Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11615 ⋅ Poprawnie: 100/184 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left|\left(\sqrt{19}-\sqrt{18}\right)\left(\sqrt{19}+\sqrt{18}\right)\right|-3\left(\sqrt{12}-2\left|\sqrt{3}-1\right|\right)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie
|8x+8|=10x :
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{7}x-3 \right| = -\frac{4}{7}x-2
Odpowiedzi:
A. -\frac{35}{3}
B. \frac{35}{2}
C. \frac{35}{3}
D. -\frac{35}{2}
Zadanie 4. 1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wartość wyrażenia
|12-x|-x-11 dla
x\in (12, +\infty) można zapisać w postaci
mx+n , gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{7-x}}+\sqrt{12-|x|}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x+5||+10 , gdzie
x\in(-1,+\infty) , w postaci
ax+b , gdzie
a,b\in\mathbb{Z} .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{41}\right)^2}-\sqrt{\left(1-\sqrt{41}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}} .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
\left|1+\frac{7}{8}x\right|-15=0 .
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+7|}{4}=1,5 .
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+7|}{4}=1,5 .
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%]
Rozwiąż
Podpunkt 10.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|1-x\right|-\frac{53}{10}}{2}=8 .
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|1-x\right|-\frac{53}{10}}{2}=8 .
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%]
Rozwiąż
Podpunkt 11.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x-2| \lessdot 10
jest zbiór liczb postaci:
Odpowiedzi:
A. (p,q)
B. \langle p,q\rangle
C. (-\infty,p\rangle \cup \langle q,+\infty)
D. (-\infty,p)\cup(q,+\infty)
E. \langle p,q)
F. (p,q\rangle
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{7-x}}+\sqrt{12-|x|}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 559/894 [62%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
A. |x-7| > 15
B. |x-7| \lessdot 15
C. |x-15| > 7
D. |x-15| \lessdot 7
Zadanie 14. 1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%]
Rozwiąż
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\sqrt{2}+3\right| > 1
jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty, q\rangle
C. (-\infty, p\rangle\cup \langle q,+\infty)
D. \langle p,+\infty)
E. (-\infty, p)\cup (q,+\infty)
F. (p,q)
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
|x-2| > 10
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,+\infty)
B. (-\infty,p)\cup(q,+\infty)
C. (-\infty,p\rangle \cup \langle q,+\infty)
D. \langle p,q)
E. (p,q\rangle
F. \langle p,q\rangle
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż