Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-\frac{8}{3}}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. całkowita ujemna B. równa 2-2\sqrt{2}
C. niewymierna dodatnia D. całkowita dodatnia
Zadanie 2.  1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|5x-4 \right| = 5-10x
Odpowiedzi:
A. -\frac{3}{10} B. \frac{1}{5}
C. -\frac{1}{5} D. \frac{1}{10}
Zadanie 3.  1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wartość wyrażenia |6-x|-x-10 dla x\in (6, +\infty) można zapisać w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{5-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-2x+4|\cdot |x-3|, gdzie x\in(-\infty,1), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |x+3|=|-x+3| T/N : \sqrt{(x-4)^2}=x-4
Zadanie 7.  1 pkt ⋅ Numer: pp-11573 ⋅ Poprawnie: 48/109 [44%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Ile rozwiązań ma równanie |x|+\sqrt{2}=1?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (0.5 pkt)
 Ile rozwiązań ma równanie |x|+\sqrt{12}=\frac{7}{2}?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Równanie |x-6|+1=0:
Odpowiedzi:
A. ma więcej niż dwa rozwiązania B. ma dokładnie jedno rozwiązanie
C. nie ma rozwiązań D. ma dokładnie dwa rozwiązania
Zadanie 9.  1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Rozwiązaniem nierówności |x-2| \leqslant 8 jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. (-\infty,q\rangle
C. \langle p,q\rangle D. (p,q)
E. (-\infty,p\rangle \cup \langle q,+\infty) F. (p,q\rangle
Podpunkt 9.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{5-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|-\frac{7}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, p\rangle\cup \langle q,+\infty)
C. (-\infty, p)\cup (q,+\infty) D. (p,q)
E. (-\infty, q\rangle F. \langle p,q\rangle
Podpunkt 11.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x-4| > 5
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,q) B. (p,q\rangle
C. \langle p,q) D. \langle p,q\rangle
E. (p,+\infty) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm