Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przedział liczb \langle -8,8\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x|\leqslant 8 B. |x| \lessdot 8
C. |x| \geqslant 8 D. |x| > 8
Zadanie 2.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż równanie \left|-2-\frac{1}{3}x\right|-1=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10191 ⋅ Poprawnie: 383/597 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż nierówność, której rozwiązaniem jest zbiór \left(-\infty,-\frac{3}{2}\right)\cup\left(3,+\infty\right) :
Odpowiedzi:
A. \left|x-\frac{3}{4}\right| > \frac{9}{4} B. \left|x+\frac{3}{4}\right| \leqslant \frac{9}{4}
C. \left|x-\frac{3}{4}\right| \lessdot \frac{9}{4} D. \left|x+\frac{3}{4}\right| > \frac{9}{4}
Zadanie 4.  1 pkt ⋅ Numer: pr-10396 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności 5x-m+9\lessdot 0 jest przedziałem (-\infty, 4).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10401 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Układ równań \begin{cases} x-y=1 \\ \left(m^2-76\right)x-5=5y \end{cases} jest nieoznaczony.

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20904 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Zapisz wyrażenie \frac{x^2-4}{\sqrt{x^2-16x+64}-\sqrt{4x^2-24x+36}} , gdzie x\in(8,+\infty) w najprostszej postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20035 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność |ax-2|+|ax+1|\geqslant 3ax-3.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców tych przedziałów, który jest liczbą.

Dane
a=-1
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20970 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dla jakich wartości parametru m wykresy funkcji liniowych f(x)=-\frac{1}{2}x-\frac{2m+3}{4} oraz g(x)=\frac{3}{2}x+\frac{4m+1}{2} przecinają sie w punkcie, który należy do wykresu funkcji h(x)=\frac{1}{2}x+4?

Podaj najmmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20940 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} 3x+7y=2k-27 \\ 2x+5y=k-12 \end{cases} jest para liczb (x,y) spełniająca warunek -7\leqslant x+y \lessdot 5. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30830 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj ilość rozwiązań równania \left|2^\big{}|x+1|-|2-x|\right|=7-m w zależności od wartości parametru m\in\mathbb{R}.

Podaj tę wartość parametru m, dla której równanie to ma dokładnie trzy rozwiązania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to jest sprzeczne. Rozwiązanie zapisz w postaci przedziału liczbowego.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Przedział liczbowy (p,q) jest zbiorem tych wszystkich wartości parametru m, dla których równanie to ma cztery rozwiązania.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm