Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11753 ⋅ Poprawnie: 45/49 [91%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=5\sqrt{x-3}-7 można otrzymać przesuwając wykres funkcji f(x)=5\sqrt{x} o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10774 ⋅ Poprawnie: 472/595 [79%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x).

Na którym rysunku przedstawiony jest wykres funkcji y=f(x)-2:

Odpowiedzi:
A. C B. A
C. B D. D
Zadanie 3.  1 pkt ⋅ Numer: pr-10377 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=-5(x+5)(x-4) przesunięto o wektor \vec{u}=[-5,4], w wyniku czego otrzymano wykres funkcji określonej wzorem g(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=\langle -7,6\rangle oraz ZW_f=\langle 3,+\infty). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : D_g=\langle-6,7\rangle T/N : ZW_g=(-\infty,3)
T/N : ZW_g=(-\infty,-3)  
Zadanie 5.  1 pkt ⋅ Numer: pp-11749 ⋅ Poprawnie: 39/44 [88%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=3|x|-7 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=a|x|+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pr-10379 ⋅ Poprawnie: 8/11 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f ma trzy miejsca zerowe: -3, 0 i 5, a jest zbiorem wartości jest przedział liczbowy \langle -7,3\rangle. Funkcja g określona jest wzorem g(x)=-f(x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(-7,6\rangle oraz ZW_f=\langle -4,3). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. D_g=(-6,7\rangle B. ZW_g=\langle -3,4)
C. ZW_g=(-3,4\rangle D. ZW_g=\langle -4,3)
Zadanie 8.  1 pkt ⋅ Numer: pr-10288 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że ma trzy mniejsca zerowe -5, 10 i 13.

Wyznacz najmniejsze miejsce zerowe funkcji g określonej wzorem g(x)=f(|x|).

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle -9,14\rangle, a zbiorem wartości przedział ZW_f=\langle -6,15\rangle. Funkcja g określona jest wzorem g(x)=f(x+7)+6. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pr-20578 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{3}{x+3}+1 w zbiorze \langle -4,-3)\cup(-3,4\rangle, a funkcja g wzorem g(x)=-2\cdot f(x). Zbiorem wartości funkcji g jest zbiór \mathbb{R}-(p,q).

Wyznacz liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz liczbę q.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm