Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11615 ⋅ Poprawnie: 100/184 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left|\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\right|-7\left(\sqrt{20}-2\left|\sqrt{5}-1\right|\right)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{3}x-3 \right| = -\frac{4}{3}x-2
Odpowiedzi:
|
A. \frac{15}{2}
|
B. -5
|
|
C. -\frac{15}{2}
|
D. 5
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Wartość wyrażenia
|4-x|-x-7 dla
x\in (4, +\infty) można zapisać w postaci
mx+n, gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dla każdej liczby
x spełniającej warunek
-3 \lessdot x \lessdot 0, wyrażenie
\frac{|x+3|-x+3}{x} jest równe
\frac{mx+n}{x}, gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 25/31 [80%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
|-3+2x|+|-3x+6|, gdzie
x\in(-\infty,0), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
|
T/N : \sqrt{(x-5)^2}=|x-5|
|
T/N : |-x|=x
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-9|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-9|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|10-x\right|-\frac{53}{10}}{2}=8.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|10-x\right|-\frac{53}{10}}{2}=8.
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
Rozwiązaniem nierówności
|x-6| \leqslant 5
jest zbiór liczb postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. \langle p,q)
|
|
C. \langle p,q\rangle
|
D. (-\infty,q\rangle
|
|
E. (-\infty,p\rangle \cup \langle q,+\infty)
|
F. (-\infty,p)\cup(q,+\infty)
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Suma przedziałów
(-\infty, 2\rangle\cup \langle 14,+\infty)
jest zbiorem rozwiązań nierówności:
Odpowiedzi:
|
A. \left|x-8\right| \lessdot 6
|
B. \left|x-8\right| \geqslant 6
|
|
C. \left|x-8\right| \leqslant 6
|
D. \left|x-8\right| > 6
|
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\frac{38}{5}\right|-8,4\leqslant 0
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. (-\infty, p)\cup (q,+\infty)
|
|
C. (p,q)
|
D. (-\infty, q\rangle
|
|
E. \langle p,q\rangle
|
F. (-\infty, p\rangle\cup \langle q,+\infty)
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x+\sqrt{3}+3\right| \leqslant 4
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, q\rangle
|
B. \langle p,q\rangle
|
|
C. (p,q)
|
D. (-\infty, p\rangle\cup \langle q,+\infty)
|
|
E. \langle p,+\infty)
|
F. (-\infty, p)\cup (q,+\infty)
|
Podpunkt 12.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)