Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11615 ⋅ Poprawnie: 100/184 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left|\left(\sqrt{15}-\sqrt{14}\right)\left(\sqrt{15}+\sqrt{14}\right)\right|-6\left(\sqrt{44}-2\left|\sqrt{11}-1\right|\right)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|7x-4 \right| = 5-14x
Odpowiedzi:
A. -\frac{1}{7}
B. -\frac{3}{14}
C. \frac{1}{14}
D. \frac{1}{7}
Zadanie 3. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{7}x-3 \right| = -\frac{4}{7}x-2
Odpowiedzi:
A. -\frac{35}{2}
B. -\frac{35}{3}
C. \frac{35}{3}
D. \frac{35}{2}
Zadanie 4. 1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla każdej liczby
x spełniającej warunek
-10 \lessdot x \lessdot 0 , wyrażenie
\frac{|x+10|-x+10}{x} jest równe
\frac{mx+n}{x} , gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
A. ma dokładnie jedno rozwiązanie
B. ma dokładnie dwa rozwiązania
C. nie ma rozwiązań
D. ma więcej niż dwa rozwiązania
Zadanie 6. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
|9+2x|+|-3x-12| , gdzie
x\in(-\infty,-6) , w postaci
ax+b , gdzie
a,b\in\mathbb{Z} .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x :
Odpowiedzi:
T/N : \sqrt{(x+2)^2}=|x+2|
T/N : |x+5|=|-x+5|
Zadanie 8. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
|3x+7|-4=0 .
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+1|}{4}=1,5 .
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+1|}{4}=1,5 .
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%]
Rozwiąż
Podpunkt 10.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|-4-x\right|-\frac{53}{10}}{2}=8 .
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|-4-x\right|-\frac{53}{10}}{2}=8 .
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%]
Rozwiąż
Podpunkt 11.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x-7| \lessdot 9
jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty)
B. \langle p,q)
C. (p,q\rangle
D. \langle p,q\rangle
E. (-\infty,p\rangle \cup \langle q,+\infty)
F. (p,q)
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{7-x}}+\sqrt{13-|x|}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Suma przedziałów
(-\infty, 3\rangle\cup \langle 15,+\infty)
jest zbiorem rozwiązań nierówności:
Odpowiedzi:
A. \left|x-9\right| > 6
B. \left|x-9\right| \leqslant 6
C. \left|x-9\right| \lessdot 6
D. \left|x-9\right| \geqslant 6
Zadanie 14. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%]
Rozwiąż
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|\frac{13}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty)
B. \langle p,+\infty)
C. (-\infty, p)\cup (q,+\infty)
D. (p,q)
E. \langle p,q\rangle
F. (-\infty, q\rangle
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 15. 1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x+\sqrt{3}+12\right| \leqslant 4
jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle
B. (p,q)
C. (-\infty, p)\cup (q,+\infty)
D. \langle p,+\infty)
E. (-\infty, p\rangle\cup \langle q,+\infty)
F. (-\infty, q\rangle
Podpunkt 15.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż