Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{108}-5\sqrt{3}\right|-\left|\sqrt{12}-\sqrt{75}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie
|9x+2|=11x:
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Odpowiedzi:
|
A. ma więcej niż dwa rozwiązania
|
B. ma dokładnie dwa rozwiązania
|
|
C. nie ma rozwiązań
|
D. ma dokładnie jedno rozwiązanie
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x+1||+2, gdzie
x\in(3,+\infty), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 243/385 [63%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11573 ⋅ Poprawnie: 48/109 [44%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Ile rozwiązań ma równanie
|x|+\sqrt{6}=2?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (0.5 pkt)
Ile rozwiązań ma równanie
|x|+\sqrt{3}=\frac{5}{2}?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/30 [63%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Równanie o niewiadomej
x postaci
|x-a|=b
ma dwa rozwiązania
5 i
-7.
Podaj liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+5| \leqslant 2
jest zbiór liczb postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. (-\infty,q\rangle
|
|
C. (-\infty,p)\cup(q,+\infty)
|
D. (p,q)
|
|
E. \langle p,q\rangle
|
F. (p,q\rangle
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 384/597 [64%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Wskaż nierówność, której rozwiązaniem jest zbiór
\left(-\infty,-\frac{1}{2}\right)\cup\left(\frac{9}{2},+\infty\right)
:
Odpowiedzi:
|
A. \left|x-2\right| \lessdot \frac{5}{2}
|
B. \left|x+2\right| \leqslant \frac{5}{2}
|
|
C. \left|x-2\right| > \frac{5}{2}
|
D. \left|x+2\right| > \frac{5}{2}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|\frac{21}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p\rangle\cup \langle q,+\infty)
|
B. \langle p,+\infty)
|
|
C. (-\infty, p)\cup (q,+\infty)
|
D. (p,q)
|
|
E. \langle p,q\rangle
|
F. (-\infty, q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+3| \lessdot 13.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)