Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
wykresy funkcji liniowych f(x)=2x-m+7 oraz
g(x)=-4x+5m+1 przecinają się w punkcie o współrzędnych
(x,y) takim, że
|y|\geqslant |x|+5.
Podaj najmniejszą możliwą wartość parametru m.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20937 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=-\frac{1}{2}x-\frac{m+6}{4}+0 oraz
g(x)=\frac{3}{2}x+\frac{2m+7}{2}+4 przecinają się w punkcie
należącym do wykresu funkcji określonej wzorem
h(x)=\frac{1}{2}x+6?
Podaj najmiejszą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.4 pkt ⋅ Numer: pr-30835 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=2x-m i
g(x)=-4x+5m+12
przecinają się w punkcie o współrzednych (x,y) takim, że
|y-2|+|x+2|\geqslant 5. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat