Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11557 ⋅ Poprawnie: 28/47 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wartość wyrażenia \sqrt{\left(1+\sqrt{23}\right)^2}-\sqrt{\left(1-\sqrt{23}\right)^2} jest równa 2\sqrt{\stackrel{\ }{.....}}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 260/407 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej x:
Odpowiedzi:
T/N : \sqrt{(x-4)^2}=|x-4| T/N : |-x|=x
Zadanie 3.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x-7| > 10
jest zbiór liczbowy postaci:
Odpowiedzi:
A. \langle p,q) B. \langle p,q\rangle
C. (p,q) D. (-\infty,p)\cup(q,+\infty)
E. (p,q\rangle F. (-\infty,p\rangle \cup \langle q,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Ta wartość parametru m, dla której równanie m^2x+4(1-x)+m^2=4m nie posiada rozwiązania, jest:
Odpowiedzi:
A. liczbą pierwszą B. liczbą podzielną przez 3
C. liczbą ujemną D. liczbą złożoną
Zadanie 5.  1 pkt ⋅ Numer: pr-10394 ⋅ Poprawnie: 48/33 [145%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie (k+3)x-3=2x-k-3 o niewiadomej x jest sprzeczne.

Podaj najmniejsze i największe możliwe k.

Odpowiedzi:
k_{min}= (wpisz liczbę całkowitą)
k_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20948 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie \frac{6|x-1|-\left(\left|-x+1\right|+4\sqrt{5}\right)}{3}-4=|x-1|-2\sqrt{5} . Najmniejsze z rozwiązań zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20035 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność |ax-2|+|ax+1|\geqslant 3ax-3.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców tych przedziałów, który jest liczbą.

Dane
a=-4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20973 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których wykresy funkcji liniowych f(x)=2x-m+1 oraz g(x)=-4x+5m+31 przecinają się w punkcie o współrzędnych (x,y) takim, że |y|\geqslant |x|+5.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20933 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie |2x+6|-x=m-6a ma dwa rozwiązania ujemne.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największy z wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30016 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Trzy nierówności \begin{cases} y\leqslant -x+8+2a \\ y\leqslant \frac{9}{5}x+\frac{12}{5}-\frac{4}{5}a \\ y\geqslant \frac{5}{9}x-\frac{4}{3}+\frac{4}{9}a \end{cases} opisują trójkąt o wierzchołkach, których współrzędne są całkowite.

Podaj sumę wszystkich sześciu współrzędnych wierzchołków tego trójkąta.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Trójkąt ten jest równoramienny o podstawie AB.

Oblicz długość wysokości opuszczonej na bok AB.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm