Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{4}x-3 \right| = -\frac{4}{4}x-2
Odpowiedzi:
A. -\frac{20}{3} B. \frac{20}{3}
C. 10 D. -10
Zadanie 2.  1 pkt ⋅ Numer: pr-10385 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie |-3+2x|+|-3x+6|, gdzie x\in(-\infty,0) w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10187 ⋅ Poprawnie: 559/894 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej:
Odpowiedzi:
A. |x-7| > 15 B. |x-7| \lessdot 15
C. |x-15| \lessdot 7 D. |x-15| > 7
Zadanie 4.  1 pkt ⋅ Numer: pr-10397 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których zbiór rozwiązań nierówności 3x+m-5\lessdot 0 zawiera się w przedziale liczbowym (-\infty, 1). Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10406 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest układ równań \begin{cases} x-3y=2 \\ mx+y=4 \end{cases} .

Wyznacz wartość parametru m, dla której układ ten nie jest układem równań oznaczonych.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21110 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż nierówność \left||2x+11|-7\right|\leqslant 6 . Rozwiązaniem tej nierówności jest zbiór [a,b]\cup[c,d], gdzie a\lessdot c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby c i d.
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21126 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (0.4 pkt)
 Rozwiąż nierówność x+4|x+5| > -4.

Rozwiązaniem tej nierówności jest zbiór postaci:

Odpowiedzi:
A. (-\infty,p) B. (p,+\infty)
C. (-\infty,p)\cup(q,+\infty) D. (-\infty,p\rangle\cup\langle q,+\infty)
E. (-\infty,p\rangle F. (p,q)
Podpunkt 7.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20968 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przeprowadź dyskusję rozwiązalności układu równań w zależności od parametru a: \begin{cases} 2x+3y=-1 \\ 4x+(a+3)y=2a-2 \\ \end{cases} .

Podaj wartość parametru a, dla której układ ten jest sprzeczny lub nieoznaczony.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Jeśli układ jest oznaczony, to jego rozwiązaniem jest para liczby postaci \left(\frac{a-20}{2a-4},\frac{ma+n}{a+k}\right), gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20031 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Funkcja f określona jest wzorem f(x)=|x-3|-|x+4|. Wyznacz miejsca zerowe funkcji f.

Podaj największe z miejsc zerowych.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Określ liczbę rozwiązań równania f(x)=m w zależności od wartości parametru m.

Podaj największe możliwe m, dla którego równanie to ma nieskończenie wiele rozwiązań.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30013 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Przeprowadź dyskusję rozwiązalności równania |x-2|+|x+1|+a=m w zależności od parametru m.

Podaj najmniejsze możliwe m, dla którego równanie to ma nieskończenie wiele rozwiązań.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Dla ilu liczb całkowitych m z przedziału \langle -10,10\rangle równanie to ma dokładnie dwa rozwiązania?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Dla pewnej wartości m równanie to ma nieskończenie wiele rozwiązań, które zawarte są w przedziale \langle p,q\rangle.

Podaj q-p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm