Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Dane są liczby:
x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-\frac{2}{3}}{0,(3)}
oraz
y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2|
.
Liczba x-y jest:
Odpowiedzi:
|
A. niewymierna ujemna
|
B. całkowita dodatnia
|
|
C. równa \sqrt{2}-1
|
D. całkowita ujemna
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
\frac{|1-6|}{-2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wskaż liczbę, która spełnia równanie
\left|-x-9\right| = 2x+30:
Odpowiedzi:
|
A. -9
|
B. -15
|
|
C. -19
|
D. -16
|
|
E. -13
|
F. -14
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dla każdej liczby
x spełniającej warunek
-14 \lessdot x \lessdot 0, wyrażenie
\frac{|x+14|-x+14}{x} jest równe
\frac{mx+n}{x}, gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
|
A. ma dokładnie jedno rozwiązanie
|
B. ma dokładnie dwa rozwiązania
|
|
C. nie ma rozwiązań
|
D. ma więcej niż dwa rozwiązania
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
|-5+2x|+|-3x+9|, gdzie
x\in(-\infty,1), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
\left|5-\frac{5}{6}x\right|-14=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|x+\frac{42}{5}\right|}{3}=1.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|x+\frac{42}{5}\right|}{3}=1.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] |
Rozwiąż |
Podpunkt 10.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|-5-x\right|-\frac{53}{10}}{2}=8.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|-5-x\right|-\frac{53}{10}}{2}=8.
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x+4| \lessdot 5
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (p,q)
|
B. (p,q\rangle
|
|
C. (-\infty,p\rangle \cup \langle q,+\infty)
|
D. \langle p,q\rangle
|
|
E. \langle p,q)
|
F. (-\infty,p)\cup(q,+\infty)
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 12. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{8-x}}+\sqrt{11-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
« Wskaż nierówność, której rozwiązaniem jest zbiór
\left(-\infty,-1\right)\cup\left(\frac{7}{2},+\infty\right)
:
Odpowiedzi:
|
A. \left|x+\frac{5}{4}\right| \leqslant \frac{9}{4}
|
B. \left|x-\frac{5}{4}\right| \lessdot \frac{9}{4}
|
|
C. \left|x-\frac{5}{4}\right| > \frac{9}{4}
|
D. \left|x+\frac{5}{4}\right| > \frac{9}{4}
|
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|\frac{33}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p\rangle\cup \langle q,+\infty)
|
B. (-\infty, p)\cup (q,+\infty)
|
|
C. \langle p,q\rangle
|
D. (-\infty, q\rangle
|
|
E. (p,q)
|
F. \langle p,+\infty)
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 15. 1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] |
Rozwiąż |
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
\left|x+\sqrt{3}\right| \lessdot 4
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. (p,q)
|
|
C. (-\infty, p)\cup (q,+\infty)
|
D. (-\infty, p\rangle\cup \langle q,+\infty)
|
|
E. (-\infty, q\rangle
|
F. \langle p,q\rangle
|
Podpunkt 15.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)