Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10181 ⋅ Poprawnie: 164/348 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Jeżeli
x\in(-\infty,0), to wyrażenie
||x|+11| jest równe:
Odpowiedzi:
|
A. -x-11
|
B. -x+11
|
|
C. x-11
|
D. \left|-x-11\right|
|
|
Zadanie 2. 1 pkt ⋅ Numer: pr-10515 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Rozwiąż równanie
|x-2|+|x^2-4|=0.
Podaj najmniejsze i największe rozwiązanie tego równania.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+7| \lessdot 16.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pr-10504 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz wszystkie wartości parametru
k\in\mathbb{R}, dla których
równanie
kx-k^2+4=2x o niewiadomej
x jest tożsamościowe.
Podaj najmniejsze i największe możliwe k.
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10398 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Układ równań
\begin{cases}
5x-7y=107 \\
7y+m^2-14=5x
\end{cases}
nie jest układem równań sprzecznych.
Wyznacz najmniejsze możliwe i największe możliwe m.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pr-21114 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Rozwiąż nierówność
\left|2-\left|x+2\right|\right|\leqslant 0
. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 7. 4 pkt ⋅ Numer: pr-20817 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Funkcja
f określona jest wzorem
f(x)=x+7. Posługując się wykresami odpowiednich
funkcji rozwiąż nierówność
|f(x)|\leqslant f(x+1).
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
Dla jakich wartości parametru
m wykres funkcji
f przecina wykres funkcji liniowej
h(x)=(1+3m)x+3 w punkcie
P=(-7,0)?
Podaj najmniejsze możliwe m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 3 pkt ⋅ Numer: pr-20966 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Przeprowadź dyskusję rozwiązalności układu równań w zależności od wartości parametru
a:
\begin{cases}
ax+2y=-1 \\
8x+ay=a+6
\end{cases}
.
Podaj wartość parametru a, dla której
układ ten jest sprzeczny.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj wartość parametru
a, dla której
układ ten jest nieoznaczony.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Jeśli układ jest oznaczony, to jego rozwiązaniem jest para liczb postaci
\left(\frac{k}{ma+n},y\right), gdzie
k,m,n,\in\mathbb{Z} i
n< 0.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pr-21140 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R},
dla których równanie
3|x-2|-2x=8k-60
ma tylko rozwiązania dodatnie.
Podaj najmniejszą możliwą wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 4 pkt ⋅ Numer: pr-30016 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Trzy nierówności
\begin{cases}
y\leqslant -x+8+2a \\
y\leqslant \frac{9}{5}x+\frac{12}{5}-\frac{4}{5}a \\
y\geqslant \frac{5}{9}x-\frac{4}{3}+\frac{4}{9}a
\end{cases}
opisują trójkąt o wierzchołkach, których współrzędne są całkowite.
Podaj sumę wszystkich sześciu współrzędnych wierzchołków tego trójkąta.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Trójkąt ten jest równoramienny o podstawie
AB.
Oblicz długość wysokości opuszczonej na bok AB.
Odpowiedź:
m\sqrt{n}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)