Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/256 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=|x+7|-8 można otrzymać przesuwając wykres funkcji f(x)=|x| o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11752 ⋅ Poprawnie: 85/111 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=\frac{1}{2}(x+7)^2+7 można otrzymać przesuwając wykres funkcji f(x)=\frac{1}{2}x^2 o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10788 ⋅ Poprawnie: 476/669 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x)+2 B. g(x)=f(x-2)
C. g(x)=f(x)-2 D. g(x)=f(x+2)
Zadanie 4.  1 pkt ⋅ Numer: pp-10772 ⋅ Poprawnie: 350/495 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x+1) B. g(x)=f(x)-1
C. g(x)=f(x-1) D. g(x)=f(x)+1
Zadanie 5.  1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 363/520 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x+2) B. g(x)=f(x)+2
C. g(x)=f(x-2) D. g(x)=f(x)-2
Zadanie 6.  1 pkt ⋅ Numer: pp-10780 ⋅ Poprawnie: 308/424 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przestawiono wykres funkcji y=g(x).

Wykres powstał z przesunięcia wykresu funkcji f(x)=\frac{2}{x}. Zatem funkcja g określona jest wzorem:

Odpowiedzi:
A. g(x)=\frac{2}{x-1}-3 B. g(x)=\frac{2}{x+1}-3
C. g(x)=\frac{2}{x+1}+3 D. g(x)=\frac{2}{x-1}+3
Zadanie 7.  1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji f(x)=x^2-3x-6 przesunięto o wektor \vec{u}=[-7,7] i otrzymano wykres funkcji określonej wzorem g(x)=x^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-10776 ⋅ Poprawnie: 205/612 [33%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Na rysunku 1 jest przedstawiony wykres funkcji y=f(x).

Funkcja przedstawiona na rysunku 2 jest określona wzorem:

Odpowiedzi:
A. y=-f(x) B. y=f(-x)
C. y=f(x-1) D. żadnym z pozostałych wzorów
Zadanie 9.  1 pkt ⋅ Numer: pp-10768 ⋅ Poprawnie: 204/319 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Funkcja, której wykres jest symetryczny do tego wykresu względem osi Ox określona jest wzorem:
Odpowiedzi:
A. y=f(-x) B. y=f(-x)+1
C. g(x)=-f(x) D. y=f(-x)-1
Zadanie 10.  1 pkt ⋅ Numer: pp-11395 ⋅ Poprawnie: 302/494 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-7x^2-8x przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=ax^2+bx.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 40/47 [85%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-3\sqrt{x}-6 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=a\sqrt{x}+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(-8,3\rangle oraz ZW_f=\langle -3,1). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. ZW_g=\langle -1,3) B. ZW_g=(-1,3\rangle
C. D_g=(-3,8\rangle D. ZW_g=\langle -3,1)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm