Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{48}-3\sqrt{3}\right|-\left|\sqrt{12}-\sqrt{75}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{4}x-3 \right| = -\frac{4}{4}x-2
Odpowiedzi:
A. -\frac{20}{3}
|
B. \frac{20}{3}
|
C. 10
|
D. -10
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Przedział liczb
\langle -6,6\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| \lessdot 6
|
B. |x| > 6
|
C. |x| \geqslant 6
|
D. |x|\leqslant 6
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 6/11 [54%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
|-11+2x|+|-3x+18|, gdzie
x\in(-\infty,4), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 234/365 [64%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-7|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-7|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Odpowiedzi:
A. nie ma rozwiązań
|
B. ma dokładnie dwa rozwiązania
|
C. ma dokładnie jedno rozwiązanie
|
D. ma więcej niż dwa rozwiązania
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x+8| \lessdot 10
jest zbiór liczb postaci:
Odpowiedzi:
A. (p,q\rangle
|
B. (-\infty,p\rangle \cup \langle q,+\infty)
|
C. (-\infty,p)\cup(q,+\infty)
|
D. \langle p,q\rangle
|
E. (p,q)
|
F. \langle p,q)
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{5-x}}+\sqrt{7-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|-\frac{19}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
A. (p,q)
|
B. (-\infty, p\rangle\cup \langle q,+\infty)
|
C. (-\infty, q\rangle
|
D. (-\infty, p)\cup (q,+\infty)
|
E. \langle p,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
« Rozwiązaniem nierówności
\left|x+\sqrt{3}-4\right| \lessdot 4
jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle
|
B. (p,q)
|
C. (-\infty, p)\cup (q,+\infty)
|
D. (-\infty, p\rangle\cup \langle q,+\infty)
|
E. (-\infty, q\rangle
|
F. \langle p,+\infty)
|
Podpunkt 12.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)