Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wyrażenie
2x-|3-|x+4||+8 , gdzie
x\in(0,+\infty) , w postaci
ax+b , gdzie
a,b\in\mathbb{Z} .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10098 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Na rysunku przedstawiony jest zbiór wszystkich liczb rzeczywistych
spełniających nierówność
|2x-8|\leqslant 10 .
Wyznacz liczbę k .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+6| \lessdot 14 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pr-10493 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zbiór rozwiązań nierówności
7x-2(m+7)\geqslant x+11
jest przedziałem
\langle 2,+\infty) .
Podaj wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10394 ⋅ Poprawnie: 48/33 [145%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz wszystkie wartości parametru
k\in\mathbb{R} , dla których
równanie
(k+4)x-3=2x-k-4 o niewiadomej
x jest sprzeczne.
Podaj najmniejsze i największe możliwe k .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-21114 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż nierówność
\left|2-\left|x-8\right|\right|\leqslant 0
. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-20041 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż nierówność
|2x-8|+|x-7| > 5
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20052 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Punkt
P należy do trzech prostych:
4x-y=1 ,
2x-3y=5 oraz
(2m-1-2a)x+y=3 .
Wyznacz m .
Dane
a=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20927 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} , dla
których dziedziną funkcji określonej wzorem
f(x)=\sqrt{\left(|2m-6|-1\right)x+3} jest zbiór
\mathbb{R} .
Podaj najmniejszą możliwą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30016 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Trzy nierówności
\begin{cases}
y\leqslant -x+8+2a \\
y\leqslant \frac{9}{5}x+\frac{12}{5}-\frac{4}{5}a \\
y\geqslant \frac{5}{9}x-\frac{4}{3}+\frac{4}{9}a
\end{cases}
opisują trójkąt o wierzchołkach, których współrzędne są całkowite.
Podaj sumę wszystkich sześciu współrzędnych wierzchołków tego trójkąta.
Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Trójkąt ten jest równoramienny o podstawie
AB .
Oblicz długość wysokości opuszczonej na bok AB .
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż