Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11751 ⋅ Poprawnie: 55/72 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=(x+3)^3-6 można otrzymać przesuwając wykres funkcji f(x)=x^3 o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11571 ⋅ Poprawnie: 50/81 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji f(x)=x^2+2x-3 przesunięto o wektor \vec{u}=[-6,-2] i otrzymano wykres funkcji określonej wzorem g(x)=x^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10376 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=\frac{x}{x+3} przesunięto o wektor \vec{u}=[-4,-6], w wyniku czego otrzymano wykres funkcji określonej wzorem g(x)=\frac{ax+b}{x+c}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10776 ⋅ Poprawnie: 205/612 [33%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku 1 jest przedstawiony wykres funkcji y=f(x).

Funkcja przedstawiona na rysunku 2 jest określona wzorem:

Odpowiedzi:
A. y=-f(x) B. y=f(x-1)
C. y=f(-x) D. żadnym z pozostałych wzorów
Zadanie 5.  1 pkt ⋅ Numer: pp-10781 ⋅ Poprawnie: 193/257 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Funkcja f ma n=3 miejsc zerowych.

Ile miejsc zerowych ma funkcja określona wzorem g(x)=-f(x+6)?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pr-10420 ⋅ Poprawnie: 16/20 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f ma trzy miejsca zerowe: -5, -4 i -2, a jest zbiorem wartości jest przedział liczbowy \langle -4,2\rangle. Funkcja g określona jest wzorem g(x)=f(-x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pr-10381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=5(x+3)(x+6) względem początku układu współrzędnych. Funkcja g opisana jest wzorem g(x)=ax^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pr-10291 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
Funkcja, której wykres pokazano na rysunku:
opisana jest wzorem:
Odpowiedzi:
A. f(x)=\left|x+1\right|+2 B. f(x)=\left||x+1|+2\right|
C. f(x)=\left||x+1|-2\right| D. f(x)=\left|x+1\right|+\left|x-1\right|
Zadanie 9.  2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle -8,6\rangle, a zbiorem wartości przedział ZW_f=\langle -5,7\rangle. Funkcja g określona jest wzorem g(x)=f(x+6)-2. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x+5).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pr-20579 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dziedziną funkcji f jest przedział liczbowy (-8,5), a jej jedynym miejscem zerowym liczba -\frac{5}{2}. Funkcja g określona jest wzorem g(x)=f\left(\frac{2}{3}x\right).
Dziedziną funkcji g jest zbiór D_g=(x_1,x_2).

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm