Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20053
Podpunkt 8.1 (1 pkt)
« Dla jakich wartości parametru m proste
3x+(a-m)y=6(m-a+2) i
(m-a+3)x-(m+2-a)y-4=0 przecinają się w tym
samym punkcie leżącym na osi Ox?
Podaj najmniejszą możliwą wartość m.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20897
Podpunkt 9.1 (1 pkt)
« Dla jakich wartości parametru m równanie
|x-1|=m+2 ma dokładnie dwa rozwiązania o
przeciwnych znakach?
Ile całkowitych wartości m ze zbioru
(-10,10) spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30834
Podpunkt 10.1 (2 pkt)
Dla jakich wartości parametru m\in\mathbb{R}
wykresy funkcji liniowych określonych wzorami
f(x)=-5x+2m-29 i
g(x)=3x-6m+3
przecinają się w punkcie o współrzednych (x,y) takim, że
|x+1|-|3-y|\leqslant 1. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmiejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.