Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10197 ⋅ Poprawnie: 173/207 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż liczbę, która spełnia równanie:
\left|8x-4 \right| = 5-16x
Odpowiedzi:
A. \frac{1}{8} B. -\frac{3}{16}
C. -\frac{1}{8} D. \frac{1}{16}
Zadanie 2.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Równanie |x-4|-3=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma dokładnie jedno rozwiązanie
C. ma więcej niż dwa rozwiązania D. ma dokładnie dwa rozwiązania
Zadanie 3.  1 pkt ⋅ Numer: pr-11594 ⋅ Poprawnie: 12/20 [60%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x-\sqrt{2}+6\right| > 1 jest zbiór postaci:
Odpowiedzi:
A. \langle p,q\rangle B. (-\infty, p\rangle\cup \langle q,+\infty)
C. (p,q) D. (-\infty, q\rangle
E. \langle p,+\infty) F. (-\infty, p)\cup (q,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10411 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (m+4)x+1=2x-m o niewiadomej x jest sprzeczne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10395 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie 2x+4=|m+12|(x+3) o niewiadomej x ma conajmniej jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20951 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż nierówność \left|\left|-2-x\right|-4\right|\lessdot 2 . Rozwiązaniem tej nierówności jest zbiór (a,b)\cup(c,d), gdzie a\lessdot c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby c i d.
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20920 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz a, tak aby równanie (2-a+m)x=3+x było sprzeczne.
Dane
m=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  3 pkt ⋅ Numer: pr-20967 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przeprowadź dyskusję rozwiązalności układu równań w zależności od wartości parametru a: \begin{cases} 3ax+9ay=15 \\ 5x+3ay=5a-10 \end{cases} .

Podaj wartość parametru a, dla której układ ten jest sprzeczny.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj wartość parametru a, dla której układ ten jest nieoznaczony.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Jeśli układ jest oznaczony, to jego rozwiązaniem jest para liczb (x, y).

Podaj liczbę x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20049 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Zaznacz w układzie współrzednych zbiór, którego współrzędne spełniają równanie |x+3-a|+|y-1|=1.

Prosta x=m przecina ten zbiór w jednym punkcie. Podaj sumę wszystkich możliwych wartości m.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Dla jakich wartości parametru m prosta y=m przecina ten zbiór w dwóch punktach?

Rozwiązanie zapisz w postaci przedziału. Podaj sumę kwadratów końców tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30834 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-5x+2m+22 i g(x)=3x-6m-50 przecinają się w punkcie o współrzednych (x,y) takim, że |x-7|-|4-y|\leqslant 1. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm