Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11615 ⋅ Poprawnie: 100/184 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left|\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)\right|-4\left(\sqrt{20}-2\left|\sqrt{5}-1\right|\right)
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż nierówność, którą spełnia liczba \pi:
Odpowiedzi:
A. \left| x+2\right| > 6 B. \left| x+2 \right| \lessdot 5
C. \left| x+\frac{8}{3}\right| \geqslant 6 D. \left| x-\frac{1}{3}\right|\leqslant 3
Zadanie 3.  1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{17}\right)^2}-\sqrt{\left(1-\sqrt{17}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{5-x}}+\sqrt{8-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-5+2x|+|-3x+9|, gdzie x\in(-\infty,1), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{17}\right)^2}-\sqrt{\left(1-\sqrt{17}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \left|-5+\frac{3}{2}x\right|-11=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Równanie |x-3|+1=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma dokładnie dwa rozwiązania
C. ma dokładnie jedno rozwiązanie D. ma więcej niż dwa rozwiązania
Zadanie 9.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x+3| \lessdot 5 jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,p\rangle \cup \langle q,+\infty) B. \langle p,q)
C. \langle p,q\rangle D. (-\infty,p)\cup(q,+\infty)
E. (p,q) F. (p,q\rangle
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wskaż nierówność, której rozwiązaniem jest zbiór \left(-\infty,-1\right)\cup\left(3,+\infty\right) :
Odpowiedzi:
A. \left|x+1\right| \leqslant 2 B. \left|x+1\right| > 2
C. \left|x-1\right| > 2 D. \left|x-1\right| \lessdot 2
Zadanie 11.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}-5\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup (q,+\infty) B. (p,q)
C. \langle p,q\rangle D. (-\infty, q\rangle
E. \langle p,+\infty) F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}+2\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty) B. (p,q)
C. (-\infty, q\rangle D. (-\infty, p)\cup (q,+\infty)
E. \langle p,q\rangle F. \langle p,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm