Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{3}x-3 \right| = -\frac{4}{3}x-2
Odpowiedzi:
A. \frac{15}{2} B. -\frac{15}{2}
C. 5 D. -5
Zadanie 2.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : \sqrt{(x-4)^2}=|x-4| T/N : \sqrt{(x-8)^2}=x-8
Zadanie 3.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x-3| \lessdot 6 jest zbiór liczb postaci:
Odpowiedzi:
A. \langle p,q) B. (-\infty,p\rangle \cup \langle q,+\infty)
C. (p,q) D. (p,q\rangle
E. \langle p,q\rangle F. (-\infty,p)\cup(q,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10397 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których zbiór rozwiązań nierówności 3x+m-8\lessdot 0 zawiera się w przedziale liczbowym (-\infty, 1). Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10398 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Układ równań \begin{cases} -6x+3y=91 \\ -3y+m^2-9=-6x \end{cases} nie jest układem równań sprzecznych.

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20953 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż nierówność \left|\left|x-7\right|-3\right|\geqslant 4 . Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20037 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Rozwiąż nierówność \sqrt{x^2-2ax-4x+4+a^2} \lessdot 5-3|x-2-a| .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj środek tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20936 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz wartości parametru k\in \mathbb{R}, dla których punkt przecięcia prostych \begin{cases} 2x-4y=k+a \\ x-y=k-a \end{cases}

należy do trzeciej ćwiartki układu współrzędnych i nie leży na osiach Ox i Oy.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=-6
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Ile liczb całkowitych z przedziału \langle -20,20\rangle należy do tego rozwiązania?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pr-20925 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane jest równanie |m-9|\cdot x=1+(m-7)x o niewiadomej x.

Wyznacz wartość parametru m, dla której równanie to jest sprzeczne.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj ilość tych wartości m, dla których rórnanie to jest tożsamościowe.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30833 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz te wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} 2x-3y=3-|12-k| \\ -3x+5y=|3k-36|-5 \end{cases} jest para liczb rzeczywistych o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (2 pkt)
 Zbiór tych wszystkich wartości parametru k, które spełniają warunki zadania ma postać (p,q)-\{r\}.

Podaj liczbę r.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm