Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{108}-5\sqrt{3}\right|-\left|\sqrt{27}-\sqrt{108}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{|6-9|}{-2}.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x-6\right| = 2x+24:
Odpowiedzi:
A. -10 B. -15
C. -13 D. -12
E. -9 F. -4
Zadanie 4.  1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Przedział liczb \langle -14,14\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x|\leqslant 14 B. |x| \geqslant 14
C. |x| > 14 D. |x| \lessdot 14
Zadanie 5.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-2x-4|\cdot |x+1|, gdzie x\in(-\infty,-3), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x-5||-10, gdzie x\in(9,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |-x|=x T/N : \sqrt{(x+3)^2}=|x+3|
Zadanie 8.  1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie |-3x-4|-7=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{22}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{22}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 10.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|-1-x\right|-\frac{53}{10}}{2}=8.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|-1-x\right|-\frac{53}{10}}{2}=8.

Podaj największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x-3| \geqslant 2
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (-\infty,p\rangle \cup \langle q,+\infty) B. (-\infty,p)\cup(q,+\infty)
C. \langle p,+\infty) D. \langle p,q)
E. (p,q) F. \langle p,q\rangle
Podpunkt 11.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{7-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 559/894 [62%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
A. |x-15| > 7 B. |x-7| \lessdot 15
C. |x-7| > 15 D. |x-15| \lessdot 7
Zadanie 14.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}+5\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, q\rangle B. \langle p,q\rangle
C. (-\infty, p\rangle\cup \langle q,+\infty) D. (-\infty, p)\cup (q,+\infty)
E. (p,q) F. \langle p,+\infty)
Podpunkt 14.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+8| \lessdot 16.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm