Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10181  
Podpunkt 1.1 (1 pkt)
 » Jeżeli x\in(-\infty,0), to wyrażenie ||x|+6| jest równe:
Odpowiedzi:
A. x-6 B. -x+6
C. \left|-x-6\right| D. x+6
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10386  
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie 2x-\left|3-|x-2|\right|-4, gdzie x\in(6,+\infty) w postaci mx+n, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-11595  
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\sqrt{3}-2\right| \leqslant 4 jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, q\rangle
C. \langle p,q\rangle D. (p,q)
E. (-\infty, p)\cup (q,+\infty) F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10493  
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności 7x-2(m+8)\geqslant x+11 jest przedziałem \langle 2,+\infty).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10407  
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} -3x+y-2=0\\ y=(2m+12)x+5 \end{cases} nie ma rozwiązania.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21110  
Podpunkt 6.1 (1 pkt)
 Rozwiąż nierówność \left||2x-9|-7\right|\leqslant 6 . Rozwiązaniem tej nierówności jest zbiór [a,b]\cup[c,d], gdzie a\lessdot c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby c i d.
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20048  
Podpunkt 7.1 (1 pkt)
 « Rozwiąż równanie |x-3+a|-2|x+a|=1.

Podaj najmniejsze z rozwiązań.

Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20922  
Podpunkt 8.1 (1 pkt)
 « Rozwiąż układ równań: \begin{cases} -3\sqrt{6}x+4(\sqrt{2}-1)y=2\\ -3(\sqrt{6}-\sqrt{3})x-4\sqrt{2}y=1 \end{cases} .

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20935  
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie |3+x|=2m-6 ma tylko rozwiązania ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30019  
Podpunkt 10.1 (2 pkt)
 « Rozwiązanie układu \begin{cases} x+y=\frac{m}{a} \\ 3x-2y=\frac{2m}{a}-1 \end{cases} spełnia warunki: |x|\leqslant \frac{1}{2} i |y|\leqslant \frac{1}{2}. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=8
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm