Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10181 ⋅ Poprawnie: 164/348 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Jeżeli x\in(-\infty,0), to wyrażenie ||x|+9| jest równe:
Odpowiedzi:
A. -x+9 B. -x-9
C. x+9 D. \left|-x-9\right|
Zadanie 2.  1 pkt ⋅ Numer: pp-10183 ⋅ Poprawnie: 254/499 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Wartość wyrażenia |9-x|-x-12 dla x\in (9, +\infty) jest równa:
Odpowiedzi:
A. 3 B. -3-2x
C. -21 D. -3
Zadanie 3.  1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{7-x}}+\sqrt{13-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 25/31 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |9+2x|+|-3x-12|, gdzie x\in(-\infty,-6), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : \sqrt{(x+2)^2}=|x+2| T/N : \sqrt{(x+4)^2}=x+4
Zadanie 7.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \left|2-\frac{7}{3}x\right|-8=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Równanie |x-7|+2=0:
Odpowiedzi:
A. ma dokładnie dwa rozwiązania B. ma więcej niż dwa rozwiązania
C. ma dokładnie jedno rozwiązanie D. nie ma rozwiązań
Zadanie 9.  1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności |x+2| \leqslant 10 jest zbiór liczb postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,q\rangle
C. (p,q) D. \langle p,q)
E. (-\infty,p)\cup(q,+\infty) F. (-\infty,p\rangle \cup \langle q,+\infty)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{7-x}}+\sqrt{13-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}+4\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, q\rangle B. (-\infty, p\rangle\cup \langle q,+\infty)
C. (-\infty, p)\cup (q,+\infty) D. \langle p,q\rangle
E. \langle p,+\infty) F. (p,q)
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x-7| > 5
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,q) B. (p,q)
C. (p,+\infty) D. (-\infty,p)\cup(q,+\infty)
E. (-\infty,p\rangle \cup \langle q,+\infty) F. (p,q\rangle
Podpunkt 12.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm