Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x+2)+3 B. f(x)=g(x-2)+3
C. f(x)=g(x+2)-3 D. f(x)=g(x+3)-2
Zadanie 2.  1 pkt ⋅ Numer: pp-11746 ⋅ Poprawnie: 26/37 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji f(x)=-x-3 przesunięto o wektor \vec{u}=[-8,-5] i otrzymano wykres funkcji określonej wzorem g(x)=bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10377 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=5(x-5)(x+2) przesunięto o wektor \vec{u}=[-5,-8], w wyniku czego otrzymano wykres funkcji określonej wzorem g(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10776 ⋅ Poprawnie: 205/612 [33%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku 1 jest przedstawiony wykres funkcji y=f(x).

Funkcja przedstawiona na rysunku 2 jest określona wzorem:

Odpowiedzi:
A. y=-f(x) B. y=f(-x)
C. y=f(x-1) D. żadnym z pozostałych wzorów
Zadanie 5.  1 pkt ⋅ Numer: pp-11396 ⋅ Poprawnie: 167/457 [36%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-3x^2-4x przez symetrię względem osi Oy otrzymamo wykres funkcji określonej wzorem y=ax^2+bx.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pr-10379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f ma trzy miejsca zerowe: 2, 4 i 6, a jest zbiorem wartości jest przedział liczbowy \langle -8,-5\rangle. Funkcja g określona jest wzorem g(x)=-f(x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pr-10381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f określonej wzorem f(x)=7(x+3)(x+4) względem początku układu współrzędnych. Funkcja g opisana jest wzorem g(x)=ax^2+bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pr-11599 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykres funkcji określonej wzorem y=f(x) przecina oś Oy w punkcie o współrzędnych (0,-23), a wykres funkcji określonej wzorem y=f\left(|x|\right) przecina oś Oy w punkcie o współrzędnych (x_0,y_0).

Podaj liczby x_0 i y_0.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
y_0= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20781 ⋅ Poprawnie: 172/657 [26%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są funkcje f oraz g, przy czym g(x)=f(x+5)-10. O funkcji f wiadomo, że f(3)=17 i f(-2)=-6.

Oblicz g(-2).

Odpowiedź:
g(-2)= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj wartość argumentu, dla którego funkcja g przyjmuje wartość -16.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20290 ⋅ Poprawnie: 130/346 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x+7).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pr-20578 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{4}{x+3}+1 w zbiorze \langle -6,-3)\cup(-3,2\rangle, a funkcja g wzorem g(x)=-2\cdot f(x). Zbiorem wartości funkcji g jest zbiór \mathbb{R}-(p,q).

Wyznacz liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Wyznacz liczbę q.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm