Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11751 ⋅ Poprawnie: 55/72 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=(x+2)^2-7 można otrzymać przesuwając wykres funkcji f(x)=x^2 o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11753 ⋅ Poprawnie: 45/49 [91%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji g(x)=4\sqrt{x+5}-6 można otrzymać przesuwając wykres funkcji f(x)=4\sqrt{x} o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x-2)+3 B. f(x)=g(x+2)-3
C. f(x)=g(x-2)-3 D. f(x)=g(x+2)+3
Zadanie 4.  1 pkt ⋅ Numer: pp-10769 ⋅ Poprawnie: 327/539 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Na rysunku przedstawiony jest wykres funkcji y=f(x).

Które z równań ma dokładnie dwa rozwiązania:

Odpowiedzi:
A. f(x+4)=-1 B. f(x-1)=-4
C. f(x-1)=-5 D. f(x+1)=-2
Zadanie 5.  1 pkt ⋅ Numer: pp-10775 ⋅ Poprawnie: 285/396 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x)+2 B. g(x)=f(x+2)
C. g(x)=f(x-2) D. g(x)=f(x)-2
Zadanie 6.  1 pkt ⋅ Numer: pp-10780 ⋅ Poprawnie: 308/424 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przestawiono wykres funkcji y=g(x).

Wykres powstał z przesunięcia wykresu funkcji f(x)=\frac{2}{x}. Zatem funkcja g określona jest wzorem:

Odpowiedzi:
A. g(x)=\frac{2}{x-1}-3 B. g(x)=\frac{2}{x+1}+3
C. g(x)=\frac{2}{x-1}+3 D. g(x)=\frac{2}{x+1}-3
Zadanie 7.  1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji f(x)=x^2+3x-1 przesunięto o wektor \vec{u}=[-7,-5] i otrzymano wykres funkcji określonej wzorem g(x)=x^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=\langle -6,2\rangle oraz ZW_f=\langle -5,+\infty). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : ZW_g=(-\infty,5) T/N : ZW_g=(-\infty,-5)
T/N : D_g=\langle-2,6\rangle  
Zadanie 9.  1 pkt ⋅ Numer: pp-10768 ⋅ Poprawnie: 204/319 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Funkcja, której wykres jest symetryczny do tego wykresu względem osi Ox określona jest wzorem:
Odpowiedzi:
A. y=f(-x)-1 B. y=f(-x)+1
C. g(x)=-f(x) D. y=f(-x)
Zadanie 10.  1 pkt ⋅ Numer: pp-10779 ⋅ Poprawnie: 510/662 [77%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Dziedziną funkcji y=-f(x) jest zbiór:
Odpowiedzi:
A. \langle -5,3) B. (-3,5\rangle
C. \langle -3,5\rangle D. \langle -5,3\rangle
Zadanie 11.  1 pkt ⋅ Numer: pp-11747 ⋅ Poprawnie: 35/41 [85%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-2x-7 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=\frac{8}{-2x-7} względem początku układu współrzędnych. Zapisz wzór funkcji g w postaci g(x)=\frac{a}{x+b}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm