Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-2}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. niewymierna ujemna B. równa \sqrt{2}-1
C. całkowita ujemna D. całkowita dodatnia
Zadanie 2.  1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|7x-4 \right| = 5-14x
Odpowiedzi:
A. \frac{1}{14} B. -\frac{1}{7}
C. \frac{1}{7} D. -\frac{3}{14}
Zadanie 3.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x-5\right| = 2x+22:
Odpowiedzi:
A. -3 B. -4
C. -6 D. -9
E. -12 F. -8
Zadanie 4.  1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby x spełniającej warunek -10 \lessdot x \lessdot 0, wyrażenie \frac{|x+10|-x+10}{x} jest równe \frac{mx+n}{x}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Przedział liczb \langle -12,12\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| \lessdot 12 B. |x| > 12
C. |x| \geqslant 12 D. |x|\leqslant 12
Zadanie 6.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x+5||+10, gdzie x\in(-1,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{11}\right)^2}-\sqrt{\left(1-\sqrt{11}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie |x+1|-4=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Rozwiąż równanie \frac{3|x+7|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Rozwiąż równanie \frac{3|x+7|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Równanie |x-7|-5=0:
Odpowiedzi:
A. ma więcej niż dwa rozwiązania B. nie ma rozwiązań
C. ma dokładnie jedno rozwiązanie D. ma dokładnie dwa rozwiązania
Zadanie 11.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x-8| \lessdot 10 jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,p\rangle \cup \langle q,+\infty) B. \langle p,q)
C. (p,q\rangle D. (p,q)
E. \langle p,q\rangle F. (-\infty,p)\cup(q,+\infty)
Podpunkt 11.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Rozwiązaniem nierówności |x+2| \leqslant 10 jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,q\rangle B. \langle p,q\rangle
C. (-\infty,p)\cup(q,+\infty) D. (p,q\rangle
E. (-\infty,p\rangle \cup \langle q,+\infty) F. (p,q)
Podpunkt 12.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma przedziałów (-\infty, 3\rangle\cup \langle 13,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-8\right| \leqslant 5 B. \left|x-8\right| \lessdot 5
C. \left|x-8\right| \geqslant 5 D. \left|x-8\right| > 5
Zadanie 14.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\frac{7}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. (p,q) B. (-\infty, q\rangle
C. \langle p,+\infty) D. \langle p,q\rangle
E. (-\infty, p)\cup (q,+\infty) F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 14.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 15.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x-8| > 10
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,q) B. (-\infty,p\rangle \cup \langle q,+\infty)
C. (-\infty,p)\cup(q,+\infty) D. (p,q\rangle
E. \langle p,q\rangle F. (p,q)
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm