Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R},
dla których równanie \left|\frac{1}{2}x-1\right|=\frac{-\frac{3}{2}-m}{3}
ma tylko rozwiązania nieujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30836 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
rozwiązaniem układu równań
\begin{cases}
(m+2)x+y=3 \\
-x+(m+4)y=-m-2
\end{cases}
jest para liczb (x,y) taka, że
|x|=|y+1|. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat