Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10195 ⋅ Poprawnie: 190/308 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż nierówność, którą spełnia liczba \pi:
Odpowiedzi:
A. \left| x+\frac{20}{3}\right|\leqslant 10 B. \left| x+\frac{29}{3}\right| \geqslant 13
C. \left| x-1\right| > 3 D. \left| x+2 \right| \lessdot 5
Zadanie 2.  1 pkt ⋅ Numer: pr-10388 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość na osi liczbowej liczb 21-3x i 5x-19, gdzie x\in(-\infty,5\rangle. Zapisz wynik w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10100 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz sumę rozwiązań równania |x^2-8|=-2x.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Ta wartość parametru m, dla której równanie m^2x+4(1-x)+m^2=4m nie posiada rozwiązania, jest:
Odpowiedzi:
A. liczbą podzielną przez 3 B. liczbą ujemną
C. liczbą złożoną D. liczbą pierwszą
Zadanie 5.  1 pkt ⋅ Numer: pr-10395 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie 2x-6=|m+5|(x-2) o niewiadomej x ma conajmniej jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20903 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Zapisz wyrażenie \sqrt{12-6\sqrt{3}}-\sqrt{16-8\sqrt{3}} w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20920 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz a, tak aby równanie (2-a+m)x=3+x było sprzeczne.
Dane
m=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20936 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz wartości parametru k\in \mathbb{R}, dla których punkt przecięcia prostych \begin{cases} 2x-4y=k+a \\ x-y=k-a \end{cases}

należy do trzeciej ćwiartki układu współrzędnych i nie leży na osiach Ox i Oy.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=-4
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Ile liczb całkowitych z przedziału \langle -20,20\rangle należy do tego rozwiązania?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20927 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których dziedziną funkcji określonej wzorem f(x)=\sqrt{\left(|2m-4|-1\right)x+3} jest zbiór \mathbb{R}.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30013 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Przeprowadź dyskusję rozwiązalności równania |x-2|+|x+1|+a=m w zależności od parametru m.

Podaj najmniejsze możliwe m, dla którego równanie to ma nieskończenie wiele rozwiązań.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Dla ilu liczb całkowitych m z przedziału \langle -10,10\rangle równanie to ma dokładnie dwa rozwiązania?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Dla pewnej wartości m równanie to ma nieskończenie wiele rozwiązań, które zawarte są w przedziale \langle p,q\rangle.

Podaj q-p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm