Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla
których dziedziną funkcji określonej wzorem
f(x)=\sqrt{6-2m+(|5-2m|+3)x} jest zbiór
\langle -1,+\infty).
Podaj najmniejszą możliwą wartość parametru m.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość parametru m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30834 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=-5x+2m-21 i
g(x)=3x-6m-13
przecinają się w punkcie o współrzednych (x,y) takim, że
|x+2|-|8-y|\leqslant 1. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat