Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-2}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. równa \sqrt{2}-1 B. całkowita dodatnia
C. całkowita ujemna D. niewymierna ujemna
Zadanie 2.  1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|7x-4 \right| = 5-14x
Odpowiedzi:
A. \frac{1}{14} B. -\frac{1}{7}
C. -\frac{3}{14} D. \frac{1}{7}
Zadanie 3.  1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż nierówność, którą spełnia liczba \pi:
Odpowiedzi:
A. \left| x+3\right| > 7 B. \left| x+\frac{14}{3}\right|\leqslant 8
C. \left| x+\frac{5}{3}\right| \geqslant 5 D. \left| x+3 \right| \lessdot 6
Zadanie 4.  1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{19}\right)^2}-\sqrt{\left(1-\sqrt{19}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{7-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zapisz wyrażenie |-3+2x|+|-3x+6|, gdzie x\in(-\infty,0), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : \sqrt{(x+1)^2}=|x+1| T/N : \sqrt{(x+2)^2}=x+2
Zadanie 8.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie \left|7+\frac{4}{3}x\right|-10=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{12}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{12}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Równanie |x-4|=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma więcej niż dwa rozwiązania
C. ma dokładnie dwa rozwiązania D. ma dokładnie jedno rozwiązanie
Zadanie 11.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x+2| \lessdot 6 jest zbiór liczb postaci:
Odpowiedzi:
A. (p,q) B. (-\infty,p)\cup(q,+\infty)
C. (p,q\rangle D. (-\infty,p\rangle \cup \langle q,+\infty)
E. \langle p,q\rangle F. \langle p,q)
Podpunkt 11.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{7-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/400 [69%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma przedziałów (-\infty, 2\rangle\cup \langle 10,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-6\right| \leqslant 4 B. \left|x-6\right| > 4
C. \left|x-6\right| \geqslant 4 D. \left|x-6\right| \lessdot 4
Zadanie 14.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}+3\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup (q,+\infty) B. (p,q)
C. (-\infty, p\rangle\cup \langle q,+\infty) D. \langle p,+\infty)
E. (-\infty, q\rangle F. \langle p,q\rangle
Podpunkt 14.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}+3\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, q\rangle
C. (-\infty, p\rangle\cup \langle q,+\infty) D. (-\infty, p)\cup (q,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 15.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm