Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10181 ⋅ Poprawnie: 164/348 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Jeżeli x\in(-\infty,0), to wyrażenie ||x|+3| jest równe:
Odpowiedzi:
A. -x+3 B. \left|-x-3\right|
C. x+3 D. x-3
Zadanie 2.  1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|2x-4 \right| = 5-4x
Odpowiedzi:
A. \frac{1}{4} B. -\frac{1}{2}
C. -\frac{3}{4} D. \frac{1}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Przedział liczb \langle -2,2\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| > 2 B. |x|\leqslant 2
C. |x| \lessdot 2 D. |x| \geqslant 2
Zadanie 4.  1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{4-x}}+\sqrt{8-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x+4||+8, gdzie x\in(0,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |-x|=x T/N : \sqrt{(x-12)^2}=x-12
Zadanie 7.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \left|4+\frac{3}{8}x\right|-6=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x-\frac{43}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x-\frac{43}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x-4| \lessdot 3 jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,p\rangle \cup \langle q,+\infty) B. (p,q)
C. \langle p,q) D. (p,q\rangle
E. \langle p,q\rangle F. (-\infty,p)\cup(q,+\infty)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 559/894 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
A. |x-15| \lessdot 7 B. |x-7| \lessdot 15
C. |x-15| > 7 D. |x-7| > 15
Zadanie 11.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|-\frac{35}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup (q,+\infty) B. \langle p,+\infty)
C. (-\infty, q\rangle D. \langle p,q\rangle
E. (-\infty, p\rangle\cup \langle q,+\infty) F. (p,q)
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}+12\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup (q,+\infty) B. (-\infty, p\rangle\cup \langle q,+\infty)
C. \langle p,+\infty) D. \langle p,q\rangle
E. (-\infty, q\rangle F. (p,q)
Podpunkt 12.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm