Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11582 ⋅ Poprawnie: 106/161 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność
|x+8| \lessdot 16 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Odpowiedzi:
A. ma więcej niż dwa rozwiązania
B. ma dokładnie dwa rozwiązania
C. nie ma rozwiązań
D. ma dokładnie jedno rozwiązanie
Zadanie 3. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{7-x}}+\sqrt{10-|x|}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10411 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} , dla których równanie
(m+4)x+1=2x-m
o niewiadomej
x jest sprzeczne. Rozwiązanie zapisz w
postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5. 1 pkt ⋅ Numer: pr-10404 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Układ równań
\begin{cases}
2x-my=-1 \\
-3y-6x=3
\end{cases}
jest nieoznaczony.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Rozwiąż równanie
\left|\left|x+a\right|-b\right|=c
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=-5
b=8
c=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-21085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
\frac{11}{4}+x=2\left|x-\frac{1}{4}\right|
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20975 ⋅ Poprawnie: 45/33 [136%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz wszystkie wartości parametru
k\in\mathbb{R} , dla których
rozwiązaniem układu równań
\begin{cases}
2x-3y=3-|6-k| \\
-3x+5y=|3k-18|-5
\end{cases}
jest para liczb o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20931 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} ,
dla których równanie
x-2|x+2|=\frac{-5-2m}{2}
ma tylko rozwiązania niedodatnie.
Podaj najmniejszą możliwą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj najmniejszą możliwą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30013 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Przeprowadź dyskusję rozwiązalności równania
|x-2|+|x+1|+a=m w zależności od parametru
m .
Podaj najmniejsze możliwe m , dla którego równanie
to ma nieskończenie wiele rozwiązań.
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Dla ilu liczb całkowitych
m z przedziału
\langle -10,10\rangle równanie to
ma dokładnie dwa rozwiązania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Dla pewnej wartości
m równanie to ma nieskończenie
wiele rozwiązań, które zawarte są w przedziale
\langle p,q\rangle .
Podaj q-p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż