Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/256 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=|x-3|-8 można otrzymać przesuwając wykres funkcji f(x)=|x| o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11752 ⋅ Poprawnie: 85/111 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=\frac{1}{2}(x+7)^2+6 można otrzymać przesuwając wykres funkcji f(x)=\frac{1}{2}x^2 o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10787 ⋅ Poprawnie: 576/910 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x)-2 B. g(x)=f(x+2)
C. g(x)=f(x)+2 D. g(x)=f(x-1)
Zadanie 4.  1 pkt ⋅ Numer: pp-10772 ⋅ Poprawnie: 350/495 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x)+1 B. g(x)=f(x)-1
C. g(x)=f(x+1) D. g(x)=f(x-1)
Zadanie 5.  1 pkt ⋅ Numer: pp-10775 ⋅ Poprawnie: 285/396 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x)-2 B. g(x)=f(x+2)
C. g(x)=f(x)+2 D. g(x)=f(x-2)
Zadanie 6.  1 pkt ⋅ Numer: pp-10780 ⋅ Poprawnie: 308/424 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przestawiono wykres funkcji y=g(x).

Wykres powstał z przesunięcia wykresu funkcji f(x)=\frac{2}{x}. Zatem funkcja g określona jest wzorem:

Odpowiedzi:
A. g(x)=\frac{2}{x-1}-3 B. g(x)=\frac{2}{x-1}+3
C. g(x)=\frac{2}{x+1}-3 D. g(x)=\frac{2}{x+1}+3
Zadanie 7.  1 pkt ⋅ Numer: pp-11746 ⋅ Poprawnie: 26/37 [70%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji f(x)=-3x-6 przesunięto o wektor \vec{u}=[6,-6] i otrzymano wykres funkcji określonej wzorem g(x)=bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11397 ⋅ Poprawnie: 295/523 [56%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(3,+\infty) oraz ZW_f=\langle -8,-7). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : D_g=(-\infty,-3,) T/N : ZW_g=(7,8\rangle
Zadanie 9.  1 pkt ⋅ Numer: pp-10786 ⋅ Poprawnie: 157/277 [56%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku 1. przedstawiono wykres funkcji y=f(x) (czerwony), a na rysunku 2. wykres funkcji y=g(x) (zielony):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=-f(-x) B. g(x)=f(-x)
C. g(x)=f(-1-x) D. g(x)=f(1-x)
Zadanie 10.  1 pkt ⋅ Numer: pp-10782 ⋅ Poprawnie: 175/318 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x), której miejscem zerowym jest liczba 1 oraz f(0)=-2:
Wskaż funkcję, której wykres jest symetryczny do tego wykresu względem osi Ox:
Odpowiedzi:
A. y=2x-2 B. y=-2x-2
C. y=2x+2 D. y=-2x+2
Zadanie 11.  1 pkt ⋅ Numer: pp-11747 ⋅ Poprawnie: 35/41 [85%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-8x-7 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=\frac{3}{-8x-7} względem początku układu współrzędnych. Zapisz wzór funkcji g w postaci g(x)=\frac{a}{x+b}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm