Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Dane są liczby:
x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-\frac{2}{3}}{0,(3)}
oraz
y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2|
.
Liczba x-y jest:
Odpowiedzi:
|
A. równa \sqrt{2}-1
|
B. niewymierna ujemna
|
|
C. całkowita dodatnia
|
D. całkowita ujemna
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10183 ⋅ Poprawnie: 254/499 [50%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Wartość wyrażenia
|12-x|-x-8 dla
x\in (12, +\infty) jest równa:
Odpowiedzi:
|
A. -4
|
B. 4-2x
|
|
C. 4
|
D. -20
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wskaż liczbę, która spełnia równanie
\left|-x-9\right| = 2x+30:
Odpowiedzi:
|
A. -13
|
B. -17
|
|
C. -14
|
D. -9
|
|
E. -12
|
F. -8
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Przedział liczb
\langle -17,17\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x| > 17
|
B. |x|\leqslant 17
|
|
C. |x| \lessdot 17
|
D. |x| \geqslant 17
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x+4||+8, gdzie
x\in(0,+\infty), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
|
T/N : |x+1|=|-x+1|
|
T/N : \sqrt{(x+6)^2}=|x+6|
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
|7x-1|-13=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Odpowiedzi:
|
A. ma więcej niż dwa rozwiązania
|
B. ma dokładnie jedno rozwiązanie
|
|
C. ma dokładnie dwa rozwiązania
|
D. nie ma rozwiązań
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x-1| \lessdot 9
jest zbiór liczb postaci:
Odpowiedzi:
|
A. \langle p,q\rangle
|
B. (-\infty,p\rangle \cup \langle q,+\infty)
|
|
C. \langle p,q)
|
D. (p,q\rangle
|
|
E. (-\infty,p)\cup(q,+\infty)
|
F. (p,q)
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 560/894 [62%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
|
A. |x-15| > 7
|
B. |x-15| \lessdot 7
|
|
C. |x-7| > 15
|
D. |x-7| \lessdot 15
|
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|\frac{33}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,q\rangle
|
B. \langle p,+\infty)
|
|
C. (-\infty, p)\cup (q,+\infty)
|
D. (-\infty, q\rangle
|
|
E. (-\infty, p\rangle\cup \langle q,+\infty)
|
F. (p,q)
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x+\sqrt{3}+6\right| \leqslant 4
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. (-\infty, q\rangle
|
|
C. (-\infty, p)\cup (q,+\infty)
|
D. \langle p,q\rangle
|
|
E. (p,q)
|
F. (-\infty, p\rangle\cup \langle q,+\infty)
|
Podpunkt 12.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)