Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Dane są liczby:
x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-3}{0,(3)}
oraz
y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2|
.
Liczba x-y jest:
Odpowiedzi:
|
A. niewymierna dodatnia
|
B. całkowita dodatnia
|
|
C. całkowita ujemna
|
D. równa 2-2\sqrt{2}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{4}x-3 \right| = -\frac{4}{4}x-2
Odpowiedzi:
|
A. -\frac{20}{3}
|
B. \frac{20}{3}
|
|
C. -10
|
D. 10
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{23}\right)^2}-\sqrt{\left(1-\sqrt{23}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{5-x}}+\sqrt{9-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
|11+2x|+|-3x-15|, gdzie
x\in(-\infty,-7), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
|
T/N : \sqrt{(x-6)^2}=x-6
|
T/N : \sqrt{(x-3)^2}=|x-3|
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
Rozwiąż równanie
\left|-8-\frac{7}{2}x\right|-5=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|7-x\right|-\frac{53}{10}}{2}=8.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|7-x\right|-\frac{53}{10}}{2}=8.
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
Rozwiązaniem nierówności
|x-4| \leqslant 6
jest zbiór liczb postaci:
Odpowiedzi:
|
A. \langle p,q)
|
B. (p,q\rangle
|
|
C. \langle p,+\infty)
|
D. \langle p,q\rangle
|
|
E. (p,q)
|
F. (-\infty,p\rangle \cup \langle q,+\infty)
|
Podpunkt 9.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Wskaż nierówność, której rozwiązaniem jest zbiór
\left(-\infty,-\frac{3}{2}\right)\cup\left(6,+\infty\right)
:
Odpowiedzi:
|
A. \left|x-\frac{9}{4}\right| \lessdot \frac{15}{4}
|
B. \left|x-\frac{9}{4}\right| > \frac{15}{4}
|
|
C. \left|x+\frac{9}{4}\right| > \frac{15}{4}
|
D. \left|x+\frac{9}{4}\right| \leqslant \frac{15}{4}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\sqrt{2}-3\right| > 1
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p\rangle\cup \langle q,+\infty)
|
B. (p,q)
|
|
C. \langle p,+\infty)
|
D. (-\infty, p)\cup (q,+\infty)
|
|
E. (-\infty, q\rangle
|
F. \langle p,q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
« Rozwiązaniem nierówności
|x+5| > 10
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. (p,+\infty)
|
B. (p,q)
|
|
C. (p,q\rangle
|
D. \langle p,q\rangle
|
|
E. (-\infty,p)\cup(q,+\infty)
|
F. (-\infty,p\rangle \cup \langle q,+\infty)
|
Podpunkt 12.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)