Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\frac{|4-15|}{-2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{9}x-3 \right| = -\frac{4}{9}x-2
Odpowiedzi:
|
A. 15
|
B. \frac{45}{2}
|
|
C. -15
|
D. -\frac{45}{2}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wskaż liczbę, która spełnia równanie
\left|-x-9\right| = 2x+30:
Odpowiedzi:
|
A. -10
|
B. -16
|
|
C. -13
|
D. -7
|
|
E. -12
|
F. -9
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{8-x}}+\sqrt{13-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
|-2x-10|\cdot |x+4|, gdzie
x\in(-\infty,-6), w postaci
ax^2+bx+c.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{11}\right)^2}-\sqrt{\left(1-\sqrt{11}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/302 [60%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
|7x+2|-12=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Odpowiedzi:
|
A. ma dokładnie jedno rozwiązanie
|
B. ma dokładnie dwa rozwiązania
|
|
C. nie ma rozwiązań
|
D. ma więcej niż dwa rozwiązania
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x-2| \lessdot 4
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (-\infty,p\rangle \cup \langle q,+\infty)
|
B. \langle p,q)
|
|
C. (p,q\rangle
|
D. (p,q)
|
|
E. (-\infty,p)\cup(q,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 559/893 [62%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
|
A. |x-15| > 7
|
B. |x-15| \lessdot 7
|
|
C. |x-7| \lessdot 15
|
D. |x-7| > 15
|
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x+\frac{37}{5}\right|-8,4\leqslant 0
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p)\cup (q,+\infty)
|
B. \langle p,+\infty)
|
|
C. (p,q)
|
D. (-\infty, p\rangle\cup \langle q,+\infty)
|
|
E. \langle p,q\rangle
|
F. (-\infty, q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
« Rozwiązaniem nierówności
|x-2| > 4
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. (p,+\infty)
|
B. (-\infty,p)\cup(q,+\infty)
|
|
C. (p,q\rangle
|
D. (p,q)
|
|
E. \langle p,q)
|
F. \langle p,q\rangle
|
Podpunkt 12.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)