Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/256 [81%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji
g(x)=|x+5|+1
można otrzymać przesuwając wykres funkcji
f(x)=|x|
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11754 ⋅ Poprawnie: 44/47 [93%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wykres funkcji
g(x)=\frac{4}{x+1}-4
można otrzymać przesuwając wykres funkcji
f(x)=\frac{4}{x}
o wektor
\vec{u}=[p,q] .
Podaj współrzędne wektora p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10787 ⋅ Poprawnie: 576/910 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunkach przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x-2)
B. f(x)=g(x)-2
C. f(x)=g(x+2)
D. f(x)=g(x)+2
Zadanie 4. 1 pkt ⋅ Numer: pp-10769 ⋅ Poprawnie: 327/539 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Które z równań ma dokładnie trzy rozwiązania:
Odpowiedzi:
A. f(x-2)=4
B. f(x-4)=-1
C. f(x+2)=-2
D. f(x+1)+4=0
Zadanie 5. 1 pkt ⋅ Numer: pp-10775 ⋅ Poprawnie: 285/396 [71%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykresy dwóch funkcji
y=f(x) oraz
y=g(x) :
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x-2)
B. f(x)=g(x+2)
C. f(x)=g(x)+2
D. f(x)=g(x)-2
Zadanie 6. 1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Na którym rysunku przedstawiony jest wykres funkcji y=f(x+1) :
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11746 ⋅ Poprawnie: 26/37 [70%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wykres funkcji
f(x)=x-2 przesunięto
o wektor
\vec{u}=[-1,-1] i otrzymano wykres funkcji
określonej wzorem
g(x)=bx+c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« O funkcji
f wiadomo, że
D_f=\langle -1,3\rangle oraz
ZW_f=\langle 7,+\infty) . O funkcji
g wiadomo, że
g(x)=-f(x) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : D_g=\langle-3,1\rangle
T/N : ZW_g=(-\infty,-7)
T/N : ZW_g=(-\infty,7)
Zadanie 9. 1 pkt ⋅ Numer: pp-10786 ⋅ Poprawnie: 157/277 [56%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Na rysunku 1. przedstawiono wykres funkcji
y=f(x) (czerwony), a na rysunku 2.
wykres funkcji
y=g(x) (zielony):
Funkcja
f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x+1)
B. f(x)=g(-x)-1
C. f(x)=g(-x-1)
D. f(x)=g(x-1)
Zadanie 10. 1 pkt ⋅ Numer: pp-11395 ⋅ Poprawnie: 302/494 [61%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=-5x^2+x przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=ax^2+bx .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 11. 1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 40/47 [85%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=-2\sqrt{x}-1 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem
y=a\sqrt{x}+b .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykres funkcji
g jest symetryczny do wykresu
funkcji
f określonej wzorem
f(x)=\frac{-5}{x-2}
względem początku układu współrzędnych.
Zapisz wzór funkcji
g w postaci
g(x)=\frac{a}{x+b} .
Podaj liczby a i b .
Odpowiedzi:
Rozwiąż