Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10572 ⋅ Poprawnie: 124/201 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wartość wyrażenia |8-x|-x-5 dla x\in (8, +\infty) można zapisać w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-11600 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Rozwiąż równanie |x-6|+|x-6|\cdot|x-7|=0.

Podaj najmniejsze i największe rozwiązanie tego równania.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-10100 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz sumę rozwiązań równania |x^2-15|=-2x.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10411 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (m-4)x-7=2x-m o niewiadomej x jest sprzeczne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10395 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie 2x+4=|m+8|(x+3) o niewiadomej x ma conajmniej jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20005 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Rozwiąż równanie \left|a-\left|x-b\right|\right|=c .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=3
b=8
c=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20817 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Funkcja f określona jest wzorem f(x)=x+6. Posługując się wykresami odpowiednich funkcji rozwiąż nierówność |f(x)|\leqslant f(x+5).

Podaj najmniejszą liczbę spełniającą tę nierówność.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
 Dla jakich wartości parametru m wykres funkcji f przecina wykres funkcji liniowej h(x)=(1+3m)x+3 w punkcie P=(-6,0)?

Podaj najmniejsze możliwe m.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20319 ⋅ Poprawnie: 337/527 [63%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} 8x-5y=-7 \\ 2x+3y=11 \end{cases} .

Podaj x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20923 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane jest równanie 2+(m-5)(1-x)=2|m-2|\cdot x o niewiadomej x.

Wyznacz wartość parametru m, dla której równanie to jest tożsamościowe.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wyznacz wartość parametru m, dla której równanie to jest sprzeczne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30016 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Trzy nierówności \begin{cases} y\leqslant -x+8+2a \\ y\leqslant \frac{9}{5}x+\frac{12}{5}-\frac{4}{5}a \\ y\geqslant \frac{5}{9}x-\frac{4}{3}+\frac{4}{9}a \end{cases} opisują trójkąt o wierzchołkach, których współrzędne są całkowite.

Podaj sumę wszystkich sześciu współrzędnych wierzchołków tego trójkąta.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Trójkąt ten jest równoramienny o podstawie AB.

Oblicz długość wysokości opuszczonej na bok AB.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm