Dla jakich wartości parametru m wykresy funkcji liniowych
f(x)=-\frac{1}{2}x-\frac{2m+4}{4} oraz
g(x)=\frac{3}{2}x+\frac{4m+3}{2} przecinają sie w punkcie,
który należy do wykresu funkcji h(x)=\frac{1}{2}x+4?
Podaj najmmniejsze możliwe m.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20933 ⋅ Poprawnie: 0/0
Wyznacz te wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań
\begin{cases}
2x-3y=3-|7-k| \\ -3x+5y=|3k-21|-5
\end{cases}
jest para liczb rzeczywistych o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (2 pkt)
Zbiór tych wszystkich wartości parametru k, które spełniają warunki
zadania ma postać (p,q)-\{r\}.
Podaj liczbę r.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat