Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{108}-5\sqrt{3}\right|-\left|\sqrt{27}-\sqrt{108}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie |2x+2|=4x:
Odpowiedzi:
A. -1 B. 0
C. 2 D. 1
Zadanie 3.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x+2\right| = 2x+8:
Odpowiedzi:
A. -7 B. -8
C. -4 D. -1
E. -0 F. -2
Zadanie 4.  1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby x spełniającej warunek -1 \lessdot x \lessdot 0, wyrażenie \frac{|x+1|-x+1}{x} jest równe \frac{mx+n}{x}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 25/31 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-11+2x|+|-3x+18|, gdzie x\in(-\infty,4), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |x-6|=|-x-6| T/N : \sqrt{(x-6)^2}=|x-6|
Zadanie 7.  1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \frac{3|x-11|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Rozwiąż równanie \frac{3|x-11|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/30 [63%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Równanie o niewiadomej x postaci |x-a|=b ma dwa rozwiązania 2 i -3.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x-8| \geqslant 7
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (-\infty,p\rangle \cup \langle q,+\infty) B. \langle p,q)
C. \langle p,q\rangle D. \langle p,+\infty)
E. (p,q) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 384/597 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wskaż nierówność, której rozwiązaniem jest zbiór \left(-\infty,-\frac{1}{2}\right)\cup\left(\frac{9}{2},+\infty\right) :
Odpowiedzi:
A. \left|x-2\right| \lessdot \frac{5}{2} B. \left|x+2\right| > \frac{5}{2}
C. \left|x+2\right| \leqslant \frac{5}{2} D. \left|x-2\right| > \frac{5}{2}
Zadanie 11.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\frac{48}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. \langle p,+\infty)
C. (-\infty, p\rangle\cup \langle q,+\infty) D. (-\infty, q\rangle
E. (p,q) F. (-\infty, p)\cup (q,+\infty)
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}-4\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. \langle p,+\infty) D. (-\infty, p)\cup (q,+\infty)
E. (-\infty, q\rangle F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm