Wyznacz zbiór tych wartości parametru m, dla których
zbiór rozwiązań nierówności 3x+m-3\lessdot 0
zawiera się w przedziale liczbowym (-\infty, 1).
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pr-10395 ⋅ Poprawnie: 0/1 [0%]
Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których
równanie 2x-8=|m+7|(x-3) o niewiadomej
x ma conajmniej jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę zapisaną dziesiętnie)
max
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.2 pkt ⋅ Numer: pr-20431 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m wykresy funkcji liniowych
f(x)=-\frac{1}{2}x-\frac{2m+7}{4} oraz
g(x)=\frac{3}{2}x+\frac{4m+9}{2} przecinają sie w punkcie,
który należy do wykresu funkcji h(x)=\frac{1}{2}x+4?
Podaj najmmniejsze możliwe m.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20939 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru k\in\mathbb{R},
dla których rozwiązaniem układu równań
\begin{cases}
-2x+3y=4k-13 \\
3x-5y=-6k+21
\end{cases} jest para liczb (x,y) spełniająca
warunek |x\cdot y|\geqslant 10. Rozwiązanie
zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30835 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=2x-m i
g(x)=-4x+5m+12
przecinają się w punkcie o współrzednych (x,y) takim, że
|y-2|+|x+2|\geqslant 5. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat