Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-1}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. całkowita dodatnia B. całkowita ujemna
C. niewymierna ujemna D. równa \sqrt{2}-1
Zadanie 2.  1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{8}x-3 \right| = -\frac{4}{8}x-2
Odpowiedzi:
A. \frac{40}{3} B. -20
C. -\frac{40}{3} D. 20
Zadanie 3.  1 pkt ⋅ Numer: pp-11582 ⋅ Poprawnie: 106/161 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+10| \lessdot 22.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby x spełniającej warunek -13 \lessdot x \lessdot 0, wyrażenie \frac{|x+13|-x+13}{x} jest równe \frac{mx+n}{x}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-2x-8|\cdot |x+3|, gdzie x\in(-\infty,-5), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 243/385 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{11}\right)^2}-\sqrt{\left(1-\sqrt{11}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Rozwiąż równanie \left|6-\frac{2}{7}x\right|-12=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Równanie |x-5|+4=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma dokładnie dwa rozwiązania
C. ma dokładnie jedno rozwiązanie D. ma więcej niż dwa rozwiązania
Zadanie 9.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x-2| \lessdot 2 jest zbiór liczb postaci:
Odpowiedzi:
A. \langle p,q) B. (p,q)
C. (p,q\rangle D. (-\infty,p)\cup(q,+\infty)
E. (-\infty,p\rangle \cup \langle q,+\infty) F. \langle p,q\rangle
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 560/894 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
A. |x-7| > 15 B. |x-15| \lessdot 7
C. |x-15| > 7 D. |x-7| \lessdot 15
Zadanie 11.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|\frac{29}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, p)\cup (q,+\infty)
C. (p,q) D. \langle p,q\rangle
E. (-\infty, p\rangle\cup \langle q,+\infty) F. (-\infty, q\rangle
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x-2| > 2
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (p,q\rangle
C. (-\infty,p\rangle \cup \langle q,+\infty) D. (p,+\infty)
E. \langle p,q) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm