Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{147}-6\sqrt{3}\right|-\left|\sqrt{48}-\sqrt{147}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie
|10x+10|=12x:
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wskaż nierówność, którą spełnia liczba
\pi:
Odpowiedzi:
|
A. \left| x+9 \right| \lessdot 12
|
B. \left| x+\frac{26}{3}\right|\leqslant 12
|
|
C. \left| x+7\right| > 11
|
D. \left| x+\frac{17}{3}\right| \geqslant 9
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{37}\right)^2}-\sqrt{\left(1-\sqrt{37}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
|
A. ma więcej niż dwa rozwiązania
|
B. nie ma rozwiązań
|
|
C. ma dokładnie dwa rozwiązania
|
D. ma dokładnie jedno rozwiązanie
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
|9+2x|+|-3x-12|, gdzie
x\in(-\infty,-6), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{13}\right)^2}-\sqrt{\left(1-\sqrt{13}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/303 [60%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
|x-3|-12=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+5|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+5|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odpowiedzi:
|
A. ma dokładnie jedno rozwiązanie
|
B. ma dokładnie dwa rozwiązania
|
|
C. ma więcej niż dwa rozwiązania
|
D. nie ma rozwiązań
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x-6| \lessdot 9
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (-\infty,p\rangle \cup \langle q,+\infty)
|
B. \langle p,q\rangle
|
|
C. (p,q\rangle
|
D. (p,q)
|
|
E. (-\infty,p)\cup(q,+\infty)
|
F. \langle p,q)
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+7| \leqslant 9
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (-\infty,p)\cup(q,+\infty)
|
B. (p,q\rangle
|
|
C. \langle p,q)
|
D. (-\infty,q\rangle
|
|
E. (-\infty,p\rangle \cup \langle q,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 12.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
Suma przedziałów
(-\infty, 4\rangle\cup \langle 14,+\infty)
jest zbiorem rozwiązań nierówności:
Odpowiedzi:
|
A. \left|x-9\right| \geqslant 5
|
B. \left|x-9\right| \lessdot 5
|
|
C. \left|x-9\right| > 5
|
D. \left|x-9\right| \leqslant 5
|
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\sqrt{2}+8\right| > 1
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,q\rangle
|
B. \langle p,+\infty)
|
|
C. (p,q)
|
D. (-\infty, p)\cup (q,+\infty)
|
|
E. (-\infty, p\rangle\cup \langle q,+\infty)
|
F. (-\infty, q\rangle
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
|x-6| > 9
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. \langle p,q)
|
B. (-\infty,p\rangle \cup \langle q,+\infty)
|
|
C. (p,+\infty)
|
D. (p,q\rangle
|
|
E. (-\infty,p)\cup(q,+\infty)
|
F. (p,q)
|
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)