1 pkt ⋅ Numer: pp-11746 ⋅ Poprawnie: 26/37 [70%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wykres funkcji
f(x)=3x-5 przesunięto
o wektor
\vec{u}=[7,3] i otrzymano wykres funkcji
określonej wzorem
g(x)=bx+c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=\langle 5,6\rangle oraz
ZW_f=\langle 7,+\infty) . O funkcji
g wiadomo, że
g(x)=-f(x) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : D_g=\langle-6,-5\rangle
T/N : ZW_g=(-\infty,-7)
T/N : D_g=\langle5,6\rangle
Zadanie 9. 1 pkt ⋅ Numer: pp-10785 ⋅ Poprawnie: 309/415 [74%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Na rysunkach przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)-1
B. f(x)=-g(x)
C. f(x)=-g(-x)
D. f(x)=g(-x)
Zadanie 10. 1 pkt ⋅ Numer: pp-10779 ⋅ Poprawnie: 510/662 [77%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x) :
Dziedziną funkcji
y=f(-x) jest zbiór:
Odpowiedzi:
A. \langle -3,5\rangle
B. (-3,5)
C. \langle -5,3\rangle
D. (-3,5\rangle
Zadanie 11. 1 pkt ⋅ Numer: pp-11747 ⋅ Poprawnie: 35/41 [85%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=5x+6 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=ax+b .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykres funkcji
g jest symetryczny do wykresu
funkcji
f określonej wzorem
f(x)=\frac{7}{5x+6}
względem początku układu współrzędnych.
Zapisz wzór funkcji
g w postaci
g(x)=\frac{a}{x+b} .
Podaj liczby a i b .
Odpowiedzi:
Rozwiąż