Wyznacz zbiór tych wartości parametru m, dla których
zbiór rozwiązań nierówności 3x+m+4\lessdot 0
zawiera się w przedziale liczbowym (-\infty, 1).
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pr-10400 ⋅ Poprawnie: 0/0
Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R},
dla których równanie \left|\frac{1}{2}x-1\right|=\frac{\frac{1}{2}-m}{3}
ma tylko rozwiązania nieujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30836 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
rozwiązaniem układu równań
\begin{cases}
(m-1)x+y=-2 \\
-x+(m+1)y=-6m-4
\end{cases}
jest para liczb (x,y) taka, że
|x|=|y+6|. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat