Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\frac{|14-15|}{-2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{9}x-3 \right| = -\frac{4}{9}x-2
Odpowiedzi:
|
A. -\frac{45}{2}
|
B. -15
|
|
C. 15
|
D. \frac{45}{2}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11582 ⋅ Poprawnie: 106/161 [65%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+10| \lessdot 21.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Odpowiedzi:
|
A. nie ma rozwiązań
|
B. ma więcej niż dwa rozwiązania
|
|
C. ma dokładnie dwa rozwiązania
|
D. ma dokładnie jedno rozwiązanie
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
|11+2x|+|-3x-15|, gdzie
x\in(-\infty,-7), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
|
T/N : \sqrt{(x+10)^2}=x+10
|
T/N : |-x|=x
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
\left|6+\frac{7}{5}x\right|-13=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|-4-x\right|-\frac{53}{10}}{2}=8.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|-4-x\right|-\frac{53}{10}}{2}=8.
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/725 [54%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+7| \geqslant 8
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. \langle p,q\rangle
|
B. (p,q)
|
|
C. \langle p,q)
|
D. (-\infty,p\rangle \cup \langle q,+\infty)
|
|
E. \langle p,+\infty)
|
F. (-\infty,p)\cup(q,+\infty)
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/400 [69%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Suma przedziałów
(-\infty, 4\rangle\cup \langle 14,+\infty)
jest zbiorem rozwiązań nierówności:
Odpowiedzi:
|
A. \left|x-9\right| > 5
|
B. \left|x-9\right| \geqslant 5
|
|
C. \left|x-9\right| \leqslant 5
|
D. \left|x-9\right| \lessdot 5
|
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|\frac{29}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. \langle p,q\rangle
|
|
C. (p,q)
|
D. (-\infty, p)\cup (q,+\infty)
|
|
E. (-\infty, p\rangle\cup \langle q,+\infty)
|
F. (-\infty, q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
« Rozwiązaniem nierówności
\left|x+\sqrt{3}+13\right| \lessdot 4
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p)\cup (q,+\infty)
|
B. \langle p,+\infty)
|
|
C. (-\infty, q\rangle
|
D. (p,q)
|
|
E. \langle p,q\rangle
|
F. (-\infty, p\rangle\cup \langle q,+\infty)
|
Podpunkt 12.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)