Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-1}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. całkowita dodatnia B. niewymierna ujemna
C. równa \sqrt{2}-1 D. całkowita ujemna
Zadanie 2.  1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie |8x+8|=10x:
Odpowiedzi:
A. 2 B. 5
C. 4 D. 3
Zadanie 3.  1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{9}x-3 \right| = -\frac{4}{9}x-2
Odpowiedzi:
A. -\frac{45}{2} B. \frac{45}{2}
C. 15 D. -15
Zadanie 4.  1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{37}\right)^2}-\sqrt{\left(1-\sqrt{37}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-2x-8|\cdot |x+3|, gdzie x\in(-\infty,-5), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zapisz wyrażenie |-7+2x|+|-3x+12|, gdzie x\in(-\infty,2), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{29}\right)^2}-\sqrt{\left(1-\sqrt{29}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie \left|8+\frac{1}{4}x\right|-11=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{42}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{42}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Równanie |x-3|-2=0:
Odpowiedzi:
A. ma dokładnie dwa rozwiązania B. ma dokładnie jedno rozwiązanie
C. ma więcej niż dwa rozwiązania D. nie ma rozwiązań
Zadanie 11.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x+6| \lessdot 8 jest zbiór liczb postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (p,q\rangle
C. (-\infty,p)\cup(q,+\infty) D. \langle p,q)
E. (p,q) F. (-\infty,p\rangle \cup \langle q,+\infty)
Podpunkt 11.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{8-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Wskaż nierówność, której rozwiązaniem jest zbiór \left(-\infty,-\frac{1}{2}\right)\cup\left(\frac{9}{2},+\infty\right) :
Odpowiedzi:
A. \left|x+2\right| > \frac{5}{2} B. \left|x+2\right| \leqslant \frac{5}{2}
C. \left|x-2\right| > \frac{5}{2} D. \left|x-2\right| \lessdot \frac{5}{2}
Zadanie 14.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\frac{37}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. \langle p,+\infty) D. (-\infty, q\rangle
E. (-\infty, p)\cup (q,+\infty) F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 14.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 15.  1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+12| \lessdot 21.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm