Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|6x-4 \right| = 5-12x
Odpowiedzi:
A. \frac{1}{12}
B. -\frac{1}{4}
C. -\frac{1}{6}
D. \frac{1}{6}
Zadanie 2. 1 pkt ⋅ Numer: pp-11574 ⋅ Poprawnie: 182/302 [60%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Rozwiąż równanie
|x+6|-10=0 .
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+7| \lessdot 18 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pr-10412 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} , dla których równanie
(m-6)^2x=16x+m^2-12m+36
o niewiadomej
x jest sprzeczne.
Podaj najmniejsze i największe możliwe m .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10405 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Układ równań
\begin{cases}
3x+8y=-8 \\
-\frac{3}{2}x+(a+4)y=4
\end{cases}
jest nieoznaczony.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20903 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Zapisz wyrażenie
\sqrt{13+4\sqrt{3}}-\sqrt{16+8\sqrt{3}}
w najprostszej postaci
a+b\sqrt{c} ,
gdzie
a,b,c\in\mathbb{Z} .
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20037 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Rozwiąż nierówność
\sqrt{x^2-2ax-4x+4+a^2} \lessdot 5-3|x-2-a|
.
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=-3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj środek tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20054 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Rozwiązaniem układu równań
\begin{cases}
(2+a+m)x-3y=b-m+5 \\
(b-m+1)x+5y=a+m+5
\end{cases}
jest para liczb
(2,1) .
Podaj a .
Dane
m=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 3 pkt ⋅ Numer: pr-20923 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dane jest równanie
2+(m-8)(1-x)=2|m-5|\cdot x o niewiadomej
x .
Wyznacz wartość parametru m , dla
której równanie to jest tożsamościowe.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Wyznacz wartość parametru
m , dla
której równanie to jest sprzeczne.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Wyznacz zbiór tych wartości parametru
m , dla
których równanie to ma dokładnie jedno rozwiązanie. Rozwiązanie zapisz w postaci
sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 10. 4 pkt ⋅ Numer: pr-30835 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dla jakich wartości parametru
m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=2x-m+3 i
g(x)=-4x+5m-3
przecinają się w punkcie o współrzednych
(x,y) takim, że
|y-2|+|x+2|\geqslant 5 . Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż