Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11751 ⋅ Poprawnie: 55/72 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=(x-8)^2+1 można otrzymać przesuwając wykres funkcji f(x)=x^2 o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10788 ⋅ Poprawnie: 476/669 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x)+2 B. g(x)=f(x+2)
C. g(x)=f(x-2) D. g(x)=f(x)-2
Zadanie 3.  1 pkt ⋅ Numer: pp-10774 ⋅ Poprawnie: 472/595 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Na którym rysunku przedstawiony jest wykres funkcji y=f(x-2):

Odpowiedzi:
A. C B. B
C. D D. A
Zadanie 4.  1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji f(x)=x^2+2x+5 przesunięto o wektor \vec{u}=[-8,-8] i otrzymano wykres funkcji określonej wzorem g(x)=x^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-10785 ⋅ Poprawnie: 309/415 [74%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=-g(-x) B. f(x)=g(x)-1
C. f(x)=g(-x) D. f(x)=-g(x)
Zadanie 6.  1 pkt ⋅ Numer: pp-10779 ⋅ Poprawnie: 510/662 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Dziedziną funkcji y=f(-x) jest zbiór:
Odpowiedzi:
A. (-3,5) B. \langle -3,5\rangle
C. \langle -5,3\rangle D. (-3,5\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-11395 ⋅ Poprawnie: 302/494 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=x^2-4x przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=ax^2+bx.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(-6,-2\rangle oraz ZW_f=\langle -2,6). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. ZW_g=\langle -6,2) B. ZW_g=(-6,2\rangle
C. ZW_g=\langle -2,6) D. D_g=(2,6\rangle
Zadanie 9.  2 pkt ⋅ Numer: pp-20781 ⋅ Poprawnie: 172/657 [26%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są funkcje f oraz g, przy czym g(x)=f(x+5)-10. O funkcji f wiadomo, że f(3)=-1 i f(-2)=19.

Oblicz g(-2).

Odpowiedź:
g(-2)= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj wartość argumentu, dla którego funkcja g przyjmuje wartość 9.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{2093}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(23,110). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,199\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm