Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11457 ⋅ Poprawnie: 107/213 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są liczby: x=\frac{3\frac{2}{5}+4,6:2\frac{7}{8}-2}{0,(3)} oraz y=2\left|1-\sqrt{2}\right|-\left|2\sqrt{2}-2\right|+|-4|\cdot |2| .

Liczba x-y jest:

Odpowiedzi:
A. równa \sqrt{2}-1 B. całkowita dodatnia
C. całkowita ujemna D. niewymierna ujemna
Zadanie 2.  1 pkt ⋅ Numer: pp-10185 ⋅ Poprawnie: 304/376 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie |8x+2|=10x:
Odpowiedzi:
A. 1 B. 3
C. 2 D. -0
Zadanie 3.  1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż nierówność, którą spełnia liczba \pi:
Odpowiedzi:
A. \left| x+\frac{11}{3}\right|\leqslant 7 B. \left| x+\frac{26}{3}\right| \geqslant 12
C. \left| x+4\right| > 8 D. \left| x+9 \right| \lessdot 12
Zadanie 4.  1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Przedział liczb \langle -11,11\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x|\leqslant 11 B. |x| \geqslant 11
C. |x| > 11 D. |x| \lessdot 11
Zadanie 5.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zapisz wyrażenie |-2x-2|\cdot |x|, gdzie x\in(-\infty,-2), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x+4||+8, gdzie x\in(0,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : \sqrt{(x+2)^2}=x+2 T/N : \sqrt{(x+1)^2}=|x+1|
Zadanie 8.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Rozwiąż równanie \left|5+\frac{2}{7}x\right|-4=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11705 ⋅ Poprawnie: 13/15 [86%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{7}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|x+\frac{7}{5}\right|}{3}=1.

Podaj najmniejsze i największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/30 [63%] Rozwiąż 
Podpunkt 10.1 (0.5 pkt)
 Równanie o niewiadomej x postaci |x-a|=b ma dwa rozwiązania 1 i 2.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/726 [54%] Rozwiąż 
Podpunkt 11.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x+2| \geqslant 9
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,q\rangle B. \langle p,+\infty)
C. (-\infty,p\rangle \cup \langle q,+\infty) D. \langle p,q)
E. \langle p,q\rangle F. (-\infty,p)\cup(q,+\infty)
Podpunkt 11.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{6-x}}+\sqrt{10-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma przedziałów (-\infty, 4\rangle\cup \langle 12,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-8\right| \lessdot 4 B. \left|x-8\right| > 4
C. \left|x-8\right| \geqslant 4 D. \left|x-8\right| \leqslant 4
Zadanie 14.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}+2\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, q\rangle B. \langle p,q\rangle
C. \langle p,+\infty) D. (-\infty, p\rangle\cup \langle q,+\infty)
E. (-\infty, p)\cup (q,+\infty) F. (p,q)
Podpunkt 14.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+7| \lessdot 22.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm