Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11616  
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left(\left|\sqrt{48}-3\sqrt{3}\right|-\left|\sqrt{12}-\sqrt{75}\right|+1\right)\cdot\left(1+2\sqrt{3}\right) .
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-11600  
Podpunkt 2.1 (1 pkt)
 Rozwiąż równanie |x-7|+|x-7|\cdot|x-8|=0.

Podaj najmniejsze i największe rozwiązanie tego równania.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10049  
Podpunkt 3.1 (1 pkt)
 « Ile liczb całkowitych należy do dziedziny równania \frac{x^2-6}{\sqrt{5-x}}+\sqrt{7-|x|}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10504  
Podpunkt 4.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których równanie kx-k^2+4=2x o niewiadomej x jest tożsamościowe.

Podaj najmniejsze i największe możliwe k.

Odpowiedzi:
k_{min}= (wpisz liczbę zapisaną dziesiętnie)
k_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10398  
Podpunkt 5.1 (1 pkt)
 » Układ równań \begin{cases} -5x-6y=41 \\ 6y+m^2-8=-5x \end{cases} nie jest układem równań sprzecznych.

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21105  
Podpunkt 6.1 (0.8 pkt)
 Rozwiąż równanie \left|5-\left|3x-20\right|\right|-2=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.8 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (0.4 pkt)
 Ile rozwiązań niecałkowitych ma to równanie?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20911  
Podpunkt 7.1 (0.4 pkt)
 Rozwiąż nierówność 2|3x-9|\geqslant 3x-6 .

Rozwiązanie tej nierówności ma postać:

Odpowiedzi:
A. (p_1,q_1)\cup(p_2,q_2) B. (-\infty, p)
C. (-\infty, p\rangle\cup\langle q,+\infty) D. (p,+\infty)
E. (p_1,q_1)\cup(p_2,+\infty) F. (-\infty, p)\cup(q,+\infty)
Podpunkt 7.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20968  
Podpunkt 8.1 (1 pkt)
 Przeprowadź dyskusję rozwiązalności układu równań w zależności od parametru a: \begin{cases} 2x+3y=11 \\ 4x+(a-3)y=2a+10 \\ \end{cases} .

Podaj wartość parametru a, dla której układ ten jest sprzeczny lub nieoznaczony.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Jeśli układ jest oznaczony, to jego rozwiązaniem jest para liczby postaci \left(\frac{a-20}{2a-4},\frac{ma+n}{a+k}\right), gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21141  
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie |3x+2|-\frac{4m-27}{2}=|6x+4| ma dokładnie dwa rozwiązania ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30832  
Podpunkt 10.1 (2 pkt)
 « Dla jakich wartości parametru k rowiązaniem układu równań \begin{cases} x+y-\frac{k}{a}+1=0 \\ 2x-y-\frac{k}{a}-4=0 \end{cases} jest para liczb będąca współrzędnymi punktu należącego do prostokąta o wierzchołkach A=(6,0), B=(3,0), C=(3, -2) i D=(6,-2)?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm