Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10180 ⋅ Poprawnie: 412/549 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dla każdej liczby x spełniającej warunek -8 \lessdot x \lessdot 0, wyrażenie \frac{|x+8|-x+8}{x} jest równe \frac{mx+n}{x}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11617 ⋅ Poprawnie: 19/29 [65%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Równanie o niewiadomej x postaci |x-a|=b ma dwa rozwiązania 7 i -3.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10192 ⋅ Poprawnie: 136/323 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą dodatnią spełniającą nierówność |x+10| \lessdot 21.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pr-10492 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności -2x+5m-\frac{33}{2}\lessdot 0 jest przedziałem (3,+\infty).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10401 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Układ równań \begin{cases} x-y=-4 \\ \left(m^2-163\right)x+24=6y \end{cases} jest nieoznaczony.

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-21113 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż nierówność \left|\left|x+10\right|-2\right|\lessdot 2 . Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20817 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Funkcja f określona jest wzorem f(x)=x+9. Posługując się wykresami odpowiednich funkcji rozwiąż nierówność |f(x)|\leqslant f(x+2).

Podaj najmniejszą liczbę spełniającą tę nierówność.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
 Dla jakich wartości parametru m wykres funkcji f przecina wykres funkcji liniowej h(x)=(1+3m)x+3 w punkcie P=(-9,0)?

Podaj najmniejsze możliwe m.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20922 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż układ równań: \begin{cases} -2\sqrt{6}x+4(\sqrt{2}-1)y=2\\ -2(\sqrt{6}-\sqrt{3})x-4\sqrt{2}y=1 \end{cases} .

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20031 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Funkcja f określona jest wzorem f(x)=|x+7|-|x-3|. Wyznacz miejsca zerowe funkcji f.

Podaj największe z miejsc zerowych.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Określ liczbę rozwiązań równania f(x)=m w zależności od wartości parametru m.

Podaj największe możliwe m, dla którego równanie to ma nieskończenie wiele rozwiązań.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30019 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiązanie układu \begin{cases} x+y=\frac{m}{a} \\ 3x-2y=\frac{2m}{a}-1 \end{cases} spełnia warunki: |x|\leqslant \frac{1}{2} i |y|\leqslant \frac{1}{2}. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=8
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm