Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Dane są liczby:
x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-3}{0,(3)}
oraz
y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2|
.
Liczba x-y jest:
Odpowiedzi:
|
A. niewymierna dodatnia
|
B. całkowita ujemna
|
|
C. równa 2-2\sqrt{2}
|
D. całkowita dodatnia
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|5x-4 \right| = 5-10x
Odpowiedzi:
|
A. -\frac{1}{5}
|
B. -\frac{3}{10}
|
|
C. \frac{1}{10}
|
D. \frac{1}{5}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{4}x-3 \right| = -\frac{4}{4}x-2
Odpowiedzi:
|
A. \frac{20}{3}
|
B. 10
|
|
C. -10
|
D. -\frac{20}{3}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dla każdej liczby
x spełniającej warunek
-6 \lessdot x \lessdot 0, wyrażenie
\frac{|x+6|-x+6}{x} jest równe
\frac{mx+n}{x}, gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
|-2x+4|\cdot |x-3|, gdzie
x\in(-\infty,1), w postaci
ax^2+bx+c.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
|-11+2x|+|-3x+18|, gdzie
x\in(-\infty,4), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/302 [60%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
|-2x-7|-15=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-5|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x-5|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/29 [65%] |
Rozwiąż |
Podpunkt 10.1 (0.5 pkt)
Równanie o niewiadomej
x postaci
|x-a|=b
ma dwa rozwiązania
-2 i
-7.
Podaj liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x+7| \lessdot 2
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (p,q)
|
B. (p,q\rangle
|
|
C. (-\infty,p\rangle \cup \langle q,+\infty)
|
D. (-\infty,p)\cup(q,+\infty)
|
|
E. \langle p,q)
|
F. \langle p,q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 12. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{5-x}}+\sqrt{7-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
« Wskaż nierówność, której rozwiązaniem jest zbiór
\left(-\infty,-\frac{1}{2}\right)\cup\left(\frac{3}{2},+\infty\right)
:
Odpowiedzi:
|
A. \left|x-\frac{1}{2}\right| \lessdot 1
|
B. \left|x-\frac{1}{2}\right| > 1
|
|
C. \left|x+\frac{1}{2}\right| \leqslant 1
|
D. \left|x+\frac{1}{2}\right| > 1
|
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\frac{18}{5}\right|-8,4\leqslant 0
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. \langle p,q\rangle
|
|
C. (-\infty, p\rangle\cup \langle q,+\infty)
|
D. (-\infty, q\rangle
|
|
E. (p,q)
|
F. (-\infty, p)\cup (q,+\infty)
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 15. 1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
|x+7| > 2
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. \langle p,q\rangle
|
B. \langle p,q)
|
|
C. (p,q)
|
D. (-\infty,p\rangle \cup \langle q,+\infty)
|
|
E. (p,+\infty)
|
F. (-\infty,p)\cup(q,+\infty)
|
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)