Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{27}-2\sqrt{3}\right|-\left|\sqrt{27}-\sqrt{108}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : |-x|=x T/N : \sqrt{(x-5)^2}=|x-5|
Zadanie 3.  1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż nierówność, której rozwiązaniem jest zbiór \left(-\infty,-\frac{1}{2}\right)\cup\left(\frac{9}{2},+\infty\right) :
Odpowiedzi:
A. \left|x+2\right| \leqslant \frac{5}{2} B. \left|x-2\right| > \frac{5}{2}
C. \left|x-2\right| \lessdot \frac{5}{2} D. \left|x+2\right| > \frac{5}{2}
Zadanie 4.  1 pkt ⋅ Numer: pr-10411 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (m-6)x-9=2x-m o niewiadomej x jest sprzeczne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10403 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} -6x-5y=2 \\ (3m-2)x+20y=8 \end{cases} jest sprzeczny.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21102 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż równanie \frac{3|7-x|-4}{2}-\frac{6-|x-7|}{5}=7\frac{3}{5}-|-7+x|.

Podaj najmniejsze i największe rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  4 pkt ⋅ Numer: pr-20919 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Rozwiąż nierówność |2-2x+2a|-4\leqslant |11+3x-3a| .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców tych przedziałów, który jest liczbą.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Ile liczb całkowitych z przedziału \langle -10,10\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20973 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których wykresy funkcji liniowych f(x)=2x-m+13 oraz g(x)=-4x+5m-29 przecinają się w punkcie o współrzędnych (x,y) takim, że |y|\geqslant |x|+5.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm