Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/256 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=|x-2|-4 można otrzymać przesuwając wykres funkcji f(x)=|x| o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji f(x)=x^2+x-3 przesunięto o wektor \vec{u}=[-1,7] i otrzymano wykres funkcji określonej wzorem g(x)=x^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10378 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=|x-1| w przedziale x\in(-4,6), a wykres funkcji g otrzymano przesuwając wykres funkcji f o wektor \vec{u}=[-5,-1].

Podaj najmniejszą wartość funkcji f oraz najmniejszą wartość funkcji g.

Odpowiedzi:
f_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10767 ⋅ Poprawnie: 206/284 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=-f(x) B. g(x)=f(x-1)
C. g(x)=-f(-x) D. g(x)=f(-x)
Zadanie 5.  1 pkt ⋅ Numer: pp-10779 ⋅ Poprawnie: 510/662 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Dziedziną funkcji y=-f(x) jest zbiór:
Odpowiedzi:
A. (-3,5\rangle B. \langle -3,5\rangle
C. \langle -5,3) D. \langle -5,3\rangle
Zadanie 6.  1 pkt ⋅ Numer: pr-10420 ⋅ Poprawnie: 16/20 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f ma trzy miejsca zerowe: -6, -3 i 2, a jest zbiorem wartości jest przedział liczbowy \langle 6,7\rangle. Funkcja g określona jest wzorem g(x)=f(-x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=\frac{2}{-4x-1} względem początku układu współrzędnych. Zapisz wzór funkcji g w postaci g(x)=\frac{a}{x+b}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pr-11599 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykres funkcji określonej wzorem y=f(x) przecina oś Oy w punkcie o współrzędnych (0,-18), a wykres funkcji określonej wzorem y=f\left(|x|\right) przecina oś Oy w punkcie o współrzędnych (x_0,y_0).

Podaj liczby x_0 i y_0.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
y_0= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle -3,15\rangle, a zbiorem wartości przedział ZW_f=\langle 0,16\rangle. Funkcja g określona jest wzorem g(x)=f(x+1)+7. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x+2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pr-20576 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dziedziną funkcji f(x)=\sqrt{x} jest przedział \langle a, b\rangle, a funkcja g określona jest wzorem y=g(x)=f\left(\frac{1}{4}x\right).

Wyznacz najmniejszą liczbę w zbiorze ZW_g.

Dane
a=9
b=16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz największą liczbę w zbiorze ZW_g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm