Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{|14-15|}{-2}.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie |8x+6|=10x:
Odpowiedzi:
A. 5 B. 2
C. 3 D. 4
Zadanie 3.  1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wartość wyrażenia |9-x|-x-7 dla x\in (9, +\infty) można zapisać w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{7-x}}+\sqrt{11-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x-1||-2, gdzie x\in(5,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : \sqrt{(x+2)^2}=|x+2| T/N : |-x|=x
Zadanie 7.  1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie |-x+7|-1=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|1-x\right|-\frac{53}{10}}{2}=8.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|1-x\right|-\frac{53}{10}}{2}=8.

Podaj największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności |x+2| \leqslant 6 jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,p\rangle \cup \langle q,+\infty) B. (p,q\rangle
C. (p,q) D. \langle p,q\rangle
E. (-\infty,p)\cup(q,+\infty) F. (-\infty,q\rangle
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 559/894 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
A. |x-7| \lessdot 15 B. |x-7| > 15
C. |x-15| > 7 D. |x-15| \lessdot 7
Zadanie 11.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}+3\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty) B. \langle p,q\rangle
C. (-\infty, p)\cup (q,+\infty) D. (-\infty, q\rangle
E. \langle p,+\infty) F. (p,q)
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+8| \lessdot 21.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm