Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11612 ⋅ Poprawnie: 14/30 [46%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie |-2x-8|\cdot |x+3|, gdzie x\in(-\infty,-5), w postaci ax^2+bx+c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11575 ⋅ Poprawnie: 107/178 [60%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż równanie \left|7+\frac{1}{3}x\right|-4=0.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|\frac{29}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. \langle p,+\infty)
C. (-\infty, p\rangle\cup \langle q,+\infty) D. (-\infty, p)\cup (q,+\infty)
E. (-\infty, q\rangle F. (p,q)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pr-10492 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności -2x+5m-\frac{13}{2}\lessdot 0 jest przedziałem (3,+\infty).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10402 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Układ równań \begin{cases} y=-(a+5)x+a+7 \\ y=\frac{b-5}{3}x-2 \end{cases} , gdzie a,b\in\mathbb{Z}, nie ma rozwiązania.

Ile liczb całkowitych a z przedziału [-13,-5] spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20903 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Zapisz wyrażenie \sqrt{31+12\sqrt{3}}-\sqrt{13+4\sqrt{3}} w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  4 pkt ⋅ Numer: pr-20919 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Rozwiąż nierówność |2-2x+2a|-4\leqslant |11+3x-3a| .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców tych przedziałów, który jest liczbą.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Ile liczb całkowitych z przedziału \langle -10,10\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20921 ⋅ Poprawnie: 37/59 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż układ równań: \begin{cases} 2\sqrt{3}x+6y=\sqrt{6}\\ 2\sqrt{2}x-3\sqrt{6}y=-3 \end{cases} .

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-21141 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie |3x+2|-\frac{4m-7}{2}=|6x+4| ma dokładnie dwa rozwiązania ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30838 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-\frac{2}{5}x+m-\frac{33}{5} oraz g(x)=2x-m-23 przecinają się w punkcie należącym do wykresu funkcji określonej wzorem h(x)=-2-2|x-9|?

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Dla większej z wartości parametru m wyznaczonych w poprzednich punktach wyznacz punkt P=(x_P, y_P), w którym przecinają się wykresy tych funkcji.

Podaj współrzedne tego punktu.

Odpowiedzi:
x_P= (wpisz liczbę zapisaną dziesiętnie)
y_P= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm