Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10778 ⋅ Poprawnie: 638/837 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wykres funkcji y=f(x).

Aby otrzymać wykres funkcji g(x)=f(x+4)-3 wykres funkcji f należy przesunąć o wektor o współrzędnych \vec{u}=[p, q].

Podaj współrzędne p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10769 ⋅ Poprawnie: 320/528 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiony jest wykres funkcji y=f(x).

Które z równań ma dokładnie trzy rozwiązania:

Odpowiedzi:
A. f(x-4)=-1 B. f(x+2)=-1
C. f(x-2)+4=0 D. f(x-2)=4
Zadanie 3.  1 pkt ⋅ Numer: pp-10770 ⋅ Poprawnie: 794/1066 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Dziedziną funkcji g, gdzie g(x)=f(x-3), jest zbiór:

Odpowiedzi:
A. (-5,1\rangle B. (1,7\rangle
C. (-8,3\rangle D. (-2,9\rangle
Zadanie 4.  1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Na którym rysunku przedstawiony jest wykres funkcji y=f(x)-1:

Odpowiedzi:
A. D B. A
C. B D. C
Zadanie 5.  1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=\langle -3,-1\rangle oraz ZW_f=\langle -4,+\infty). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : D_g=\langle1,3\rangle T/N : ZW_g=(-\infty,4)
T/N : ZW_g=(-\infty,-4)  
Zadanie 6.  1 pkt ⋅ Numer: pp-10767 ⋅ Poprawnie: 206/284 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=-f(-x) B. g(x)=-f(x)
C. g(x)=f(x-1) D. g(x)=f(-x)
Zadanie 7.  1 pkt ⋅ Numer: pp-11395 ⋅ Poprawnie: 302/494 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-4x^2-3x przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=ax^2+bx.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=\frac{-4}{-3x-1} względem początku układu współrzędnych. Zapisz wzór funkcji g w postaci g(x)=\frac{a}{x+b}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20781 ⋅ Poprawnie: 172/657 [26%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są funkcje f oraz g, przy czym g(x)=f(x+5)-10. O funkcji f wiadomo, że f(3)=-9 i f(-2)=-6.

Oblicz g(-2).

Odpowiedź:
g(-2)= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj wartość argumentu, dla którego funkcja g przyjmuje wartość -16.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{1265}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(23,67). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,129\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x-4).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm