Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{|14-15|}{-2}.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{9}x-3 \right| = -\frac{4}{9}x-2
Odpowiedzi:
A. -\frac{45}{2} B. -15
C. 15 D. \frac{45}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11582 ⋅ Poprawnie: 106/161 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+10| \lessdot 21.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie |x-7|-5=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma więcej niż dwa rozwiązania
C. ma dokładnie dwa rozwiązania D. ma dokładnie jedno rozwiązanie
Zadanie 5.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |11+2x|+|-3x-15|, gdzie x\in(-\infty,-7), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : \sqrt{(x+10)^2}=x+10 T/N : |-x|=x
Zadanie 7.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \left|6+\frac{7}{5}x\right|-13=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|-4-x\right|-\frac{53}{10}}{2}=8.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|-4-x\right|-\frac{53}{10}}{2}=8.

Podaj największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/725 [54%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x+7| \geqslant 8
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. \langle p,q) D. (-\infty,p\rangle \cup \langle q,+\infty)
E. \langle p,+\infty) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/400 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Suma przedziałów (-\infty, 4\rangle\cup \langle 14,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-9\right| > 5 B. \left|x-9\right| \geqslant 5
C. \left|x-9\right| \leqslant 5 D. \left|x-9\right| \lessdot 5
Zadanie 11.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|\frac{29}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty) B. \langle p,q\rangle
C. (p,q) D. (-\infty, p)\cup (q,+\infty)
E. (-\infty, p\rangle\cup \langle q,+\infty) F. (-\infty, q\rangle
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}+13\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup (q,+\infty) B. \langle p,+\infty)
C. (-\infty, q\rangle D. (p,q)
E. \langle p,q\rangle F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm