Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{9}x-3 \right| = -\frac{4}{9}x-2
Odpowiedzi:
A. -\frac{45}{2}
B. \frac{45}{2}
C. 15
D. -15
Zadanie 2. 1 pkt ⋅ Numer: pr-10387 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Zapisz wyrażenie
|x+3|-|x+10| , gdzie
x\in(-3,+\infty) w postaci
mx+n , gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pr-10049 ⋅ Poprawnie: 61/108 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Ile liczb całkowitych należy do dziedziny równania
\frac{x^2-6}{\sqrt{8-x}}+\sqrt{12-|x|}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10297 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Równanie o niewiadomej
x :
\left(4-k^2\right)x=k^2+10k+24
,
ma nieskończenie wiele rozwiązań.
Wyznacz liczbę k .
Odpowiedź:
k=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10405 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Układ równań
\begin{cases}
8x-y=6 \\
-4x+(a+4)y=-3
\end{cases}
jest nieoznaczony.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20005 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Rozwiąż równanie
\left|a-\left|x-b\right|\right|=c
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=8
b=-1
c=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20040 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż nierówność
\left|
\left|
\left|x+7\right|-1
\right|-1
\right|\leqslant 1 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców tych
przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największy z końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20922 ⋅ Poprawnie: 0/6 [0%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż układ równań:
\begin{cases}
-\sqrt{6}x+3(\sqrt{2}-1)y=2\\
-(\sqrt{6}-\sqrt{3})x-3\sqrt{2}y=1
\end{cases}
.
Podaj x .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20927 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} , dla
których dziedziną funkcji określonej wzorem
f(x)=\sqrt{\left(|2m+10|-1\right)x+3} jest zbiór
\mathbb{R} .
Podaj najmniejszą możliwą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30830 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Zbadaj ilość rozwiązań równania
\left|2^\big{}|x+1|-|2-x|\right|=-4-m w zależności od wartości parametru
m\in\mathbb{R} .
Podaj tę wartość parametru m , dla której równanie to ma
dokładnie trzy rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
równanie to jest sprzeczne. Rozwiązanie zapisz w postaci przedziału liczbowego.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
Przedział liczbowy
(p,q) jest zbiorem tych wszystkich wartości
parametru
m , dla których równanie to ma cztery rozwiązania.
Podaj liczby p i q .
Odpowiedzi:
Rozwiąż