Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{147}-6\sqrt{3}\right|-\left|\sqrt{12}-\sqrt{75}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x-8\right| = 2x+28:
Odpowiedzi:
A. -16 B. -9
C. -17 D. -15
E. -18 F. -12
Zadanie 3.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie |-2x-8|\cdot |x+3|, gdzie x\in(-\infty,-5), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{11}\right)^2}-\sqrt{\left(1-\sqrt{11}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Rozwiąż równanie \left|6+\frac{7}{5}x\right|-15=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|-4-x\right|-\frac{53}{10}}{2}=8.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|-4-x\right|-\frac{53}{10}}{2}=8.

Podaj największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/400 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma przedziałów (-\infty, 1\rangle\cup \langle 7,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-4\right| \lessdot 3 B. \left|x-4\right| \leqslant 3
C. \left|x-4\right| > 3 D. \left|x-4\right| \geqslant 3
Zadanie 8.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 8.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}-3\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, q\rangle B. (-\infty, p)\cup (q,+\infty)
C. (p,q) D. \langle p,+\infty)
E. (-\infty, p\rangle\cup \langle q,+\infty) F. \langle p,q\rangle
Podpunkt 8.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm