Wykres funkcji określonej wzorem f(x)=2(x-2)(x-1)
przesunięto o wektor \vec{u}=[-5,-9], w wyniku czego
otrzymano wykres funkcji określonej wzorem g(x)=ax^2+bx+c.
Podaj liczby a, b i
c.
Odpowiedzi:
a
=
(wpisz liczbę zapisaną dziesiętnie)
b
=
(wpisz liczbę zapisaną dziesiętnie)
c
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.1 pkt ⋅ Numer: pp-10783 ⋅ Poprawnie: 409/519 [78%]
Funkcja f ma trzy miejsca zerowe: 2,
4 i 5, a jest zbiorem wartości jest
przedział liczbowy \langle 1,3\rangle.
Funkcja g określona jest wzorem g(x)=f(-x).
Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.
Odpowiedzi:
x_{min}
=
(wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%]
Wykres funkcji określonej wzorem y=f(x) przecina oś
Oy w punkcie o współrzędnych (0,-15),
a wykres funkcji określonej wzorem y=f\left(|x|\right) przecina oś
Oy w punkcie o współrzędnych (x_0,y_0).
Podaj liczby x_0 i y_0.
Odpowiedzi:
x_0
=
(wpisz liczbę całkowitą)
y_0
=
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 0/0
Dziedziną funkcji f jest przedział
D_f=\langle -3,16\rangle, a zbiorem wartości przedział
ZW_f=\langle 0,17\rangle.
Funkcja g określona jest wzorem
g(x)=f(x+1)+8.
Dziedziną funkcji g jest przedział
\langle x_1, x_2\rangle.
Podaj liczby x_1 i x_2.
Odpowiedzi:
x_1
=
(wpisz liczbę zapisaną dziesiętnie)
x_2
=
(wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
Zbiorem wartości funkcji g jest przedział
\langle y_1, y_2\rangle.
Podaj liczby y_1 i y_2.
Odpowiedzi:
y_1
=
(wpisz liczbę zapisaną dziesiętnie)
y_2
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%]
» Dana jest funkcja f(x)=\frac{1955}{x}, gdzie
x\neq 0. Jej wykres przesunięto wzdłuż osi
Oy i otrzymano wykres funkcji
y=g(x), do którego należy punkt
B=(23,95). Wyznacz wektor tego przesunięcia
\vec{u}=[u_x,u_y].
Podaj u_y.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Ile liczb naturalnych k ze zbioru
\{0,1,2,3,...,101\} ma tę własność, że liczba
g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.2 pkt ⋅ Numer: pr-20575 ⋅ Poprawnie: 0/0