Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11581 ⋅ Poprawnie: 116/202 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przedział liczb \langle -13,13\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| \geqslant 13 B. |x|\leqslant 13
C. |x| > 13 D. |x| \lessdot 13
Zadanie 2.  1 pkt ⋅ Numer: pr-10389 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość na osi liczbowej liczb x^2+11x+3 i (x+6)^2, gdzie x\in(-3,+\infty). Zapisz wynik w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\frac{17}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (-\infty, p\rangle\cup \langle q,+\infty)
C. (-\infty, q\rangle D. (-\infty, p)\cup (q,+\infty)
E. (p,q) F. \langle p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pr-10504 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie kx-k^2+225=15x o niewiadomej x jest tożsamościowe.

Podaj najmniejsze i największe możliwe k.

Odpowiedzi:
k_{min}= (wpisz liczbę zapisaną dziesiętnie)
k_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10401 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Układ równań \begin{cases} x-y=8 \\ \left(m^2-137\right)x-56=7y \end{cases} jest nieoznaczony.

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20903 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Zapisz wyrażenie \sqrt{36+18\sqrt{3}}-\sqrt{12+6\sqrt{3}} w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20918 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność \sqrt{(x-2a)^2+4x+4-8a}\geqslant 11-\sqrt{(2a-x)^2-6x+9+12a} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj iloczyn wszystkich tych końców przedziałów, które są liczbami.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj sumę wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20323 ⋅ Poprawnie: 99/198 [50%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz liczbę m, dla której trzy proste k:y=x+1, l:y=2x oraz n:2y=-8x+m przecinają się w jednym punkcie.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20932 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru p\in\mathbb{R}, dla których równanie |x-2|=p+\frac{25}{3} ma dokładnie dwa rozwiązania dodatnie.

Podaj najmniejsze możliwe p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30830 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj ilość rozwiązań równania \left|2^\big{}|x+1|-|2-x|\right|=1-m w zależności od wartości parametru m\in\mathbb{R}.

Podaj tę wartość parametru m, dla której równanie to ma dokładnie trzy rozwiązania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to jest sprzeczne. Rozwiązanie zapisz w postaci przedziału liczbowego.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Przedział liczbowy (p,q) jest zbiorem tych wszystkich wartości parametru m, dla których równanie to ma cztery rozwiązania.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm