Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11751 ⋅ Poprawnie: 55/72 [76%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wykres funkcji
g(x)=(x-2)^4+1
można otrzymać przesuwając wykres funkcji
f(x)=x^4
o wektor
\vec{u}=[p,q].
Podaj współrzędne wektora p i q.
Odpowiedzi:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11752 ⋅ Poprawnie: 85/111 [76%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wykres funkcji
g(x)=\frac{1}{2}(x-1)^2+4
można otrzymać przesuwając wykres funkcji
f(x)=\frac{1}{2}x^2
o wektor
\vec{u}=[p,q].
Podaj współrzędne wektora p i q.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x):
Funkcja
f określona jest wzorem:
Odpowiedzi:
|
A. f(x)=g(x+3)-2
|
B. f(x)=g(x-2)-3
|
|
C. f(x)=g(x+2)-3
|
D. f(x)=g(x+2)+3
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10769 ⋅ Poprawnie: 327/539 [60%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Na rysunku przedstawiony jest wykres funkcji
y=f(x).
Które z równań ma dokładnie dwa rozwiązania:
Odpowiedzi:
|
A. f(x+3)=-2
|
B. f(x+4)=-1
|
|
C. f(x+2)=-5
|
D. f(x-3)=-4
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 363/520 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x):
Funkcja
f określona jest wzorem:
Odpowiedzi:
|
A. f(x)=g(x)+2
|
B. f(x)=g(x)-2
|
|
C. f(x)=g(x+2)
|
D. f(x)=g(x-2)
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x).
Na którym rysunku przedstawiony jest wykres funkcji y=f(x+1):
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wykres funkcji
f(x)=x^2+x+2 przesunięto
o wektor
\vec{u}=[1,4] i otrzymano wykres funkcji
określonej wzorem
g(x)=x^2+bx+c.
Podaj liczby b i c.
Odpowiedzi:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11397 ⋅ Poprawnie: 295/523 [56%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=(3,+\infty) oraz
ZW_f=\langle -3,3). O funkcji
g wiadomo, że
g(x)=-f(x).
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
|
T/N : ZW_g=\langle -3,3)
|
T/N : D_g=(-\infty,-3,)
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10768 ⋅ Poprawnie: 204/319 [63%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
y=f(x):
Funkcja, której wykres jest symetryczny do tego wykresu względem osi
Oy określona jest wzorem:
Odpowiedzi:
|
A. y=-f(x)
|
B. g(x)=f(-x)
|
|
C. y=f(-x)+1
|
D. y=f(x)+1
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10781 ⋅ Poprawnie: 193/257 [75%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Funkcja
f ma
n=5 miejsc zerowych.
Ile miejsc zerowych ma funkcja określona wzorem g(x)=-f(x+4)?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 40/47 [85%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=\sqrt{x}+4 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=a\sqrt{x}+b.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=(2,4\rangle oraz
ZW_f=\langle 3,7). O funkcji
g wiadomo, że
g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
|
A. ZW_g=\langle -7,-3)
|
B. ZW_g=(-7,-3\rangle
|
|
C. ZW_g=\langle 3,7)
|
D. D_g=(-4,-2\rangle
|