Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-3}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. równa 2-2\sqrt{2} B. niewymierna dodatnia
C. całkowita ujemna D. całkowita dodatnia
Zadanie 2.  1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|6x-4 \right| = 5-12x
Odpowiedzi:
A. \frac{1}{6} B. -\frac{1}{4}
C. -\frac{1}{6} D. \frac{1}{12}
Zadanie 3.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x-3\right| = 2x+18:
Odpowiedzi:
A. -7 B. -12
C. -5 D. -9
E. -6 F. -2
Zadanie 4.  1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie |x-4|+2=0:
Odpowiedzi:
A. ma dokładnie dwa rozwiązania B. nie ma rozwiązań
C. ma dokładnie jedno rozwiązanie D. ma więcej niż dwa rozwiązania
Zadanie 5.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-2x+2|\cdot |x-2|, gdzie x\in(-\infty,0), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |x+2|=|-x+2| T/N : \sqrt{(x-3)^2}=|x-3|
Zadanie 7.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \left|4-\frac{5}{4}x\right|-6=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/29 [65%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Równanie o niewiadomej x postaci |x-a|=b ma dwa rozwiązania -1 i -3.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x+3| \lessdot 8 jest zbiór liczb postaci:
Odpowiedzi:
A. \langle p,q\rangle B. \langle p,q)
C. (p,q\rangle D. (-\infty,p)\cup(q,+\infty)
E. (p,q) F. (-\infty,p\rangle \cup \langle q,+\infty)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wskaż nierówność, której rozwiązaniem jest zbiór \left(-\infty,-1\right)\cup\left(\frac{9}{2},+\infty\right) :
Odpowiedzi:
A. \left|x+\frac{7}{4}\right| \leqslant \frac{11}{4} B. \left|x-\frac{7}{4}\right| > \frac{11}{4}
C. \left|x-\frac{7}{4}\right| \lessdot \frac{11}{4} D. \left|x+\frac{7}{4}\right| > \frac{11}{4}
Zadanie 11.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|-\frac{3}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. (p,q) B. (-\infty, q\rangle
C. (-\infty, p\rangle\cup \langle q,+\infty) D. \langle p,q\rangle
E. (-\infty, p)\cup (q,+\infty) F. \langle p,+\infty)
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x+3| > 8
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. (p,q) D. (-\infty,p)\cup(q,+\infty)
E. \langle p,q) F. (-\infty,p\rangle \cup \langle q,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm