Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{75}-4\sqrt{3}\right|-\left|\sqrt{108}-\sqrt{243}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie |5x+6|=7x:
Odpowiedzi:
A. 3 B. 5
C. 4 D. 1
Zadanie 3.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x-4\right| = 2x+20:
Odpowiedzi:
A. -5 B. -3
C. -8 D. -9
E. -10 F. -11
Zadanie 4.  1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Przedział liczb \langle -10,10\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| \geqslant 10 B. |x| \lessdot 10
C. |x| > 10 D. |x|\leqslant 10
Zadanie 5.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-2x-10|\cdot |x+4|, gdzie x\in(-\infty,-6), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{23}\right)^2}-\sqrt{\left(1-\sqrt{23}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11573 ⋅ Poprawnie: 48/109 [44%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Ile rozwiązań ma równanie |x|+\sqrt{2}=1?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (0.5 pkt)
 Ile rozwiązań ma równanie |x|+\sqrt{2}=\frac{3}{2}?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Równanie |x-7|+3=0:
Odpowiedzi:
A. ma dokładnie jedno rozwiązanie B. ma dokładnie dwa rozwiązania
C. ma więcej niż dwa rozwiązania D. nie ma rozwiązań
Zadanie 9.  1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x+7| \geqslant 4
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty,p)\cup(q,+\infty)
C. (-\infty,p\rangle \cup \langle q,+\infty) D. (p,q\rangle
E. \langle p,q) F. (p,q)
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Suma przedziałów (-\infty, 4\rangle\cup \langle 8,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-6\right| > 2 B. \left|x-6\right| \leqslant 2
C. \left|x-6\right| \lessdot 2 D. \left|x-6\right| \geqslant 2
Zadanie 11.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|\frac{33}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty) B. \langle p,q\rangle
C. (-\infty, p)\cup (q,+\infty) D. (p,q)
E. \langle p,+\infty) F. (-\infty, q\rangle
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\sqrt{3}+13\right| \leqslant 4 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty) B. (-\infty, q\rangle
C. (-\infty, p)\cup (q,+\infty) D. (p,q)
E. \langle p,q\rangle F. \langle p,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm