Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10181 ⋅ Poprawnie: 164/348 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Jeżeli
x\in(-\infty,0), to wyrażenie
||x|+4| jest równe:
Odpowiedzi:
|
A. -x-4
|
B. x+4
|
|
C. \left|-x-4\right|
|
D. -x+4
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10183 ⋅ Poprawnie: 253/499 [50%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Wartość wyrażenia
|4-x|-x-10 dla
x\in (4, +\infty) jest równa:
Odpowiedzi:
|
A. 6
|
B. -6
|
|
C. -14
|
D. -6-2x
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Przedział liczb
\langle -3,3\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x|\leqslant 3
|
B. |x| > 3
|
|
C. |x| \geqslant 3
|
D. |x| \lessdot 3
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{4-x}}+\sqrt{9-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x+4||+8, gdzie
x\in(0,+\infty), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
|
T/N : \sqrt{(x-10)^2}=x-10
|
T/N : |-x|=x
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
|-8x+5|-3=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Odpowiedzi:
|
A. ma dokładnie jedno rozwiązanie
|
B. ma dokładnie dwa rozwiązania
|
|
C. ma więcej niż dwa rozwiązania
|
D. nie ma rozwiązań
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+5| \geqslant 9
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. (-\infty,p\rangle \cup \langle q,+\infty)
|
B. (p,q)
|
|
C. (p,q\rangle
|
D. \langle p,+\infty)
|
|
E. (-\infty,p)\cup(q,+\infty)
|
F. \langle p,q)
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{4-x}}+\sqrt{9-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|-\frac{31}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, q\rangle
|
B. \langle p,+\infty)
|
|
C. (-\infty, p)\cup (q,+\infty)
|
D. \langle p,q\rangle
|
|
E. (p,q)
|
F. (-\infty, p\rangle\cup \langle q,+\infty)
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+4| \lessdot 19.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)