Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przedział liczb \langle -3,3\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| \lessdot 3 B. |x| > 3
C. |x|\leqslant 3 D. |x| \geqslant 3
Zadanie 2.  1 pkt ⋅ Numer: pr-11601 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dane jest wyrażenie \sqrt{4x^2-68x+289}-2\sqrt{(x-7)^2}+3|x-5|, gdzie x\in(-\infty,5). Zapisz to wyrażenie w postaci ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10188 ⋅ Poprawnie: 287/491 [58%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności |x-7| \leqslant 4 jest zbiór liczb postaci:
Odpowiedzi:
A. (p,q\rangle B. (-\infty,q\rangle
C. \langle p,q\rangle D. \langle p,+\infty)
E. (-\infty,p\rangle \cup \langle q,+\infty) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10397 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których zbiór rozwiązań nierówności 3x+m-9\lessdot 0 zawiera się w przedziale liczbowym (-\infty, 1). Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10404 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} -x-my=-1 \\ 4y+4x=4 \end{cases} jest nieoznaczony.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20005 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Rozwiąż równanie \left|a-\left|x-b\right|\right|=c .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=8
b=-7
c=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20039 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż nierówność \frac{|x-8\sqrt{3}|}{8\sqrt{3}-x}+\sqrt[7]{625\cdot(-125)}\geqslant x+5-7\sqrt{3} .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20936 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz wartości parametru k\in \mathbb{R}, dla których punkt przecięcia prostych \begin{cases} 2x-4y=k+a \\ x-y=k-a \end{cases}

należy do trzeciej ćwiartki układu współrzędnych i nie leży na osiach Ox i Oy.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=-8
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Ile liczb całkowitych z przedziału \langle -20,20\rangle należy do tego rozwiązania?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-21139 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie \left|\frac{1}{2}x-1\right|=\frac{\frac{17}{2}-m}{3} ma tylko rozwiązania nieujemne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30838 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-\frac{2}{5}x+m-13 oraz g(x)=2x-m+1 przecinają się w punkcie należącym do wykresu funkcji określonej wzorem h(x)=-2-2|x+2|?

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Dla większej z wartości parametru m wyznaczonych w poprzednich punktach wyznacz punkt P=(x_P, y_P), w którym przecinają się wykresy tych funkcji.

Podaj współrzedne tego punktu.

Odpowiedzi:
x_P= (wpisz liczbę zapisaną dziesiętnie)
y_P= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm