Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10198 ⋅ Poprawnie: 213/243 [87%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wskaż liczbę, która spełnia równanie \left|-x-6\right| = 2x+24:
Odpowiedzi:
A. -10 B. -15
C. -12 D. -8
E. -7 F. -14
Zadanie 2.  1 pkt ⋅ Numer: pr-10386 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie 2x-\left|3-|x+3|\right|+6, gdzie x\in(1,+\infty) w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\frac{17}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup (q,+\infty) B. (-\infty, q\rangle
C. \langle p,+\infty) D. (p,q)
E. \langle p,q\rangle F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pr-10397 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których zbiór rozwiązań nierówności 3x+m+4\lessdot 0 zawiera się w przedziale liczbowym (-\infty, 1). Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10395 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie 2x-6=|m+2|(x-2) o niewiadomej x ma conajmniej jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20766 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Rozwiąż równanie \left|\left|x+\frac{a}{4}\right|-\frac{b}{2}\right|=c .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=3
b=4
c=3
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-21086 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Rozwiąż równanie \left|3x-\frac{143}{4}\right|+2=2x-\frac{37}{2} .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20968 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przeprowadź dyskusję rozwiązalności układu równań w zależności od parametru a: \begin{cases} 2x+3y=-3 \\ 4x+(a-4)y=2a-20 \\ \end{cases} .

Podaj wartość parametru a, dla której układ ten jest sprzeczny lub nieoznaczony.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Jeśli układ jest oznaczony, to jego rozwiązaniem jest para liczby postaci \left(\frac{a-20}{2a-4},\frac{ma+n}{a+k}\right), gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pr-20925 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane jest równanie |m+3|\cdot x=1+(m+5)x o niewiadomej x.

Wyznacz wartość parametru m, dla której równanie to jest sprzeczne.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj ilość tych wartości m, dla których rórnanie to jest tożsamościowe.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30830 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj ilość rozwiązań równania \left|2^\big{}|x+1|-|2-x|\right|=1-m w zależności od wartości parametru m\in\mathbb{R}.

Podaj tę wartość parametru m, dla której równanie to ma dokładnie trzy rozwiązania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to jest sprzeczne. Rozwiązanie zapisz w postaci przedziału liczbowego.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Przedział liczbowy (p,q) jest zbiorem tych wszystkich wartości parametru m, dla których równanie to ma cztery rozwiązania.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm