Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11615 ⋅ Poprawnie: 100/184 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left|\left(\sqrt{8}-\sqrt{7}\right)\left(\sqrt{8}+\sqrt{7}\right)\right|-6\left(\sqrt{44}-2\left|\sqrt{11}-1\right|\right)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10183 ⋅ Poprawnie: 254/499 [50%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Wartość wyrażenia
|6-x|-x-4 dla
x\in (6, +\infty) jest równa:
Odpowiedzi:
|
A. 2-2x
|
B. -2
|
|
C. -10
|
D. 2
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{5}x-3 \right| = -\frac{4}{5}x-2
Odpowiedzi:
|
A. -\frac{25}{3}
|
B. \frac{25}{2}
|
|
C. -\frac{25}{2}
|
D. \frac{25}{3}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Przedział liczb
\langle -8,8\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x|\leqslant 8
|
B. |x| \geqslant 8
|
|
C. |x| > 8
|
D. |x| \lessdot 8
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Przedział liczb
\langle -8,8\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x| \geqslant 8
|
B. |x|\leqslant 8
|
|
C. |x| > 8
|
D. |x| \lessdot 8
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 25/31 [80%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
|-9+2x|+|-3x+15|, gdzie
x\in(-\infty,3), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 243/385 [63%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
|-x-1|-2=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-4|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-4|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odpowiedzi:
|
A. nie ma rozwiązań
|
B. ma dokładnie jedno rozwiązanie
|
|
C. ma dokładnie dwa rozwiązania
|
D. ma więcej niż dwa rozwiązania
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x+6| \lessdot 9
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (-\infty,p)\cup(q,+\infty)
|
B. (p,q\rangle
|
|
C. \langle p,q)
|
D. \langle p,q\rangle
|
|
E. (-\infty,p\rangle \cup \langle q,+\infty)
|
F. (p,q)
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
Rozwiązaniem nierówności
|x-2| \leqslant 3
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (-\infty,p\rangle \cup \langle q,+\infty)
|
B. (p,q)
|
|
C. (-\infty,q\rangle
|
D. \langle p,q)
|
|
E. \langle p,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 12.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 560/894 [62%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
|
A. |x-15| > 7
|
B. |x-7| > 15
|
|
C. |x-15| \lessdot 7
|
D. |x-7| \lessdot 15
|
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\sqrt{2}-1\right| > 1
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p\rangle\cup \langle q,+\infty)
|
B. (-\infty, q\rangle
|
|
C. (-\infty, p)\cup (q,+\infty)
|
D. (p,q)
|
|
E. \langle p,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+5| \lessdot 13.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)