Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{75}-4\sqrt{3}\right|-\left|\sqrt{12}-\sqrt{75}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10183 ⋅ Poprawnie: 254/499 [50%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Wartość wyrażenia
|7-x|-x-3 dla
x\in (7, +\infty) jest równa:
Odpowiedzi:
|
A. 4
|
B. -10
|
|
C. 4-2x
|
D. -4
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przedział liczb
\langle -9,9\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x|\leqslant 9
|
B. |x| \lessdot 9
|
|
C. |x| \geqslant 9
|
D. |x| > 9
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Przedział liczb
\langle -9,9\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x|\leqslant 9
|
B. |x| > 9
|
|
C. |x| \lessdot 9
|
D. |x| \geqslant 9
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 25/31 [80%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
|-11+2x|+|-3x+18|, gdzie
x\in(-\infty,4), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
|
T/N : |-x|=x
|
T/N : |x+1|=-1-x
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11573 ⋅ Poprawnie: 48/109 [44%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Ile rozwiązań ma równanie
|x|+\sqrt{6}=2?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (0.5 pkt)
Ile rozwiązań ma równanie
|x|+\sqrt{3}=2?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Odpowiedzi:
|
A. nie ma rozwiązań
|
B. ma więcej niż dwa rozwiązania
|
|
C. ma dokładnie jedno rozwiązanie
|
D. ma dokładnie dwa rozwiązania
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x+7| \lessdot 7
jest zbiór liczb postaci:
Odpowiedzi:
|
A. \langle p,q)
|
B. (p,q\rangle
|
|
C. (-\infty,p\rangle \cup \langle q,+\infty)
|
D. (p,q)
|
|
E. (-\infty,p)\cup(q,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Suma przedziałów
(-\infty, 1\rangle\cup \langle 11,+\infty)
jest zbiorem rozwiązań nierówności:
Odpowiedzi:
|
A. \left|x-6\right| \leqslant 5
|
B. \left|x-6\right| \geqslant 5
|
|
C. \left|x-6\right| \lessdot 5
|
D. \left|x-6\right| > 5
|
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|-\frac{3}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
|
A. (p,q)
|
B. \langle p,+\infty)
|
|
C. (-\infty, p)\cup (q,+\infty)
|
D. (-\infty, p\rangle\cup \langle q,+\infty)
|
|
E. (-\infty, q\rangle
|
F. \langle p,q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+10| \lessdot 20.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)