Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Przedział liczb
\langle -2,2\rangle
jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| \lessdot 2
B. |x| > 2
C. |x|\leqslant 2
D. |x| \geqslant 2
Zadanie 2. 1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{17}\right)^2}-\sqrt{\left(1-\sqrt{17}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}} .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
« Rozwiązaniem nierówności
\left|x+\sqrt{3}+3\right| \lessdot 4
jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty)
B. \langle p,+\infty)
C. (p,q)
D. \langle p,q\rangle
E. (-\infty, q\rangle
F. (-\infty, p)\cup (q,+\infty)
Podpunkt 3.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pr-10412 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} , dla których równanie
(m-8)^2x=16x+m^2-16m+64
o niewiadomej
x jest sprzeczne.
Podaj najmniejsze i największe możliwe m .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10405 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Układ równań
\begin{cases}
-8x-2y=2 \\
4x+(a+4)y=-
\end{cases}
jest nieoznaczony.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-21105 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (0.8 pkt)
Rozwiąż równanie
\left|5-\left|3x-5\right|\right|-2=0 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.8 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (0.4 pkt)
Ile rozwiązań niecałkowitych ma to równanie?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20048 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż równanie
|x-3+a|-2|x+a|=1 .
Podaj najmniejsze z rozwiązań.
Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największe z rozwiązań.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20970 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dla jakich wartości parametru
m wykresy funkcji liniowych
f(x)=-\frac{1}{2}x-\frac{2m}{4} oraz
g(x)=\frac{3}{2}x+\frac{4m-5}{2} przecinają sie w punkcie,
który należy do wykresu funkcji
h(x)=\frac{1}{2}x+4 ?
Podaj najmmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20932 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
p\in\mathbb{R} ,
dla których równanie
|x-2|=p-\frac{8}{3}
ma dokładnie dwa rozwiązania dodatnie.
Podaj najmniejsze możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30834 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dla jakich wartości parametru
m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=-5x+2m-27 i
g(x)=3x-6m-11
przecinają się w punkcie o współrzednych
(x,y) takim, że
|x+2|-|4-y|\leqslant 1 . Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż