Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10778 ⋅ Poprawnie: 649/848 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wykres funkcji y=f(x).

Aby otrzymać wykres funkcji g(x)=f(x+2)+5 wykres funkcji f należy przesunąć o wektor o współrzędnych \vec{u}=[p, q].

Podaj współrzędne p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10788 ⋅ Poprawnie: 476/669 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x)-2 B. g(x)=f(x+2)
C. g(x)=f(x-2) D. g(x)=f(x)+2
Zadanie 3.  1 pkt ⋅ Numer: pp-10770 ⋅ Poprawnie: 794/1066 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Zbiorem wartości funkcji g, gdzie g(x)=f(x)-1, jest zbiór:

Odpowiedzi:
A. (-6,5\rangle B. (-3,3\rangle
C. (-1,5\rangle D. (-4,7\rangle
Zadanie 4.  1 pkt ⋅ Numer: pp-10777 ⋅ Poprawnie: 290/397 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Na którym rysunku przedstawiony jest wykres funkcji y=f(x+1):

Odpowiedzi:
A. B B. A
C. C D. D
Zadanie 5.  1 pkt ⋅ Numer: pp-11397 ⋅ Poprawnie: 295/523 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(7,+\infty) oraz ZW_f=\langle 5,7). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : ZW_g=(-7,-5\rangle T/N : D_g=(-7,+\infty)
Zadanie 6.  1 pkt ⋅ Numer: pp-10779 ⋅ Poprawnie: 510/662 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Dziedziną funkcji y=f(-x) jest zbiór:
Odpowiedzi:
A. (-3,5\rangle B. (-3,5)
C. \langle -3,5\rangle D. \langle -5,3\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-11749 ⋅ Poprawnie: 39/44 [88%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=7|x|+5 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=a|x|+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(-8,-4\rangle oraz ZW_f=\langle -4,3). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. ZW_g=(-3,4\rangle B. ZW_g=\langle -3,4)
C. ZW_g=\langle -4,3) D. D_g=(4,8\rangle
Zadanie 9.  2 pkt ⋅ Numer: pp-20781 ⋅ Poprawnie: 172/657 [26%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są funkcje f oraz g, przy czym g(x)=f(x+5)-10. O funkcji f wiadomo, że f(3)=-3 i f(-2)=10.

Oblicz g(-2).

Odpowiedź:
g(-2)= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj wartość argumentu, dla którego funkcja g przyjmuje wartość 0.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{2465}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(29,102). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,177\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x-1).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm