Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x+2||+4, gdzie x\in(2,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10389 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość na osi liczbowej liczb x^2+11x+3 i (x+6)^2, gdzie x\in(-3,+\infty). Zapisz wynik w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+3| \lessdot 21.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pr-10411 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (m+8)x+5=2x-m o niewiadomej x jest sprzeczne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10394 ⋅ Poprawnie: 48/33 [145%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie (k+11)x-3=2x-k-11 o niewiadomej x jest sprzeczne.

Podaj najmniejsze i największe możliwe k.

Odpowiedzi:
k_{min}= (wpisz liczbę całkowitą)
k_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20903 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Zapisz wyrażenie \sqrt{36+18\sqrt{3}}-\sqrt{7+4\sqrt{3}} w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20920 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz a, tak aby równanie (2-a+m)x=3+x było sprzeczne.
Dane
m=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20968 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przeprowadź dyskusję rozwiązalności układu równań w zależności od parametru a: \begin{cases} 2x+3y=-7 \\ 4x+(a+1)y=2a-18 \\ \end{cases} .

Podaj wartość parametru a, dla której układ ten jest sprzeczny lub nieoznaczony.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Jeśli układ jest oznaczony, to jego rozwiązaniem jest para liczby postaci \left(\frac{a-20}{2a-4},\frac{ma+n}{a+k}\right), gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-21141 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie |3x+2|-\frac{4m+29}{2}=|6x+4| ma dokładnie dwa rozwiązania ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30834 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-5x+2m+26 i g(x)=3x-6m-30 przecinają się w punkcie o współrzednych (x,y) takim, że |x-7|-|12-y|\leqslant 1. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm