Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11616 ⋅ Poprawnie: 48/69 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{27}-2\sqrt{3}\right|-\left|\sqrt{108}-\sqrt{243}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-11600 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Rozwiąż równanie |x-8|+|x-8|\cdot|x-9|=0.

Podaj najmniejsze i największe rozwiązanie tego równania.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\sqrt{3}+11\right| \leqslant 4 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p\rangle\cup \langle q,+\infty) B. \langle p,+\infty)
C. (p,q) D. (-\infty, p)\cup (q,+\infty)
E. \langle p,q\rangle F. (-\infty, q\rangle
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10493 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności 7x-2(m+7)\geqslant x+11 jest przedziałem \langle 2,+\infty).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10402 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Układ równań \begin{cases} y=-(a-1)x+a+1 \\ y=\frac{b+2}{3}x-2 \end{cases} , gdzie a,b\in\mathbb{Z}, nie ma rozwiązania.

Ile liczb całkowitych a z przedziału [-9,3] spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-21113 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż nierówność \left|\left|x+10\right|-2\right|\lessdot 2 . Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20036 ⋅ Poprawnie: 4/20 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność |2x-a|-\left|x-\frac{a}{2}+\frac{13}{2}\right|\geqslant -2x+a-3 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20936 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz wartości parametru k\in \mathbb{R}, dla których punkt przecięcia prostych \begin{cases} 2x-4y=k+a \\ x-y=k-a \end{cases}

należy do trzeciej ćwiartki układu współrzędnych i nie leży na osiach Ox i Oy.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=-6
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Ile liczb całkowitych z przedziału \langle -20,20\rangle należy do tego rozwiązania?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20940 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} 3x+7y=2k+51 \\ 2x+5y=k+44 \end{cases} jest para liczb (x,y) spełniająca warunek 7\leqslant x+y \lessdot 19. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-30837 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-\frac{1}{2}x-\frac{m+6}{4}+2 oraz g(x)=\frac{3}{2}x+\frac{2m+7}{2}+10 przecinają się w punkcie należącym do wykresu funkcji określonej wzorem h(x)=\frac{1}{2}x+10?

Podaj najmiejszą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm