Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wskaż liczbę, która spełnia równanie
\left|-x-1\right| = 2x+14 :
Odpowiedzi:
A. -3
B. -11
C. -5
D. -1
E. 1
F. -7
Zadanie 2. 1 pkt ⋅ Numer: pr-10392 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
«Zapisz wyrażenie
\sqrt{9+6x+x^2}-10\sqrt{9-6x+x^2}
określone dla
x\in(3,+\infty) , w postaci
ax+b ,
gdzie
a,b\in\mathbb{Z} .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/725 [54%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Rozwiązaniem nierówności
|x+8| \geqslant 4
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (-\infty,p\rangle \cup \langle q,+\infty)
B. (-\infty,p)\cup(q,+\infty)
C. (p,q\rangle
D. \langle p,q)
E. (p,q)
F. \langle p,q\rangle
Podpunkt 3.2 (0.8 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10101 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Ta wartość parametru m , dla której równanie
m^2x+4(1-x)+m^2=4m nie posiada rozwiązania, jest:
Odpowiedzi:
A. liczbą pierwszą
B. liczbą podzielną przez 3
C. liczbą złożoną
D. liczbą ujemną
Zadanie 5. 1 pkt ⋅ Numer: pr-10404 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Układ równań
\begin{cases}
-2x-my=4 \\
-2y-8x=16
\end{cases}
jest nieoznaczony.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-21112 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż nierówność
\left|2\left|x+7\right|-3\right|\leqslant 5
. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20039 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Rozwiąż nierówność
\frac{|x-4\sqrt{3}|}{4\sqrt{3}-x}+\sqrt[7]{625\cdot(-125)}\geqslant x+5-3\sqrt{3}
.
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20975 ⋅ Poprawnie: 45/33 [136%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz wszystkie wartości parametru
k\in\mathbb{R} , dla których
rozwiązaniem układu równań
\begin{cases}
2x-3y=3-|-4-k| \\
-3x+5y=|3k+12|-5
\end{cases}
jest para liczb o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-21140 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} ,
dla których równanie
3|x-2|-2x=8k+60
ma tylko rozwiązania dodatnie.
Podaj najmniejszą możliwą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30019 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiązanie układu
\begin{cases}
x+y=\frac{m}{a} \\
3x-2y=\frac{2m}{a}-1
\end{cases}
spełnia warunki:
|x|\leqslant \frac{1}{2} i
|y|\leqslant \frac{1}{2} .
Wyznacz
m .
Podaj najmniejsze możliwe m .
Dane
a=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż