Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11615 ⋅ Poprawnie: 100/184 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left|\left(\sqrt{12}-\sqrt{11}\right)\left(\sqrt{12}+\sqrt{11}\right)\right|-2\left(\sqrt{44}-2\left|\sqrt{11}-1\right|\right)
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż nierówność, którą spełnia liczba \pi:
Odpowiedzi:
A. \left| x+\frac{29}{3}\right| \geqslant 13 B. \left| x+4 \right| \lessdot 7
C. \left| x+7\right| > 11 D. \left| x-\frac{7}{3}\right|\leqslant 1
Zadanie 3.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x+2\right| = 2x+8:
Odpowiedzi:
A. 2 B. 3
C. -2 D. 1
E. -3 F. 0
Zadanie 4.  1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{4-x}}+\sqrt{9-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x+4||+8, gdzie x\in(0,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{37}\right)^2}-\sqrt{\left(1-\sqrt{37}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \left|5-\frac{5}{2}x\right|-15=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/30 [63%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Równanie o niewiadomej x postaci |x-a|=b ma dwa rozwiązania -8 i 5.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności |x-8| \leqslant 9 jest zbiór liczb postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty,p)\cup(q,+\infty)
C. (-\infty,q\rangle D. \langle p,q)
E. \langle p,q\rangle F. (-\infty,p\rangle \cup \langle q,+\infty)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Suma przedziałów (-\infty, 4\rangle\cup \langle 10,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-7\right| \lessdot 3 B. \left|x-7\right| \geqslant 3
C. \left|x-7\right| > 3 D. \left|x-7\right| \leqslant 3
Zadanie 11.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\frac{48}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty) B. (p,q)
C. (-\infty, p)\cup (q,+\infty) D. \langle p,+\infty)
E. (-\infty, q\rangle F. \langle p,q\rangle
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x-5| > 6
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,q) B. (p,+\infty)
C. (-\infty,p)\cup(q,+\infty) D. (-\infty,p\rangle \cup \langle q,+\infty)
E. \langle p,q) F. \langle p,q\rangle
Podpunkt 12.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm