Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie
(m+2)x-1=2x-m
o niewiadomej x jest sprzeczne. Rozwiązanie zapisz w
postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.1 pkt ⋅ Numer: pr-10399 ⋅ Poprawnie: 0/0
Rozwiązaniem układu równań
\begin{cases}
6x-\frac{y}{2}=b+3 \\
6x+\frac{y}{2}=1
\end{cases}
jest para liczb dodatnich wtedy i tylko wtedy gdy liczba b
należy do pewnego przedziału o końcach p i
q, przy czym p\lessdot q.
Wyznacz liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę zapisaną dziesiętnie)
q
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.2 pkt ⋅ Numer: pr-21113 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru k\in\mathbb{R},
dla których rozwiązaniem układu równań
\begin{cases}
3x+7y=2k+35 \\
2x+5y=k+31
\end{cases} jest para liczb (x,y) spełniająca
warunek 3\leqslant x+y \lessdot 15. Rozwiązanie
zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat