Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-\frac{8}{3}}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. całkowita ujemna B. całkowita dodatnia
C. równa 2-2\sqrt{2} D. niewymierna dodatnia
Zadanie 2.  1 pkt ⋅ Numer: pp-10183 ⋅ Poprawnie: 253/499 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Wartość wyrażenia |7-x|-x-9 dla x\in (7, +\infty) jest równa:
Odpowiedzi:
A. 2 B. -2
C. -16 D. -2-2x
Zadanie 3.  1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wartość wyrażenia |7-x|-x-9 dla x\in (7, +\infty) można zapisać w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie |x-4|-2=0:
Odpowiedzi:
A. ma dokładnie jedno rozwiązanie B. nie ma rozwiązań
C. ma dokładnie dwa rozwiązania D. ma więcej niż dwa rozwiązania
Zadanie 5.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |3+2x|+|-3x-3|, gdzie x\in(-\infty,-3), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |-x|=x T/N : \sqrt{(x-2)^2}=x-2
Zadanie 7.  1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie |-x+3|-2=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x-\frac{3}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x-\frac{3}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x+3| \geqslant 9
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (p,q\rangle
C. (-\infty,p\rangle \cup \langle q,+\infty) D. (-\infty,p)\cup(q,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 559/894 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
A. |x-7| \lessdot 15 B. |x-15| > 7
C. |x-7| > 15 D. |x-15| \lessdot 7
Zadanie 11.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\frac{8}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty) B. (-\infty, p)\cup (q,+\infty)
C. (p,q) D. \langle p,q\rangle
E. \langle p,+\infty) F. (-\infty, q\rangle
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x-3| > 9
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,q\rangle B. (p,q)
C. (-\infty,p)\cup(q,+\infty) D. \langle p,q\rangle
E. \langle p,q) F. (p,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm