Wyznacz zbiór tych wartości parametru m, dla których
zbiór rozwiązań nierówności 3x+m-8\lessdot 0
zawiera się w przedziale liczbowym (-\infty, 1).
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pr-10398 ⋅ Poprawnie: 0/0
Wyznacz te wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań
\begin{cases}
2x-3y=3-|12-k| \\ -3x+5y=|3k-36|-5
\end{cases}
jest para liczb rzeczywistych o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (2 pkt)
Zbiór tych wszystkich wartości parametru k, które spełniają warunki
zadania ma postać (p,q)-\{r\}.
Podaj liczbę r.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat