Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11710 ⋅ Poprawnie: 25/31 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie |-7+2x|+|-3x+12|, gdzie x\in(-\infty,2), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10387 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Zapisz wyrażenie |x+3|-|x+10|, gdzie x\in(-3,+\infty) w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\sqrt{3}-1\right| \leqslant 4 jest zbiór postaci:
Odpowiedzi:
A. (p,q) B. (-\infty, p\rangle\cup \langle q,+\infty)
C. (-\infty, p)\cup (q,+\infty) D. (-\infty, q\rangle
E. \langle p,+\infty) F. \langle p,q\rangle
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10492 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności -2x+5m-19\lessdot 0 jest przedziałem (3,+\infty).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10407 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} -3x+y-2=0\\ y=(2m-22)x+5 \end{cases} nie ma rozwiązania.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20009 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż równanie \left|\left|x+a\right|-\frac{b}{2}\right|=c .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=6
b=8
c=6
Odpowiedź:
_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20914 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność |-19-6x|\lessdot 1\lessdot 2x+9 . Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przeddziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z końców liczbowych tych przeddziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20971 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wykresy funkcji liniowych f(x)=-0,4x+m-\frac{66}{5} oraz g(x)=2x-m-4 przecinają się w punkcie, który należy do wykresu funkcji określonej wzorem h(x)=1-2|x-5|. Wyznacz parametr m.

Podaj najmniejszą i największą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj współrzędne tego punktu dla największej możliwej wartości m.
Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20927 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których dziedziną funkcji określonej wzorem f(x)=\sqrt{\left(|2m+9|-1\right)x+3} jest zbiór \mathbb{R}.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30834 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-5x+2m+25 i g(x)=3x-6m-31 przecinają się w punkcie o współrzednych (x,y) takim, że |x-10|-|2-y|\leqslant 1. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm