Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11558  
Podpunkt 1.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{7-x}}+\sqrt{13-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10098  
Podpunkt 2.1 (1 pkt)
Na rysunku przedstawiony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność |2x-8|\leqslant 10.

Wyznacz liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10189  
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności
|x+8| \geqslant 10
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty,p)\cup(q,+\infty)
C. \langle p,q) D. (-\infty,p\rangle \cup \langle q,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10411  
Podpunkt 4.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (m+2)x-1=2x-m o niewiadomej x jest sprzeczne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10407  
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} -3x+y-2=0\\ y=(2m-4)x+5 \end{cases} nie ma rozwiązania.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21111  
Podpunkt 6.1 (1 pkt)
 Rozwiąż nierówność podwójną |-5-x|\lessdot 4\lessdot 3x+8. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20911  
Podpunkt 7.1 (0.4 pkt)
 Rozwiąż nierówność 2|3x-2|\geqslant 3x+1 .

Rozwiązanie tej nierówności ma postać:

Odpowiedzi:
A. (-\infty, p)\cup(q,+\infty) B. (-\infty, p)
C. (-\infty, p\rangle\cup\langle q,+\infty) D. (p,q)
E. (p_1,q_1)\cup(p_2,+\infty) F. (p,+\infty)
Podpunkt 7.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20969  
Podpunkt 8.1 (1 pkt)
 « Wyznacz te wartości parametru k dla których rozwiązaniem układu równań \begin{cases} 3x+28y=8k+4 \\ 2x+20y=4k+24 \end{cases} jest para liczb (x,y) taka, że -20\leqslant x+4y\lessdot 28.

Podaj najmniejsze całkowite k, które spełnia warunki zadania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe całkowite k, które spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21138  
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których dziedziną funkcji określonej wzorem f(x)=\sqrt{-14-2m+(|-5-2m|+3)x} jest zbiór \langle -1,+\infty).

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30830  
Podpunkt 10.1 (1 pkt)
 « Zbadaj ilość rozwiązań równania \left|2^\big{}|x+1|-|2-x|\right|=2-m w zależności od wartości parametru m\in\mathbb{R}.

Podaj tę wartość parametru m, dla której równanie to ma dokładnie trzy rozwiązania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to jest sprzeczne. Rozwiązanie zapisz w postaci przedziału liczbowego.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Przedział liczbowy (p,q) jest zbiorem tych wszystkich wartości parametru m, dla których równanie to ma cztery rozwiązania.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm