Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10193 ⋅ Poprawnie: 361/521 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przedział liczb \langle -12,12\rangle jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x| \lessdot 12 B. |x| \geqslant 12
C. |x|\leqslant 12 D. |x| > 12
Zadanie 2.  1 pkt ⋅ Numer: pr-10516 ⋅ Poprawnie: 10/13 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Rozwiąż równanie |x-9|=-|(x-13)(x-9)|.

Podaj najmniejsze i największe rozwiązanie tego równania.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}+4\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup (q,+\infty) B. (p,q)
C. (-\infty, q\rangle D. \langle p,+\infty)
E. (-\infty, p\rangle\cup \langle q,+\infty) F. \langle p,q\rangle
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10504 ⋅ Poprawnie: 18/24 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie kx-k^2+169=13x o niewiadomej x jest tożsamościowe.

Podaj najmniejsze i największe możliwe k.

Odpowiedzi:
k_{min}= (wpisz liczbę zapisaną dziesiętnie)
k_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10404 ⋅ Poprawnie: 10/11 [90%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} x-my=3 \\ -4y+2x=6 \end{cases} jest nieoznaczony.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21110 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż nierówność \left||2x+13|-7\right|\leqslant 6 . Rozwiązaniem tej nierówności jest zbiór [a,b]\cup[c,d], gdzie a\lessdot c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby c i d.
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20955 ⋅ Poprawnie: 33/39 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie \left|-\frac{7}{4}-x\right|=x+\frac{11}{4} .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20324 ⋅ Poprawnie: 59/161 [36%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz liczbę m, dla której trzy proste k:y=2x-3, l:y=-x oraz n:y=-3x+m przecinają się w jednym punkcie.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20934 ⋅ Poprawnie: 1/6 [16%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie |5-2x|=\frac{3m+\frac{11}{2}}{2} ma dwa rozwiązania o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30832 ⋅ Poprawnie: 5/5 [100%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dla jakich wartości parametru k rowiązaniem układu równań \begin{cases} x+y-\frac{k}{a}+1=0 \\ 2x-y-\frac{k}{a}-4=0 \end{cases} jest para liczb będąca współrzędnymi punktu należącego do prostokąta o wierzchołkach A=(6,0), B=(3,0), C=(3, -2) i D=(6,-2)?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm