Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10181 ⋅ Poprawnie: 164/348 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Jeżeli x\in(-\infty,0), to wyrażenie ||x|+3| jest równe:
Odpowiedzi:
A. x+3 B. x-3
C. -x-3 D. -x+3
Zadanie 2.  1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|2x-4 \right| = 5-4x
Odpowiedzi:
A. \frac{1}{4} B. \frac{1}{2}
C. -\frac{3}{4} D. -\frac{1}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Przedział liczb \langle -3,3\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| > 3 B. |x|\leqslant 3
C. |x| \geqslant 3 D. |x| \lessdot 3
Zadanie 5.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x-6||-12, gdzie x\in(10,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{41}\right)^2}-\sqrt{\left(1-\sqrt{41}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \frac{3|x-10|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Rozwiąż równanie \frac{3|x-10|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/30 [63%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Równanie o niewiadomej x postaci |x-a|=b ma dwa rozwiązania -7 i 6.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności |x-7| \leqslant 9 jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. \langle p,+\infty)
C. \langle p,q\rangle D. (-\infty,q\rangle
E. (p,q\rangle F. (-\infty,p\rangle \cup \langle q,+\infty)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wskaż nierówność, której rozwiązaniem jest zbiór \left(-\infty,-\frac{3}{2}\right)\cup\left(6,+\infty\right) :
Odpowiedzi:
A. \left|x+\frac{9}{4}\right| \leqslant \frac{15}{4} B. \left|x-\frac{9}{4}\right| \lessdot \frac{15}{4}
C. \left|x-\frac{9}{4}\right| > \frac{15}{4} D. \left|x+\frac{9}{4}\right| > \frac{15}{4}
Zadanie 11.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\frac{43}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, q\rangle
C. (-\infty, p)\cup (q,+\infty) D. (-\infty, p\rangle\cup \langle q,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\sqrt{3}+11\right| \leqslant 4 jest zbiór postaci:
Odpowiedzi:
A. (p,q) B. \langle p,+\infty)
C. (-\infty, p)\cup (q,+\infty) D. \langle p,q\rangle
E. (-\infty, p\rangle\cup \langle q,+\infty) F. (-\infty, q\rangle
Podpunkt 12.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm