Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{|1-4|}{-2}.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Równanie |x-4|-2=0:
Odpowiedzi:
A. ma dokładnie jedno rozwiązanie B. nie ma rozwiązań
C. ma dokładnie dwa rozwiązania D. ma więcej niż dwa rozwiązania
Zadanie 3.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x+8| > 8
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (p,q\rangle B. (-\infty,p)\cup(q,+\infty)
C. (p,q) D. \langle p,q\rangle
E. \langle p,q) F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10396 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności 5x-m+13\lessdot 0 jest przedziałem (-\infty, 4).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10406 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest układ równań \begin{cases} x-8y=-4 \\ mx+y=3 \end{cases} .

Wyznacz wartość parametru m, dla której układ ten nie jest układem równań oznaczonych.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20904 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Zapisz wyrażenie \frac{x^2-4}{\sqrt{x^2-12x+36}-\sqrt{4x^2-16x+16}} , gdzie x\in(6,+\infty) w najprostszej postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20038 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność |4x+8-2a|-|2x-a-3| \lessdot 2 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj długość tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20322 ⋅ Poprawnie: 63/140 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dla jakiej wartości parametru m proste, będące wykresami funkcji liniowych f(x)=3x+1 i g(x)=7x-3 przecinają się na prostej -63x+18y+2m=0?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20049 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Zaznacz w układzie współrzednych zbiór, którego współrzędne spełniają równanie |x+3-a|+|y-1|=1.

Prosta x=m przecina ten zbiór w jednym punkcie. Podaj sumę wszystkich możliwych wartości m.

Dane
a=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Dla jakich wartości parametru m prosta y=m przecina ten zbiór w dwóch punktach?

Rozwiązanie zapisz w postaci przedziału. Podaj sumę kwadratów końców tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30016 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Trzy nierówności \begin{cases} y\leqslant -x+8+2a \\ y\leqslant \frac{9}{5}x+\frac{12}{5}-\frac{4}{5}a \\ y\geqslant \frac{5}{9}x-\frac{4}{3}+\frac{4}{9}a \end{cases} opisują trójkąt o wierzchołkach, których współrzędne są całkowite.

Podaj sumę wszystkich sześciu współrzędnych wierzchołków tego trójkąta.

Dane
a=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Trójkąt ten jest równoramienny o podstawie AB.

Oblicz długość wysokości opuszczonej na bok AB.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm