Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wartość wyrażenia
\sqrt{\left(1+\sqrt{19}\right)^2}-\sqrt{\left(1-\sqrt{19}\right)^2}
jest równa
2\sqrt{\stackrel{\ }{.....}} .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10386 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz wyrażenie
2x-\left|3-|x-1|\right|-2 , gdzie
x\in(5,+\infty) w postaci
mx+n , gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{6-x}}+\sqrt{10-|x|}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10504 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wszystkie wartości parametru
k\in\mathbb{R} , dla których
równanie
kx-k^2+81=9x o niewiadomej
x jest tożsamościowe.
Podaj najmniejsze i największe możliwe k .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10407 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Układ równań
\begin{cases}
-3x+y-2=0\\
y=(2m+8)x+5
\end{cases}
nie ma rozwiązania.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-21103 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie
-\frac{4|16+x|-3}{6}+\frac{|-x-16|+1}{3}=2-\frac{4-|-16-x|}{2} .
Podaj najmniejsze i największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-21087 ⋅ Poprawnie: 10/20 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
\left|\frac{5}{2}-2x\right|+x+\frac{1}{4}=3
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20054 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Rozwiązaniem układu równań
\begin{cases}
(2+a+m)x-3y=b-m+5 \\
(b-m+1)x+5y=a+m+5
\end{cases}
jest para liczb
(2,1) .
Podaj a .
Dane
m=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-21141 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} ,
dla których równanie
|3x+2|-\frac{4m+1}{2}=|6x+4|
ma dokładnie dwa rozwiązania ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30016 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Trzy nierówności
\begin{cases}
y\leqslant -x+8+2a \\
y\leqslant \frac{9}{5}x+\frac{12}{5}-\frac{4}{5}a \\
y\geqslant \frac{5}{9}x-\frac{4}{3}+\frac{4}{9}a
\end{cases}
opisują trójkąt o wierzchołkach, których współrzędne są całkowite.
Podaj sumę wszystkich sześciu współrzędnych wierzchołków tego trójkąta.
Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Trójkąt ten jest równoramienny o podstawie
AB .
Oblicz długość wysokości opuszczonej na bok AB .
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż