Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11615 ⋅ Poprawnie: 100/184 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left|\left(\sqrt{15}-\sqrt{14}\right)\left(\sqrt{15}+\sqrt{14}\right)\right|-2\left(\sqrt{28}-2\left|\sqrt{7}-1\right|\right)
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie |8x+6|=10x:
Odpowiedzi:
A. 4 B. 3
C. 5 D. 1
Zadanie 3.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x-6\right| = 2x+24:
Odpowiedzi:
A. -8 B. -11
C. -10 D. -15
E. -5 F. -6
Zadanie 4.  1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Wartość wyrażenia |9-x|-x-7 dla x\in (9, +\infty) można zapisać w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{7-x}}+\sqrt{11-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x-6||-12, gdzie x\in(10,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |x-6|=6-x T/N : |x-1|=|-x-1|
Zadanie 8.  1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie |x+8|-5=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{22}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{22}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 10.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|-1-x\right|-\frac{53}{10}}{2}=8.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|-1-x\right|-\frac{53}{10}}{2}=8.

Podaj największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x+1| \lessdot 2 jest zbiór liczb postaci:
Odpowiedzi:
A. \langle p,q) B. (-\infty,p\rangle \cup \langle q,+\infty)
C. (-\infty,p)\cup(q,+\infty) D. (p,q)
E. \langle p,q\rangle F. (p,q\rangle
Podpunkt 11.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Rozwiązaniem nierówności |x+3| \leqslant 6 jest zbiór liczb postaci:
Odpowiedzi:
A. (p,q\rangle B. (-\infty,p)\cup(q,+\infty)
C. \langle p,+\infty) D. (-\infty,p\rangle \cup \langle q,+\infty)
E. (-\infty,q\rangle F. \langle p,q\rangle
Podpunkt 12.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma przedziałów (-\infty, 2\rangle\cup \langle 6,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-4\right| \lessdot 2 B. \left|x-4\right| \geqslant 2
C. \left|x-4\right| > 2 D. \left|x-4\right| \leqslant 2
Zadanie 14.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|\frac{17}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, p)\cup (q,+\infty)
C. (-\infty, p\rangle\cup \langle q,+\infty) D. (p,q)
E. \langle p,q\rangle F. (-\infty, q\rangle
Podpunkt 14.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 15.  1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+3| \lessdot 22.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm