Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{48}-3\sqrt{3}\right|-\left|\sqrt{12}-\sqrt{75}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|4x-4 \right| = 5-8x
Odpowiedzi:
|
A. -\frac{3}{8}
|
B. \frac{1}{8}
|
|
C. \frac{1}{4}
|
D. -\frac{1}{4}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11582 ⋅ Poprawnie: 106/161 [65%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+13| \lessdot 23.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Dla każdej liczby
x spełniającej warunek
-4 \lessdot x \lessdot 0, wyrażenie
\frac{|x+4|-x+4}{x} jest równe
\frac{mx+n}{x}, gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Przedział liczb
\langle -6,6\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
|
A. |x| > 6
|
B. |x|\leqslant 6
|
|
C. |x| \geqslant 6
|
D. |x| \lessdot 6
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x+2||+4, gdzie
x\in(2,+\infty), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 7. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
\left|8-\frac{2}{3}x\right|-7=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{\left|x-\frac{23}{5}\right|}{3}=1.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{\left|x-\frac{23}{5}\right|}{3}=1.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/30 [63%] |
Rozwiąż |
Podpunkt 10.1 (0.5 pkt)
Równanie o niewiadomej
x postaci
|x-a|=b
ma dwa rozwiązania
-4 i
-8.
Podaj liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
|x-8| \geqslant 8
jest zbiór liczbowy postaci:
Odpowiedzi:
|
A. \langle p,+\infty)
|
B. (-\infty,p\rangle \cup \langle q,+\infty)
|
|
C. (-\infty,p)\cup(q,+\infty)
|
D. \langle p,q)
|
|
E. (p,q\rangle
|
F. (p,q)
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
Rozwiązaniem nierówności
|x-4| \leqslant 2
jest zbiór liczb postaci:
Odpowiedzi:
|
A. (-\infty,p)\cup(q,+\infty)
|
B. \langle p,q\rangle
|
|
C. \langle p,q)
|
D. \langle p,+\infty)
|
|
E. (-\infty,q\rangle
|
F. (p,q)
|
Podpunkt 12.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
« Wskaż nierówność, której rozwiązaniem jest zbiór
\left(-\infty,-\frac{1}{2}\right)\cup\left(5,+\infty\right)
:
Odpowiedzi:
|
A. \left|x+\frac{9}{4}\right| \leqslant \frac{11}{4}
|
B. \left|x+\frac{9}{4}\right| > \frac{11}{4}
|
|
C. \left|x-\frac{9}{4}\right| \lessdot \frac{11}{4}
|
D. \left|x-\frac{9}{4}\right| > \frac{11}{4}
|
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|-\frac{19}{4}+x\right|\geqslant 1,25
jest zbiór postaci:
Odpowiedzi:
|
A. (p,q)
|
B. (-\infty, q\rangle
|
|
C. (-\infty, p\rangle\cup \langle q,+\infty)
|
D. (-\infty, p)\cup (q,+\infty)
|
|
E. \langle p,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 15. 1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] |
Rozwiąż |
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
\left|x+\sqrt{3}-4\right| \lessdot 4
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, q\rangle
|
B. \langle p,+\infty)
|
|
C. \langle p,q\rangle
|
D. (-\infty, p\rangle\cup \langle q,+\infty)
|
|
E. (-\infty, p)\cup (q,+\infty)
|
F. (p,q)
|
Podpunkt 15.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)