Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Dane są liczby:
x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-1}{0,(3)}
oraz
y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2|
.
Liczba x-y jest:
Odpowiedzi:
|
A. niewymierna ujemna
|
B. całkowita dodatnia
|
|
C. całkowita ujemna
|
D. równa \sqrt{2}-1
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż nierówność, którą spełnia liczba
\pi:
Odpowiedzi:
|
A. \left| x+\frac{14}{3}\right|\leqslant 8
|
B. \left| x+3 \right| \lessdot 6
|
|
C. \left| x+8\right| > 12
|
D. \left| x+\frac{14}{3}\right| \geqslant 8
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przedział liczb
\langle -11,11\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x|\leqslant 11
|
B. |x| \geqslant 11
|
|
C. |x| > 11
|
D. |x| \lessdot 11
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Przedział liczb
\langle -11,11\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x| \geqslant 11
|
B. |x| > 11
|
|
C. |x|\leqslant 11
|
D. |x| \lessdot 11
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x-1||-2, gdzie
x\in(5,+\infty), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{37}\right)^2}-\sqrt{\left(1-\sqrt{37}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-1|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-1|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/30 [63%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Równanie o niewiadomej
x postaci
|x-a|=b
ma dwa rozwiązania
1 i
7.
Podaj liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+7| \geqslant 5
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. (p,q)
|
B. (-\infty,p\rangle \cup \langle q,+\infty)
|
|
C. (p,q\rangle
|
D. \langle p,+\infty)
|
|
E. \langle p,q\rangle
|
F. \langle p,q)
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{6-x}}+\sqrt{12-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x+\frac{2}{5}\right|-8,4\leqslant 0
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p)\cup (q,+\infty)
|
B. \langle p,q\rangle
|
|
C. (-\infty, p\rangle\cup \langle q,+\infty)
|
D. (p,q)
|
|
E. \langle p,+\infty)
|
F. (-\infty, q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
« Rozwiązaniem nierówności
\left|x+\sqrt{3}+12\right| \lessdot 4
jest zbiór postaci:
Odpowiedzi:
|
A. (p,q)
|
B. \langle p,+\infty)
|
|
C. (-\infty, q\rangle
|
D. \langle p,q\rangle
|
|
E. (-\infty, p\rangle\cup \langle q,+\infty)
|
F. (-\infty, p)\cup (q,+\infty)
|
Podpunkt 12.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)