Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10182 ⋅ Poprawnie: 533/672 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Oblicz wartość wyrażenia
\frac{|3-12|}{-2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pr-10389 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Oblicz odległość na osi liczbowej liczb
x^2+9x-2 i
(x+5)^2, gdzie
x\in(-2,+\infty).
Zapisz wynik w postaci
ax+b, gdzie
a,b\in\mathbb{Z}.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 3. 1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] |
Rozwiąż |
Podpunkt 3.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x-\sqrt{2}+4\right| > 1
jest zbiór postaci:
Odpowiedzi:
|
A. (-\infty, p\rangle\cup \langle q,+\infty)
|
B. (-\infty, p)\cup (q,+\infty)
|
|
C. (-\infty, q\rangle
|
D. \langle p,q\rangle
|
|
E. (p,q)
|
F. \langle p,+\infty)
|
Podpunkt 3.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pr-10101 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Ta wartość parametru m, dla której równanie
m^2x+4(1-x)+m^2=4m nie posiada rozwiązania, jest:
Odpowiedzi:
|
A. liczbą podzielną przez 3
|
B. liczbą złożoną
|
|
C. liczbą pierwszą
|
D. liczbą ujemną
|
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10403 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Układ równań
\begin{cases}
3x+y=-6 \\
(3m-2)x-4y=-24
\end{cases}
jest sprzeczny.
Wyznacz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20905 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie
|3x+3|+14=2|5x+5|
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20920 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Wyznacz
a, tak aby równanie
(2-a+m)x=3+x było sprzeczne.
Dane
m=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pr-20936 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Wyznacz wartości parametru
k\in \mathbb{R}, dla
których punkt przecięcia prostych
\begin{cases}
2x-4y=k+a \\
x-y=k-a
\end{cases}
należy do trzeciej ćwiartki układu współrzędnych i nie leży na osiach
Ox i Oy.
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Ile liczb całkowitych z przedziału
\langle -20,20\rangle należy do tego rozwiązania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pr-20933 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
«« Wyznacz te wartości parametru
m, dla których
równanie
|2x+6|-x=m-6a ma dwa rozwiązania
ujemne.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największy z wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pr-30019 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Rozwiązanie układu
\begin{cases}
x+y=\frac{m}{a} \\
3x-2y=\frac{2m}{a}-1
\end{cases}
spełnia warunki:
|x|\leqslant \frac{1}{2} i
|y|\leqslant \frac{1}{2}.
Wyznacz
m.
Podaj najmniejsze możliwe m.
Dane
a=8
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m.
Odpowiedź:
(wpisz dwie liczby całkowite)