Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-\frac{2}{3}}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. niewymierna ujemna B. równa \sqrt{2}-1
C. całkowita dodatnia D. całkowita ujemna
Zadanie 2.  1 pkt ⋅ Numer: pp-10183 ⋅ Poprawnie: 253/499 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Wartość wyrażenia |12-x|-x-3 dla x\in (12, +\infty) jest równa:
Odpowiedzi:
A. 9 B. 9-2x
C. -9 D. -15
Zadanie 3.  1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{9}x-3 \right| = -\frac{4}{9}x-2
Odpowiedzi:
A. 15 B. -\frac{45}{2}
C. -15 D. \frac{45}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby x spełniającej warunek -15 \lessdot x \lessdot 0, wyrażenie \frac{|x+15|-x+15}{x} jest równe \frac{mx+n}{x}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Równanie |x-7|+5=0:
Odpowiedzi:
A. ma dokładnie dwa rozwiązania B. ma więcej niż dwa rozwiązania
C. nie ma rozwiązań D. ma dokładnie jedno rozwiązanie
Zadanie 6.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x-3||-6, gdzie x\in(7,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |x-2|=2-x T/N : \sqrt{(x+12)^2}=x+12
Zadanie 8.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie \left|-3-\frac{3}{8}x\right|-1=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Rozwiąż równanie \frac{3|x+7|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Rozwiąż równanie \frac{3|x+7|}{4}=1,5.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Równanie |x-2|=0:
Odpowiedzi:
A. ma więcej niż dwa rozwiązania B. ma dokładnie dwa rozwiązania
C. ma dokładnie jedno rozwiązanie D. nie ma rozwiązań
Zadanie 11.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x+7| \lessdot 6 jest zbiór liczb postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. \langle p,q\rangle
C. (-\infty,p\rangle \cup \langle q,+\infty) D. (p,q\rangle
E. (p,q) F. \langle p,q)
Podpunkt 11.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{8-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Wskaż nierówność, której rozwiązaniem jest zbiór \left(-\infty,-\frac{1}{2}\right)\cup\left(4,+\infty\right) :
Odpowiedzi:
A. \left|x-\frac{7}{4}\right| > \frac{9}{4} B. \left|x-\frac{7}{4}\right| \lessdot \frac{9}{4}
C. \left|x+\frac{7}{4}\right| \leqslant \frac{9}{4} D. \left|x+\frac{7}{4}\right| > \frac{9}{4}
Zadanie 14.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}+10\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty) B. \langle p,q\rangle
C. \langle p,+\infty) D. (-\infty, p)\cup (q,+\infty)
E. (p,q) F. (-\infty, q\rangle
Podpunkt 14.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x+7| > 6
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,+\infty) B. \langle p,q\rangle
C. (p,q) D. (-\infty,p\rangle \cup \langle q,+\infty)
E. (-\infty,p)\cup(q,+\infty) F. \langle p,q)
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm