Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x+2)+3 B. g(x)=f(x-2)+3
C. g(x)=f(x-2)-3 D. g(x)=f(x-3)+2
Zadanie 2.  1 pkt ⋅ Numer: pp-11746 ⋅ Poprawnie: 26/37 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji f(x)=-3x-6 przesunięto o wektor \vec{u}=[-8,6] i otrzymano wykres funkcji określonej wzorem g(x)=bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10378 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=|x+2| w przedziale x\in(-5,3), a wykres funkcji g otrzymano przesuwając wykres funkcji f o wektor \vec{u}=[1,4].

Podaj najmniejszą wartość funkcji f oraz najmniejszą wartość funkcji g.

Odpowiedzi:
f_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10785 ⋅ Poprawnie: 309/415 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=-g(x) B. f(x)=g(-x)
C. f(x)=-g(-x) D. f(x)=g(x)-1
Zadanie 5.  1 pkt ⋅ Numer: pp-11395 ⋅ Poprawnie: 302/494 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-4x^2+x przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=ax^2+bx.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pr-10379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f ma trzy miejsca zerowe: -5, -2 i 2, a jest zbiorem wartości jest przedział liczbowy \langle -2,6\rangle. Funkcja g określona jest wzorem g(x)=-f(x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pr-10381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=-4(x-1)(x-4) względem początku układu współrzędnych. Funkcja g opisana jest wzorem g(x)=ax^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pr-10382 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest przedział liczbowy \langle -5, 4\rangle, a zbiorem wartości funkcji określonej wzorem y=|f(x)| przedział \langle p,q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle -6,9\rangle, a zbiorem wartości przedział ZW_f=\langle -3,10\rangle. Funkcja g określona jest wzorem g(x)=f(x+4)+1. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{1265}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(23,71). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,165\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pr-20575 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział (a, b), a funkcja g określona jest wzorem y=g(x)=f\left(-\frac{m}{n}x\right). Wyznacz dziedzinę funkcji g.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, który jest liczbą.

Dane
a=-5
b=1
m=6
n=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm