Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10181 ⋅ Poprawnie: 164/348 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Jeżeli x\in(-\infty,0), to wyrażenie ||x|+4| jest równe:
Odpowiedzi:
A. x+4 B. \left|-x-4\right|
C. -x-4 D. -x+4
Zadanie 2.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Równanie |x-7|+5=0:
Odpowiedzi:
A. ma więcej niż dwa rozwiązania B. nie ma rozwiązań
C. ma dokładnie jedno rozwiązanie D. ma dokładnie dwa rozwiązania
Zadanie 3.  1 pkt ⋅ Numer: pr-11592 ⋅ Poprawnie: 57/139 [41%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\frac{38}{5}\right|-8,4\leqslant 0 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. \langle p,+\infty)
C. (-\infty, q\rangle D. (-\infty, p)\cup (q,+\infty)
E. (p,q) F. (-\infty, p\rangle\cup \langle q,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pr-10396 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności 5x-m+\frac{23}{2}\lessdot 0 jest przedziałem (-\infty, 4).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10402 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Układ równań \begin{cases} y=-(a-2)x+a \\ y=\frac{b+3}{3}x-2 \end{cases} , gdzie a,b\in\mathbb{Z}, nie ma rozwiązania.

Ile liczb całkowitych a z przedziału [-4,0] spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-21102 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż równanie \frac{3|-4-x|-4}{2}-\frac{6-|x+4|}{5}=7\frac{3}{5}-|4+x|.

Podaj najmniejsze i największe rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20046 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie \sqrt{x^2+2ax+a^2}-2|x+a+4|+x+a+8=0 .

Podaj najmniejsze z rozwiązań.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Spośród wszystkich pozostałych rozwiązań podaj najmniejsze.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20921 ⋅ Poprawnie: 37/59 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż układ równań: \begin{cases} 3\sqrt{3}x+8y=\sqrt{6}\\ 3\sqrt{2}x-4\sqrt{6}y=-3 \end{cases} .

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-21138 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których dziedziną funkcji określonej wzorem f(x)=\sqrt{-8-2m+(|-2-2m|+3)x} jest zbiór \langle -1,+\infty).

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30836 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} rozwiązaniem układu równań \begin{cases} (m+2)x+y=-1 \\ -x+(m+4)y=-5m-18 \end{cases} jest para liczb (x,y) taka, że |x|=|y+5|. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm