Rozwiąż równanie
|9\sqrt{3}-x|-\frac{|x-9\sqrt{3}|+2\sqrt{3}}{2}=\frac{2|-x+9\sqrt{3}|}{3}-1-\sqrt{3}
.
Najmniejsze z rozwiązań zapisz w najprostszej postaci a+b\sqrt{c},
gdzie a,b, c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:
+\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-20048 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=-\frac{2}{5}x+m-\frac{44}{5} oraz
g(x)=2x-m-22 przecinają się w punkcie
należącym do wykresu funkcji określonej wzorem
h(x)=-5-2|x-6|?
Podaj najmniejszą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
Dla większej z wartości parametru m wyznaczonych w poprzednich
punktach wyznacz punkt P=(x_P, y_P), w którym przecinają
się wykresy tych funkcji.
Podaj współrzedne tego punktu.
Odpowiedzi:
x_P
=
(wpisz liczbę zapisaną dziesiętnie)
y_P
=
(wpisz liczbę zapisaną dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat