Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
wykresy funkcji liniowych f(x)=-5x+2m+16 oraz
g(x)=3x-6m-48 przecinają się w punkcie o współrzędnych
(x,y) takim, że
|x-5|-|6-y|\leqslant 1. Rozwiązanie zapisz w postaci
sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-21138 ⋅ Poprawnie: 0/0
Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla
których dziedziną funkcji określonej wzorem
f(x)=\sqrt{14-2m+(|9-2m|+3)x} jest zbiór
\langle -1,+\infty).
Podaj najmniejszą możliwą wartość parametru m.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość parametru m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30836 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
rozwiązaniem układu równań
\begin{cases}
(m+1)x+y=10 \\
-x+(m+3)y=6m+20
\end{cases}
jest para liczb (x,y) taka, że
|x|=|y-6|. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat