Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Równanie |x-6|-1=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma dokładnie jedno rozwiązanie
C. ma dokładnie dwa rozwiązania D. ma więcej niż dwa rozwiązania
Zadanie 2.  1 pkt ⋅ Numer: pr-11601 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dane jest wyrażenie \sqrt{4x^2+20x+25}-2\sqrt{(x+4)^2}+3|x+6|, gdzie x\in(-\infty,-6). Zapisz to wyrażenie w postaci ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-11593 ⋅ Poprawnie: 63/83 [75%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|\frac{21}{4}+x\right|\geqslant 1,25 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup (q,+\infty) B. \langle p,+\infty)
C. (-\infty, q\rangle D. (p,q)
E. \langle p,q\rangle F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pr-10492 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności -2x+5m+\frac{7}{2}\lessdot 0 jest przedziałem (3,+\infty).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10485 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie |k+10|x=4x+k+10 o niewiadomej x jest tożsamościowe.

Podaj najmniejsze i największe możliwe k.

Odpowiedzi:
k_{min}= (wpisz liczbę całkowitą)
k_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20431 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz najmniejszą liczbę spełniającą nierówność \left|\frac{x-\sqrt{a}}{1-\sqrt{a}}\right| \leqslant \sqrt{a} .
Dane
a=8
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz największą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20955 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie \left|-\frac{19}{4}-x\right|=x+\frac{23}{4} .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20323 ⋅ Poprawnie: 99/198 [50%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz liczbę m, dla której trzy proste k:y=x+1, l:y=2x oraz n:3y=-12x+m przecinają się w jednym punkcie.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20937 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-\frac{1}{2}x-\frac{m+7}{4}+\frac{7}{2} oraz g(x)=\frac{3}{2}x+\frac{2m+9}{2}-\frac{5}{2} przecinają się w punkcie należącym do wykresu funkcji określonej wzorem h(x)=\frac{1}{2}x+\frac{9}{2}?

Podaj najmiejszą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30833 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz te wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} 2x-3y=3-|-2-k| \\ -3x+5y=|3k+6|-5 \end{cases} jest para liczb rzeczywistych o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (2 pkt)
 Zbiór tych wszystkich wartości parametru k, które spełniają warunki zadania ma postać (p,q)-\{r\}.

Podaj liczbę r.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm