Wykres funkcji f(x)=-2x+2 przesunięto
o wektor \vec{u}=[-6,-7] i otrzymano wykres funkcji
określonej wzorem g(x)=bx+c.
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę zapisaną dziesiętnie)
c
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-10378
Podpunkt 2.1 (1 pkt)
Funkcja f określona jest wzorem
f(x)=|x-2| w przedziale x\in(1,3),
a wykres funkcji g
otrzymano przesuwając wykres funkcji f o wektor
\vec{u}=[-4,3].
Podaj najmniejszą wartość funkcji f oraz najmniejszą wartość funkcji
g.
Odpowiedzi:
f_{min}
=
(wpisz liczbę zapisaną dziesiętnie)
g_{min}
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11749
Podpunkt 3.1 (1 pkt)
« W wyniku przekształcenia wykresu funkcji
f(x)=-6|x|-7 przez symetrię względem osi
Ox otrzymamo wykres funkcji określonej
wzorem y=a|x|+b.
Podaj liczby a i b.
Odpowiedzi:
a
=
(wpisz liczbę zapisaną dziesiętnie)
b
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-10420
Podpunkt 4.1 (1 pkt)
Funkcja f ma trzy miejsca zerowe: -6,
-2 i -1, a jest zbiorem wartości jest
przedział liczbowy \langle -7,-5\rangle.
Funkcja g określona jest wzorem g(x)=f(-x).
Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.
Odpowiedzi:
x_{min}
=
(wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-10288
Podpunkt 5.1 (1 pkt)
« O funkcji f wiadomo, że ma trzy mniejsca
zerowe -9, 10 i
14.
Wyznacz najmniejsze miejsce zerowe funkcji
g określonej wzorem
g(x)=f(|x|).
Odpowiedź:
min=(wpisz liczbę całkowitą)
Zadanie 6.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20883
Podpunkt 6.1 (1 pkt)
Dziedziną funkcji f jest przedział
D_f=\langle -9,3\rangle, a zbiorem wartości przedział
ZW_f=\langle -6,4\rangle.
Funkcja g określona jest wzorem
g(x)=f(x+7)-5.
Dziedziną funkcji g jest przedział
\langle x_1, x_2\rangle.
Podaj liczby x_1 i x_2.
Odpowiedzi:
x_1
=
(wpisz liczbę zapisaną dziesiętnie)
x_2
=
(wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
Zbiorem wartości funkcji g jest przedział
\langle y_1, y_2\rangle.
Podaj liczby y_1 i y_2.
Odpowiedzi:
y_1
=
(wpisz liczbę zapisaną dziesiętnie)
y_2
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20290
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono fragment wykresu funkcji f,
który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem
y=\frac{1}{x} dla każdej liczby rzeczywistej
x\neq 0.
Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości
dodatnie. Podaj liczbę występującą w środku tego zbioru.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj miejsce zerowe funkcji g określonej wzorem
g(x)=f(x+3).
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20576
Podpunkt 8.1 (1 pkt)
« Dziedziną funkcji f(x)=\sqrt{x} jest przedział
\langle a, b\rangle, a funkcja g
określona jest wzorem
y=g(x)=f\left(\frac{1}{4}x\right).
Wyznacz najmniejszą liczbę w zbiorze ZW_g.
Dane
a=9 b=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Wyznacz największą liczbę w zbiorze ZW_g.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20578
Podpunkt 9.1 (1 pkt)
Funkcja f określona jest wzorem
f(x)=\frac{3}{x+3}+1 w zbiorze
\langle -5,-3)\cup(-3,3\rangle, a funkcja g
wzorem g(x)=-2\cdot f(x).
Zbiorem wartości funkcji g jest zbiór
\mathbb{R}-(p,q).
Wyznacz liczbę p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Wyznacz liczbę q.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat