Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10769 ⋅ Poprawnie: 320/527 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Na rysunku przedstawiony jest wykres funkcji y=f(x).

Które z równań ma dokładnie trzy rozwiązania:

Odpowiedzi:
A. f(x+2)=-2 B. f(x-1)=4
C. f(x-4)=-1 D. f(x-6)+4=0
Zadanie 2.  1 pkt ⋅ Numer: pr-10376 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=\frac{x}{x-1} przesunięto o wektor \vec{u}=[-2,-9], w wyniku czego otrzymano wykres funkcji określonej wzorem g(x)=\frac{ax+b}{x+c}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10779 ⋅ Poprawnie: 510/662 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Dziedziną funkcji y=-f(x) jest zbiór:
Odpowiedzi:
A. \langle -5,3\rangle B. \langle -5,3)
C. \langle -3,5\rangle D. (-3,5\rangle
Zadanie 4.  1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(-4,0\rangle oraz ZW_f=\langle -8,-1). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. ZW_g=\langle 1,8) B. ZW_g=\langle -8,-1)
C. D_g=(0,4\rangle D. ZW_g=(1,8\rangle
Zadanie 5.  1 pkt ⋅ Numer: pr-10384 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcje f i g określone są wzorami f(x)=3|x|-2 oraz g(x)=|3x-2| w przedziale \langle -6,6\rangle. Wykresy tych funkcji pokrywają się w przedziale \langle p,q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20883 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle -10,7\rangle, a zbiorem wartości przedział ZW_f=\langle -7,8\rangle. Funkcja g określona jest wzorem g(x)=f(x+8)-1. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20296 ⋅ Poprawnie: 47/160 [29%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{638}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(29,37). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,153\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20577 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dziedziną funkcji f(x)=(x+1)^2-1 jest przedział \langle a, b\rangle, a funkcja g określona jest wzorem y=g(x)=-\frac{m}{n}f(x).

Wyznacz najmniejszą liczbę w zbiorze ZW_g.

Dane
a=-2
b=3
m=2
n=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą liczbę w zbiorze ZW_g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20579 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dziedziną funkcji f jest przedział liczbowy (-6,4), a jej jedynym miejscem zerowym liczba -\frac{5}{2}. Funkcja g określona jest wzorem g(x)=f\left(\frac{4}{3}x\right).
Dziedziną funkcji g jest zbiór D_g=(x_1,x_2).

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm