Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11752 ⋅ Poprawnie: 85/111 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wykres funkcji g(x)=\frac{1}{2}(x+1)^2-4 można otrzymać przesuwając wykres funkcji f(x)=\frac{1}{2}x^2 o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10770 ⋅ Poprawnie: 794/1066 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Zbiorem wartości funkcji g, gdzie g(x)=f(x)+4, jest zbiór:

Odpowiedzi:
A. (-6,0\rangle B. (-9,2\rangle
C. (2,8\rangle D. (-1,10\rangle
Zadanie 3.  1 pkt ⋅ Numer: pr-10376 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=\frac{x}{x+4} przesunięto o wektor \vec{u}=[9,-1], w wyniku czego otrzymano wykres funkcji określonej wzorem g(x)=\frac{ax+b}{x+c}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10767 ⋅ Poprawnie: 206/284 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(-x) B. f(x)=-g(-x)
C. f(x)=-g(x) D. f(x)=g(x-1)
Zadanie 5.  1 pkt ⋅ Numer: pp-11748 ⋅ Poprawnie: 40/47 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-\sqrt{x}-4 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=a\sqrt{x}+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pr-10379 ⋅ Poprawnie: 8/11 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f ma trzy miejsca zerowe: -1, 3 i 8, a jest zbiorem wartości jest przedział liczbowy \langle -4,4\rangle. Funkcja g określona jest wzorem g(x)=-f(x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11400 ⋅ Poprawnie: 183/463 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=\frac{6}{8x-1} względem początku układu współrzędnych. Zapisz wzór funkcji g w postaci g(x)=\frac{a}{x+b}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pr-10382 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest przedział liczbowy \langle -10, 7\rangle, a zbiorem wartości funkcji określonej wzorem y=|f(x)| przedział \langle p,q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20781 ⋅ Poprawnie: 172/657 [26%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są funkcje f oraz g, przy czym g(x)=f(x+5)-10. O funkcji f wiadomo, że f(3)=15 i f(-2)=20.

Oblicz g(-2).

Odpowiedź:
g(-2)= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj wartość argumentu, dla którego funkcja g przyjmuje wartość 10.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{1885}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(29,81). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,168\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pr-20579 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dziedziną funkcji f jest przedział liczbowy (-9,9), a jej jedynym miejscem zerowym liczba -\frac{5}{2}. Funkcja g określona jest wzorem g(x)=f\left(\frac{4}{3}x\right).
Dziedziną funkcji g jest zbiór D_g=(x_1,x_2).

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm