Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 25/31 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie |-1+2x|+|-3x+3|, gdzie x\in(-\infty,-1), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10392 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «Zapisz wyrażenie \sqrt{25+10x+x^2}-5\sqrt{25-10x+x^2} określone dla x\in(5,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x+1| > 6
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. \langle p,q\rangle
C. (p,q\rangle D. (p,q)
E. \langle p,q) F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Ta wartość parametru m, dla której równanie m^2x+4(1-x)+m^2=4m nie posiada rozwiązania, jest:
Odpowiedzi:
A. liczbą ujemną B. liczbą pierwszą
C. liczbą podzielną przez 3 D. liczbą złożoną
Zadanie 5.  1 pkt ⋅ Numer: pr-10401 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Układ równań \begin{cases} x-y=-1 \\ \left(m^2-115\right)x+6=6y \end{cases} jest nieoznaczony.

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-21111 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż nierówność podwójną |-3-x|\lessdot 4\lessdot 3x+2. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20918 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność \sqrt{(x-2a)^2+4x+4-8a}\geqslant 11-\sqrt{(2a-x)^2-6x+9+12a} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj iloczyn wszystkich tych końców przedziałów, które są liczbami.

Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj sumę wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20940 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} 3x+7y=2k-61 \\ 2x+5y=k-34 \end{cases} jest para liczb (x,y) spełniająca warunek -13\leqslant x+y \lessdot -1. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm