Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11570 ⋅ Poprawnie: 208/255 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji g(x)=|x-2|+3 można otrzymać przesuwając wykres funkcji f(x)=|x| o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11746 ⋅ Poprawnie: 26/37 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji f(x)=x+5 przesunięto o wektor \vec{u}=[-2,-1] i otrzymano wykres funkcji określonej wzorem g(x)=bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10377 ⋅ Poprawnie: 24/29 [82%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=2(x-2)(x-2) przesunięto o wektor \vec{u}=[7,-2], w wyniku czego otrzymano wykres funkcji określonej wzorem g(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=\langle 3,7\rangle oraz ZW_f=\langle 2,+\infty). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : D_g=\langle-7,-3\rangle T/N : ZW_g=(-\infty,-2)
T/N : ZW_g=(-\infty,2)  
Zadanie 5.  1 pkt ⋅ Numer: pp-11396 ⋅ Poprawnie: 167/457 [36%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=3x^2+7x przez symetrię względem osi Oy otrzymamo wykres funkcji określonej wzorem y=ax^2+bx.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pr-10379 ⋅ Poprawnie: 39/44 [88%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f ma trzy miejsca zerowe: -1, 3 i 8, a jest zbiorem wartości jest przedział liczbowy \langle -2,-1\rangle. Funkcja g określona jest wzorem g(x)=-f(x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(-7,-1\rangle oraz ZW_f=\langle 2,7). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. ZW_g=\langle -7,-2) B. ZW_g=(-7,-2\rangle
C. ZW_g=\langle 2,7) D. D_g=(1,7\rangle
Zadanie 8.  1 pkt ⋅ Numer: pr-10383 ⋅ Poprawnie: 34/42 [80%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest zbiór (-6,-4)\cup\langle 5,14), a zbiorem wartości funkcji określonej wzorem y=|f(x)| przedział liczbowy o końcach p i q, przy czym p\lessdot q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 75/104 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle 0,11\rangle, a zbiorem wartości przedział ZW_f=\langle 3,12\rangle. Funkcja g określona jest wzorem g(x)=f(x-2)+3. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{2737}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(23,137). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,189\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pr-20575 ⋅ Poprawnie: 17/35 [48%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział (a, b), a funkcja g określona jest wzorem y=g(x)=f\left(-\frac{m}{n}x\right). Wyznacz dziedzinę funkcji g.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, który jest liczbą.

Dane
a=-9
b=-1
m=5
n=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm