Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11582 ⋅ Poprawnie: 106/161 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+10| \lessdot 21.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10047 ⋅ Poprawnie: 242/385 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Suma przedziałów (-\infty, 1\rangle\cup \langle 11,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-6\right| \leqslant 5 B. \left|x-6\right| \lessdot 5
C. \left|x-6\right| > 5 D. \left|x-6\right| \geqslant 5
Zadanie 4.  1 pkt ⋅ Numer: pr-10493 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności 7x-2(m+1)\geqslant x+11 jest przedziałem \langle 2,+\infty).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10405 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} 2x+2y=-1 \\ -x+(a+4)y=\frac{1}{2} \end{cases} jest nieoznaczony.

Wyznacz a.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21100 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie |13\sqrt{3}-x|-\frac{|x-13\sqrt{3}|+2\sqrt{3}}{2}=\frac{2|-x+13\sqrt{3}|}{3}-1-\sqrt{3} . Najmniejsze z rozwiązań zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b, c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20048 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż równanie |x-3+a|-2|x+a|=1.

Podaj najmniejsze z rozwiązań.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20050 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Zbadaj rozwiązalność układu równań z parametrem:
\begin{cases} 2x-3y=8 \\ x-(m+a)y=2 \end{cases}

Podaj najmniejszą możliwą wartość m, dla której układ jest sprzeczny.

Dane
a=-5
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz te wartości parametru m, dla których rozwiązaniem układu jest para liczb (x,y) taka, że y > 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20939 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} -2x+3y=4k-49 \\ 3x-5y=-6k+75 \end{cases} jest para liczb (x,y) spełniająca warunek |x\cdot y|\geqslant 10. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-30837 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-\frac{1}{2}x-\frac{m+4}{4}-\frac{9}{2} oraz g(x)=\frac{3}{2}x+\frac{2m+3}{2}-\frac{21}{2} przecinają się w punkcie należącym do wykresu funkcji określonej wzorem h(x)=\frac{1}{2}x-\frac{7}{2}?

Podaj najmiejszą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm