Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{147}-6\sqrt{3}\right|-\left|\sqrt{27}-\sqrt{108}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie
|10x+6|=12x:
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wskaż nierówność, którą spełnia liczba
\pi:
Odpowiedzi:
|
A. \left| x+\frac{11}{3}\right| \geqslant 7
|
B. \left| x\right| > 4
|
|
C. \left| x+\frac{29}{3}\right|\leqslant 13
|
D. \left| x+9 \right| \lessdot 12
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Wartość wyrażenia
|12-x|-x-6 dla
x\in (12, +\infty) można zapisać w postaci
mx+n, gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
|
A. ma więcej niż dwa rozwiązania
|
B. ma dokładnie jedno rozwiązanie
|
|
C. nie ma rozwiązań
|
D. ma dokładnie dwa rozwiązania
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x+4||+8, gdzie
x\in(0,+\infty), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
|
T/N : \sqrt{(x+6)^2}=|x+6|
|
T/N : |-x|=x
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11573 ⋅ Poprawnie: 48/109 [44%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Ile rozwiązań ma równanie
|x|+\sqrt{8}=2?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (0.5 pkt)
Ile rozwiązań ma równanie
|x|+\sqrt{5}=3?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|x+\frac{42}{5}\right|}{3}=1.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|x+\frac{42}{5}\right|}{3}=1.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odpowiedzi:
|
A. ma dokładnie dwa rozwiązania
|
B. ma więcej niż dwa rozwiązania
|
|
C. nie ma rozwiązań
|
D. ma dokładnie jedno rozwiązanie
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
|x-3| \geqslant 9
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. (-\infty,p\rangle \cup \langle q,+\infty)
|
B. (p,q\rangle
|
|
C. \langle p,+\infty)
|
D. \langle p,q\rangle
|
|
E. (-\infty,p)\cup(q,+\infty)
|
F. (p,q)
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+7| \leqslant 4
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (p,q\rangle
|
B. (-\infty,q\rangle
|
|
C. (p,q)
|
D. \langle p,q)
|
|
E. \langle p,q\rangle
|
F. \langle p,+\infty)
|
Podpunkt 12.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 384/597 [64%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
« Wskaż nierówność, której rozwiązaniem jest zbiór
\left(-\infty,-1\right)\cup\left(\frac{11}{2},+\infty\right)
:
Odpowiedzi:
|
A. \left|x+\frac{9}{4}\right| > \frac{13}{4}
|
B. \left|x-\frac{9}{4}\right| \lessdot \frac{13}{4}
|
|
C. \left|x-\frac{9}{4}\right| > \frac{13}{4}
|
D. \left|x+\frac{9}{4}\right| \leqslant \frac{13}{4}
|
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\sqrt{2}+9\right| > 1
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p\rangle\cup \langle q,+\infty)
|
B. \langle p,q\rangle
|
|
C. \langle p,+\infty)
|
D. (-\infty, p)\cup (q,+\infty)
|
|
E. (-\infty, q\rangle
|
F. (p,q)
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
|x+3| > 9
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. (p,q)
|
B. \langle p,q)
|
|
C. \langle p,q\rangle
|
D. (-\infty,p\rangle \cup \langle q,+\infty)
|
|
E. (p,+\infty)
|
F. (-\infty,p)\cup(q,+\infty)
|
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)