Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{48}-3\sqrt{3}\right|-\left|\sqrt{12}-\sqrt{75}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{4}x-3 \right| = -\frac{4}{4}x-2
Odpowiedzi:
A. -\frac{20}{3} B. \frac{20}{3}
C. 10 D. -10
Zadanie 3.  1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Przedział liczb \langle -6,6\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| \lessdot 6 B. |x| > 6
C. |x| \geqslant 6 D. |x|\leqslant 6
Zadanie 5.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 6/11 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-11+2x|+|-3x+18|, gdzie x\in(-\infty,4), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 234/365 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \frac{3|x-7|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Rozwiąż równanie \frac{3|x-7|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Równanie |x-2|-5=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma dokładnie dwa rozwiązania
C. ma dokładnie jedno rozwiązanie D. ma więcej niż dwa rozwiązania
Zadanie 9.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x+8| \lessdot 10 jest zbiór liczb postaci:
Odpowiedzi:
A. (p,q\rangle B. (-\infty,p\rangle \cup \langle q,+\infty)
C. (-\infty,p)\cup(q,+\infty) D. \langle p,q\rangle
E. (p,q) F. \langle p,q)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{5-x}}+\sqrt{7-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|-\frac{19}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. (p,q) B. (-\infty, p\rangle\cup \langle q,+\infty)
C. (-\infty, q\rangle D. (-\infty, p)\cup (q,+\infty)
E. \langle p,+\infty) F. \langle p,q\rangle
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}-4\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. (-\infty, p)\cup (q,+\infty) D. (-\infty, p\rangle\cup \langle q,+\infty)
E. (-\infty, q\rangle F. \langle p,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm