Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11746  
Podpunkt 1.1 (1 pkt)
 Wykres funkcji f(x)=-2x+2 przesunięto o wektor \vec{u}=[-6,-7] i otrzymano wykres funkcji określonej wzorem g(x)=bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10378  
Podpunkt 2.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=|x-2| w przedziale x\in(1,3), a wykres funkcji g otrzymano przesuwając wykres funkcji f o wektor \vec{u}=[-4,3].

Podaj najmniejszą wartość funkcji f oraz najmniejszą wartość funkcji g.

Odpowiedzi:
f_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11749  
Podpunkt 3.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=-6|x|-7 przez symetrię względem osi Ox otrzymamo wykres funkcji określonej wzorem y=a|x|+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10420  
Podpunkt 4.1 (1 pkt)
 Funkcja f ma trzy miejsca zerowe: -6, -2 i -1, a jest zbiorem wartości jest przedział liczbowy \langle -7,-5\rangle. Funkcja g określona jest wzorem g(x)=f(-x).

Podaj najmniejsze miejsce zerowe oraz najmniejszą wartość funkcji g.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
g_{min}(x)= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10288  
Podpunkt 5.1 (1 pkt)
 « O funkcji f wiadomo, że ma trzy mniejsca zerowe -9, 10 i 14.

Wyznacz najmniejsze miejsce zerowe funkcji g określonej wzorem g(x)=f(|x|).

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20883  
Podpunkt 6.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle -9,3\rangle, a zbiorem wartości przedział ZW_f=\langle -6,4\rangle. Funkcja g określona jest wzorem g(x)=f(x+7)-5. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20290  
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem y=\frac{1}{x} dla każdej liczby rzeczywistej x\neq 0.

Odczytaj zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie. Podaj liczbę występującą w środku tego zbioru.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj miejsce zerowe funkcji g określonej wzorem g(x)=f(x+3).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20576  
Podpunkt 8.1 (1 pkt)
 « Dziedziną funkcji f(x)=\sqrt{x} jest przedział \langle a, b\rangle, a funkcja g określona jest wzorem y=g(x)=f\left(\frac{1}{4}x\right).

Wyznacz najmniejszą liczbę w zbiorze ZW_g.

Dane
a=9
b=16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą liczbę w zbiorze ZW_g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20578  
Podpunkt 9.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{3}{x+3}+1 w zbiorze \langle -5,-3)\cup(-3,3\rangle, a funkcja g wzorem g(x)=-2\cdot f(x). Zbiorem wartości funkcji g jest zbiór \mathbb{R}-(p,q).

Wyznacz liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wyznacz liczbę q.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm