Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\left(\left|\sqrt{108}-5\sqrt{3}\right|-\left|\sqrt{48}-\sqrt{147}\right|+1\right)\cdot\left(1+2\sqrt{3}\right)
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Oblicz wartość wyrażenia
\frac{|3-4|}{-2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wskaż liczbę, która spełnia równanie
\left|-x-6\right| = 2x+24:
Odpowiedzi:
A. -10
|
B. -11
|
C. -13
|
D. -6
|
E. -15
|
F. -9
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{13}\right)^2}-\sqrt{\left(1-\sqrt{13}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
A. ma więcej niż dwa rozwiązania
|
B. ma dokładnie dwa rozwiązania
|
C. ma dokładnie jedno rozwiązanie
|
D. nie ma rozwiązań
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x+1||+2, gdzie
x\in(3,+\infty), w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 253/387 [65%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x:
Odpowiedzi:
T/N : \sqrt{(x+3)^2}=|x+3|
|
T/N : \sqrt{(x+6)^2}=x+6
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] |
Rozwiąż |
Podpunkt 8.1 (0.5 pkt)
Rozwiąż równanie
\left|4+\frac{4}{7}x\right|-13=0.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11576 ⋅ Poprawnie: 124/216 [57%] |
Rozwiąż |
Podpunkt 9.1 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+2|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Rozwiąż równanie
\frac{3|x+2|}{4}=1,5.
Podaj najmniejsze i największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/29 [65%] |
Rozwiąż |
Podpunkt 10.1 (0.5 pkt)
Równanie o niewiadomej
x postaci
|x-a|=b
ma dwa rozwiązania
4 i
-1.
Podaj liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/725 [54%] |
Rozwiąż |
Podpunkt 11.1 (0.2 pkt)
Rozwiązaniem nierówności
|x-1| \geqslant 7
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,q\rangle
|
B. (-\infty,p\rangle \cup \langle q,+\infty)
|
C. (-\infty,p)\cup(q,+\infty)
|
D. (p,q)
|
E. \langle p,+\infty)
|
F. \langle p,q)
|
Podpunkt 11.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] |
Rozwiąż |
Podpunkt 12.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+4| \leqslant 6
jest zbiór liczb postaci:
Odpowiedzi:
A. \langle p,+\infty)
|
B. (-\infty,q\rangle
|
C. (p,q)
|
D. \langle p,q)
|
E. (-\infty,p\rangle \cup \langle q,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 12.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 369/577 [63%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
« Wskaż nierówność, której rozwiązaniem jest zbiór
\left(-\infty,-1\right)\cup\left(4,+\infty\right)
:
Odpowiedzi:
A. \left|x-\frac{3}{2}\right| \lessdot \frac{5}{2}
|
B. \left|x+\frac{3}{2}\right| \leqslant \frac{5}{2}
|
C. \left|x-\frac{3}{2}\right| > \frac{5}{2}
|
D. \left|x+\frac{3}{2}\right| > \frac{5}{2}
|
Zadanie 14. 1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] |
Rozwiąż |
Podpunkt 14.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\sqrt{2}+5\right| > 1
jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty)
|
B. (-\infty, p)\cup (q,+\infty)
|
C. \langle p,q\rangle
|
D. (-\infty, q\rangle
|
E. \langle p,+\infty)
|
F. (p,q)
|
Podpunkt 14.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 15.1 (0.2 pkt)
« Rozwiązaniem nierówności
|x+1| > 7
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,q)
|
B. (-\infty,p)\cup(q,+\infty)
|
C. (p,q\rangle
|
D. \langle p,q\rangle
|
E. (-\infty,p\rangle \cup \langle q,+\infty)
|
F. \langle p,q)
|
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)