Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dla każdej liczby x spełniającej warunek -3 \lessdot x \lessdot 0, wyrażenie \frac{|x+3|-x+3}{x} jest równe \frac{mx+n}{x}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10098 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Na rysunku przedstawiony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność |2x-8|\leqslant 10.

Wyznacz liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pr-11716 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Rozwiązaniem nierówności \left|x+\sqrt{3}+13\right| \lessdot 4 jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty) B. \langle p,q\rangle
C. (-\infty, p\rangle\cup \langle q,+\infty) D. (-\infty, p)\cup (q,+\infty)
E. (-\infty, q\rangle F. (p,q)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10396 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności 5x-m+11\lessdot 0 jest przedziałem (-\infty, 4).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10403 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} -5x+8y=5 \\ (3m-3)x-16y=10 \end{cases} jest sprzeczny.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20951 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż nierówność \left|\left|7-x\right|-4\right|\lessdot 2 . Rozwiązaniem tej nierówności jest zbiór (a,b)\cup(c,d), gdzie a\lessdot c.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby c i d.
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20036 ⋅ Poprawnie: 4/20 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność |2x-a|-\left|x-\frac{a}{2}+\frac{13}{2}\right|\geqslant -2x+a-3 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20973 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których wykresy funkcji liniowych f(x)=2x-m oraz g(x)=-4x+5m+36 przecinają się w punkcie o współrzędnych (x,y) takim, że |y|\geqslant |x|+5.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20927 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których dziedziną funkcji określonej wzorem f(x)=\sqrt{\left(|2m-6|-1\right)x+3} jest zbiór \mathbb{R}.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30019 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiązanie układu \begin{cases} x+y=\frac{m}{a} \\ 3x-2y=\frac{2m}{a}-1 \end{cases} spełnia warunki: |x|\leqslant \frac{1}{2} i |y|\leqslant \frac{1}{2}. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm