Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{147}-6\sqrt{3}\right|-\left|\sqrt{27}-\sqrt{108}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|9x-4 \right| = 5-18x
Odpowiedzi:
|
A. \frac{1}{18}
|
B. -\frac{1}{9}
|
|
C. \frac{1}{9}
|
D. -\frac{1}{6}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11582 ⋅ Poprawnie: 106/161 [65%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+6| \lessdot 23.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Przedział liczb
\langle -15,15\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x| \geqslant 15
|
B. |x| > 15
|
|
C. |x| \lessdot 15
|
D. |x|\leqslant 15
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{8-x}}+\sqrt{11-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x-4||-8, gdzie
x\in(8,+\infty), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{41}\right)^2}-\sqrt{\left(1-\sqrt{41}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
|5x-3|-13=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+4|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+4|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odpowiedzi:
|
A. ma dokładnie dwa rozwiązania
|
B. nie ma rozwiązań
|
|
C. ma więcej niż dwa rozwiązania
|
D. ma dokładnie jedno rozwiązanie
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x+3| \lessdot 3
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (p,q)
|
B. (-\infty,p)\cup(q,+\infty)
|
|
C. \langle p,q)
|
D. (p,q\rangle
|
|
E. (-\infty,p\rangle \cup \langle q,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 12. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{8-x}}+\sqrt{11-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
« Wskaż nierówność, której rozwiązaniem jest zbiór
\left(-\infty,-1\right)\cup\left(2,+\infty\right)
:
Odpowiedzi:
|
A. \left|x+\frac{1}{2}\right| > \frac{3}{2}
|
B. \left|x-\frac{1}{2}\right| > \frac{3}{2}
|
|
C. \left|x-\frac{1}{2}\right| \lessdot \frac{3}{2}
|
D. \left|x+\frac{1}{2}\right| \leqslant \frac{3}{2}
|
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x+\frac{27}{5}\right|-8,4\leqslant 0
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. \langle p,q\rangle
|
|
C. (-\infty, p\rangle\cup \langle q,+\infty)
|
D. (-\infty, q\rangle
|
|
E. (p,q)
|
F. (-\infty, p)\cup (q,+\infty)
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 15. 1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
|x+3| > 3
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. (p,q\rangle
|
B. (p,+\infty)
|
|
C. (-\infty,p)\cup(q,+\infty)
|
D. (p,q)
|
|
E. \langle p,q)
|
F. (-\infty,p\rangle \cup \langle q,+\infty)
|
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)