Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{108}-5\sqrt{3}\right|-\left|\sqrt{108}-\sqrt{243}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10183 ⋅ Poprawnie: 254/499 [50%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Wartość wyrażenia
|10-x|-x-11 dla
x\in (10, +\infty) jest równa:
Odpowiedzi:
|
A. 1
|
B. -1
|
|
C. -1-2x
|
D. -21
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przedział liczb
\langle -15,15\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x| > 15
|
B. |x| \lessdot 15
|
|
C. |x| \geqslant 15
|
D. |x|\leqslant 15
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Przedział liczb
\langle -15,15\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x| \lessdot 15
|
B. |x|\leqslant 15
|
|
C. |x| \geqslant 15
|
D. |x| > 15
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
|-2x-6|\cdot |x+2|, gdzie
x\in(-\infty,-4), w postaci
ax^2+bx+c.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 243/385 [63%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{37}\right)^2}-\sqrt{\left(1-\sqrt{37}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
|x+4|-13=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/30 [63%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Równanie o niewiadomej
x postaci
|x-a|=b
ma dwa rozwiązania
5 i
6.
Podaj liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+6| \geqslant 9
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. (-\infty,p\rangle \cup \langle q,+\infty)
|
B. (p,q\rangle
|
|
C. (p,q)
|
D. \langle p,q\rangle
|
|
E. \langle p,q)
|
F. \langle p,+\infty)
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Suma przedziałów
(-\infty, 4\rangle\cup \langle 14,+\infty)
jest zbiorem rozwiązań nierówności:
Odpowiedzi:
|
A. \left|x-9\right| \leqslant 5
|
B. \left|x-9\right| > 5
|
|
C. \left|x-9\right| \geqslant 5
|
D. \left|x-9\right| \lessdot 5
|
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|\frac{21}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
|
A. (p,q)
|
B. (-\infty, p)\cup (q,+\infty)
|
|
C. (-\infty, q\rangle
|
D. \langle p,q\rangle
|
|
E. \langle p,+\infty)
|
F. (-\infty, p\rangle\cup \langle q,+\infty)
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+7| \lessdot 19.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)