Wykres funkcji określonej wzorem f(x)=-5(x+5)(x-5)
przesunięto o wektor \vec{u}=[1,5], w wyniku czego
otrzymano wykres funkcji określonej wzorem g(x)=ax^2+bx+c.
Podaj liczby a, b i
c.
Odpowiedzi:
a
=
(wpisz liczbę zapisaną dziesiętnie)
b
=
(wpisz liczbę zapisaną dziesiętnie)
c
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.1 pkt ⋅ Numer: pp-11397 ⋅ Poprawnie: 295/523 [56%]
Funkcja f ma trzy miejsca zerowe: -3,
2 i 3, a jest zbiorem wartości jest
przedział liczbowy \langle -1,7\rangle.
Funkcja g określona jest wzorem g(x)=f(-x).
Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.
Odpowiedzi:
x_{min}
=
(wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%]
Dziedziną funkcji f jest przedział
D_f=\langle -3,15\rangle, a zbiorem wartości przedział
ZW_f=\langle 0,16\rangle.
Funkcja g określona jest wzorem
g(x)=f(x+1)+7.
Dziedziną funkcji g jest przedział
\langle x_1, x_2\rangle.
Podaj liczby x_1 i x_2.
Odpowiedzi:
x_1
=
(wpisz liczbę zapisaną dziesiętnie)
x_2
=
(wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
Zbiorem wartości funkcji g jest przedział
\langle y_1, y_2\rangle.
Podaj liczby y_1 i y_2.
Odpowiedzi:
y_1
=
(wpisz liczbę zapisaną dziesiętnie)
y_2
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%]
Na rysunku przedstawiono fragment wykresu funkcji f,
który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem
y=\frac{1}{x} dla każdej liczby rzeczywistej
x\neq 0.
Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości
dodatnie. Podaj liczbę występującą w środku tego zbioru.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj miejsce zerowe funkcji g określonej wzorem
g(x)=f(x+2).
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.2 pkt ⋅ Numer: pr-20579 ⋅ Poprawnie: 0/0
Dziedziną funkcji f jest przedział liczbowy
(-4,9), a jej jedynym miejscem zerowym liczba
-\frac{5}{2}. Funkcja g
określona jest wzorem g(x)=f\left(\frac{4}{5}x\right).
Dziedziną funkcji g jest zbiór
D_g=(x_1,x_2).
Podaj liczby x_1 i x_2.
Odpowiedzi:
x_1
=
(wpisz liczbę zapisaną dziesiętnie)
x_2
=
(wpisz liczbę zapisaną dziesiętnie)
Podpunkt 11.2 (1 pkt)
Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat