Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie
(m-6)(x+1)=2
o niewiadomej x jest sprzeczne. Rozwiązanie zapisz w
postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.1 pkt ⋅ Numer: pr-10395 ⋅ Poprawnie: 0/1 [0%]
Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których
równanie 2x+8=|m+5|(x+5) o niewiadomej
x ma conajmniej jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę zapisaną dziesiętnie)
max
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.2 pkt ⋅ Numer: pr-21103 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których
rozwiązaniem układu równań
\begin{cases}
2x-3y=3-|10-k| \\
-3x+5y=|3k-30|-5
\end{cases}
jest para liczb o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20937 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=-\frac{1}{2}x-\frac{m+6}{4}-\frac{11}{2} oraz
g(x)=\frac{3}{2}x+\frac{2m+7}{2}+\frac{1}{2} przecinają się w punkcie
należącym do wykresu funkcji określonej wzorem
h(x)=\frac{1}{2}x+\frac{3}{2}?
Podaj najmiejszą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.4 pkt ⋅ Numer: pr-30835 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=2x-m+1 i
g(x)=-4x+5m+7
przecinają się w punkcie o współrzednych (x,y) takim, że
|y-2|+|x+2|\geqslant 5. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat