Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{41}\right)^2}-\sqrt{\left(1-\sqrt{41}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Równanie |x-7|-2=0:
Odpowiedzi:
A. ma więcej niż dwa rozwiązania B. ma dokładnie dwa rozwiązania
C. nie ma rozwiązań D. ma dokładnie jedno rozwiązanie
Zadanie 3.  1 pkt ⋅ Numer: pp-10189 ⋅ Poprawnie: 395/725 [54%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x+6| \geqslant 8
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. \langle p,q\rangle
C. \langle p,q) D. (-\infty,p\rangle \cup \langle q,+\infty)
E. (p,q\rangle F. \langle p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10297 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie o niewiadomej x: \left(36-k^2\right)x=k^2+31k-180 , ma nieskończenie wiele rozwiązań.

Wyznacz liczbę k.

Odpowiedź:
k= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10399 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Rozwiązaniem układu równań \begin{cases} 9x-\frac{y}{2}=b+5 \\ 9x+\frac{y}{2}=1 \end{cases} jest para liczb dodatnich wtedy i tylko wtedy gdy liczba b należy do pewnego przedziału o końcach p i q, przy czym p\lessdot q.

Wyznacz liczby p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-21120 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż równanie |12x+68|=|75x+425|-42 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20919 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Rozwiąż nierówność |2-2x+2a|-4\leqslant |11+3x-3a| .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców tych przedziałów, który jest liczbą.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Ile liczb całkowitych z przedziału \langle -10,10\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20319 ⋅ Poprawnie: 337/527 [63%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} x+y=2 \\ 5x+4y=-8 \end{cases} .

Podaj x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20925 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane jest równanie |m+8|\cdot x=1+(m+10)x o niewiadomej x.

Wyznacz wartość parametru m, dla której równanie to jest sprzeczne.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj ilość tych wartości m, dla których rórnanie to jest tożsamościowe.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30836 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} rozwiązaniem układu równań \begin{cases} (m+2)x+y=10 \\ -x+(m+4)y=6m+26 \end{cases} jest para liczb (x,y) taka, że |x|=|y-6|. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm