Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{3}x-3 \right| = -\frac{4}{3}x-2
Odpowiedzi:
A. -5 B. -\frac{15}{2}
C. 5 D. \frac{15}{2}
Zadanie 2.  1 pkt ⋅ Numer: pr-10516 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Rozwiąż równanie |x+14|=-|(x+10)(x+14)|.

Podaj najmniejsze i największe rozwiązanie tego równania.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10186 ⋅ Poprawnie: 286/593 [48%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 » Rozwiązaniem nierówności |x-5| \lessdot 10 jest zbiór liczb postaci:
Odpowiedzi:
A. (p,q) B. (-\infty,p)\cup(q,+\infty)
C. (-\infty,p\rangle \cup \langle q,+\infty) D. \langle p,q)
E. \langle p,q\rangle F. (p,q\rangle
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10393 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie (k^2-9)x=5k+15 o niewiadomej x jest tożsamościowe.

Podaj najmniejsze i największe możliwe k.

Odpowiedzi:
k_{min}= (wpisz liczbę zapisaną dziesiętnie)
k_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10402 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Układ równań \begin{cases} y=-(a-2)x+a \\ y=\frac{b+2}{3}x-2 \end{cases} , gdzie a,b\in\mathbb{Z}, nie ma rozwiązania.

Ile liczb całkowitych a z przedziału [-8,4] spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20908 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1.6 pkt)
 Rozwiąż równanie \left||4x-11|-4\right|=3 .

Podaj najmniejsze i największe rozwiązanie tego równania.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (0.4 pkt)
 Ile rozwiązań ma to zadanie?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-21085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie \frac{55}{4}+x=2\left|x+\frac{43}{4}\right| .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20050 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Zbadaj rozwiązalność układu równań z parametrem:
\begin{cases} 2x-3y=8 \\ x-(m+a)y=2 \end{cases}

Podaj najmniejszą możliwą wartość m, dla której układ jest sprzeczny.

Dane
a=-4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz te wartości parametru m, dla których rozwiązaniem układu jest para liczb (x,y) taka, że y > 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20933 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie |2x+6|-x=m-6a ma dwa rozwiązania ujemne.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największy z wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30830 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj ilość rozwiązań równania \left|2^\big{}|x+1|-|2-x|\right|=12-m w zależności od wartości parametru m\in\mathbb{R}.

Podaj tę wartość parametru m, dla której równanie to ma dokładnie trzy rozwiązania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to jest sprzeczne. Rozwiązanie zapisz w postaci przedziału liczbowego.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Przedział liczbowy (p,q) jest zbiorem tych wszystkich wartości parametru m, dla których równanie to ma cztery rozwiązania.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm