Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10787 ⋅ Poprawnie: 576/910 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x-1) B. g(x)=f(x)-2
C. g(x)=f(x)+2 D. g(x)=f(x+2)
Zadanie 2.  1 pkt ⋅ Numer: pp-10772 ⋅ Poprawnie: 350/495 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x+1) B. g(x)=f(x-1)
C. g(x)=f(x)+1 D. g(x)=f(x)-1
Zadanie 3.  1 pkt ⋅ Numer: pr-10378 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=|x-1| w przedziale x\in(-1,6), a wykres funkcji g otrzymano przesuwając wykres funkcji f o wektor \vec{u}=[-2,9].

Podaj najmniejszą wartość funkcji f oraz najmniejszą wartość funkcji g.

Odpowiedzi:
f_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10786 ⋅ Poprawnie: 157/277 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunku 1. przedstawiono wykres funkcji y=f(x) (czerwony), a na rysunku 2. wykres funkcji y=g(x) (zielony):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(-x) B. g(x)=f(1-x)
C. g(x)=f(-1-x) D. g(x)=-f(-x)
Zadanie 5.  1 pkt ⋅ Numer: pp-11747 ⋅ Poprawnie: 35/41 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-2x+8 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pr-10379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f ma trzy miejsca zerowe: -2, 1 i 6, a jest zbiorem wartości jest przedział liczbowy \langle -3,5\rangle. Funkcja g określona jest wzorem g(x)=-f(x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=\frac{1}{-2x+8} względem początku układu współrzędnych. Zapisz wzór funkcji g w postaci g(x)=\frac{a}{x+b}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pr-10288 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że ma trzy mniejsca zerowe -8, 7 i 11.

Wyznacz najmniejsze miejsce zerowe funkcji g określonej wzorem g(x)=f(|x|).

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle 3,16\rangle, a zbiorem wartości przedział ZW_f=\langle 6,17\rangle. Funkcja g określona jest wzorem g(x)=f(x-5)+8. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x+1).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pr-20576 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dziedziną funkcji f(x)=\sqrt{x} jest przedział \langle a, b\rangle, a funkcja g określona jest wzorem y=g(x)=f\left(\frac{1}{4}x\right).

Wyznacz najmniejszą liczbę w zbiorze ZW_g.

Dane
a=9
b=25
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz największą liczbę w zbiorze ZW_g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm