Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{75}-4\sqrt{3}\right|-\left|\sqrt{12}-\sqrt{75}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|3x-4 \right| = 5-6x
Odpowiedzi:
A. \frac{1}{3} B. \frac{1}{6}
C. -\frac{1}{3} D. -\frac{1}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11582 ⋅ Poprawnie: 106/161 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+7| \lessdot 23.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Wartość wyrażenia |5-x|-x-6 dla x\in (5, +\infty) można zapisać w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Przedział liczb \langle -5,5\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x|\leqslant 5 B. |x| \lessdot 5
C. |x| \geqslant 5 D. |x| > 5
Zadanie 6.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 25/31 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zapisz wyrażenie |-3+2x|+|-3x+6|, gdzie x\in(-\infty,0), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |-x|=x T/N : \sqrt{(x-8)^2}=x-8
Zadanie 8.  1 pkt ⋅ Numer: pp-11573 ⋅ Poprawnie: 48/109 [44%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Ile rozwiązań ma równanie |x|+\sqrt{5}=2?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (0.5 pkt)
 Ile rozwiązań ma równanie |x|+\sqrt{3}=\frac{5}{2}?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x-\frac{23}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x-\frac{23}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Równanie |x-4|+4=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma więcej niż dwa rozwiązania
C. ma dokładnie dwa rozwiązania D. ma dokładnie jedno rozwiązanie
Zadanie 11.  1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x-2| \geqslant 3
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,q) B. (p,q\rangle
C. (-\infty,p\rangle \cup \langle q,+\infty) D. \langle p,q)
E. \langle p,q\rangle F. \langle p,+\infty)
Podpunkt 11.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{5-x}}+\sqrt{8-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma przedziałów (-\infty, 1\rangle\cup \langle 11,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-6\right| \lessdot 5 B. \left|x-6\right| \geqslant 5
C. \left|x-6\right| > 5 D. \left|x-6\right| \leqslant 5
Zadanie 14.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|-\frac{19}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. (-\infty, p\rangle\cup \langle q,+\infty) D. (-\infty, q\rangle
E. \langle p,+\infty) F. (-\infty, p)\cup (q,+\infty)
Podpunkt 14.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 15.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}+2\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, q\rangle B. \langle p,q\rangle
C. \langle p,+\infty) D. (-\infty, p\rangle\cup \langle q,+\infty)
E. (-\infty, p)\cup (q,+\infty) F. (p,q)
Podpunkt 15.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm