Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Dane są liczby:
x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-2}{0,(3)}
oraz
y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2|
.
Liczba x-y jest:
Odpowiedzi:
|
A. równa \sqrt{2}-1
|
B. całkowita dodatnia
|
|
C. całkowita ujemna
|
D. niewymierna ujemna
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|7x-4 \right| = 5-14x
Odpowiedzi:
|
A. \frac{1}{14}
|
B. -\frac{1}{7}
|
|
C. -\frac{3}{14}
|
D. \frac{1}{7}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wskaż nierówność, którą spełnia liczba
\pi:
Odpowiedzi:
|
A. \left| x+3\right| > 7
|
B. \left| x+\frac{14}{3}\right|\leqslant 8
|
|
C. \left| x+\frac{5}{3}\right| \geqslant 5
|
D. \left| x+3 \right| \lessdot 6
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{19}\right)^2}-\sqrt{\left(1-\sqrt{19}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11558 ⋅ Poprawnie: 24/58 [41%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{7-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 24/31 [77%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
|-3+2x|+|-3x+6|, gdzie
x\in(-\infty,0), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
|
T/N : \sqrt{(x+1)^2}=|x+1|
|
T/N : \sqrt{(x+2)^2}=x+2
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
\left|7+\frac{4}{3}x\right|-10=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|x+\frac{12}{5}\right|}{3}=1.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|x+\frac{12}{5}\right|}{3}=1.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odpowiedzi:
|
A. nie ma rozwiązań
|
B. ma więcej niż dwa rozwiązania
|
|
C. ma dokładnie dwa rozwiązania
|
D. ma dokładnie jedno rozwiązanie
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
» Rozwiązaniem nierówności
|x+2| \lessdot 6
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (p,q)
|
B. (-\infty,p)\cup(q,+\infty)
|
|
C. (p,q\rangle
|
D. (-\infty,p\rangle \cup \langle q,+\infty)
|
|
E. \langle p,q\rangle
|
F. \langle p,q)
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 12. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{7-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/400 [69%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
Suma przedziałów
(-\infty, 2\rangle\cup \langle 10,+\infty)
jest zbiorem rozwiązań nierówności:
Odpowiedzi:
|
A. \left|x-6\right| \leqslant 4
|
B. \left|x-6\right| > 4
|
|
C. \left|x-6\right| \geqslant 4
|
D. \left|x-6\right| \lessdot 4
|
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\sqrt{2}+3\right| > 1
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p)\cup (q,+\infty)
|
B. (p,q)
|
|
C. (-\infty, p\rangle\cup \langle q,+\infty)
|
D. \langle p,+\infty)
|
|
E. (-\infty, q\rangle
|
F. \langle p,q\rangle
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] |
Rozwiąż |
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
\left|x+\sqrt{3}+3\right| \lessdot 4
jest zbiór postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. (-\infty, q\rangle
|
|
C. (-\infty, p\rangle\cup \langle q,+\infty)
|
D. (-\infty, p)\cup (q,+\infty)
|
|
E. \langle p,q\rangle
|
F. (p,q)
|
Podpunkt 15.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)