Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11615 ⋅ Poprawnie: 100/184 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \left|\left(\sqrt{20}-\sqrt{19}\right)\left(\sqrt{20}+\sqrt{19}\right)\right|-5\left(\sqrt{28}-2\left|\sqrt{7}-1\right|\right)
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11577 ⋅ Poprawnie: 58/70 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Równanie |x-4|-1=0:
Odpowiedzi:
A. nie ma rozwiązań B. ma więcej niż dwa rozwiązania
C. ma dokładnie jedno rozwiązanie D. ma dokładnie dwa rozwiązania
Zadanie 3.  1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Rozwiązaniem nierówności \left|x+\sqrt{3}+7\right| \leqslant 4 jest zbiór postaci:
Odpowiedzi:
A. (p,q) B. (-\infty, p)\cup (q,+\infty)
C. (-\infty, p\rangle\cup \langle q,+\infty) D. \langle p,q\rangle
E. (-\infty, q\rangle F. \langle p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10297 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie o niewiadomej x: \left(16-k^2\right)x=k^2+13k-48 , ma nieskończenie wiele rozwiązań.

Wyznacz liczbę k.

Odpowiedź:
k= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10405 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} 4x+4y=2 \\ -2x+(a+4)y=- \end{cases} jest nieoznaczony.

Wyznacz a.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21105 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (0.8 pkt)
 Rozwiąż równanie \left|5-\left|3x+7\right|\right|-2=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.8 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (0.4 pkt)
 Ile rozwiązań niecałkowitych ma to równanie?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20919 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Rozwiąż nierówność |2-2x+2a|-4\leqslant |11+3x-3a| .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców tych przedziałów, który jest liczbą.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Ile liczb całkowitych z przedziału \langle -10,10\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20051 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Zbadaj rozwiązalność układu równań z parametrem:
\begin{cases} x-amy=3 \\ amx-y=1+2am \end{cases}

Podaj wartość m, dla której układ jest sprzeczny.

Dane
a=5
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Dla jakiej wartości parametru m liczba \frac{x}{y}, gdzie para liczb (x,y) jest rozwiązaniem tego układu, jest równa 1?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  3 pkt ⋅ Numer: pr-20925 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane jest równanie |m+7|\cdot x=1+(m+9)x o niewiadomej x.

Wyznacz wartość parametru m, dla której równanie to jest sprzeczne.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj ilość tych wartości m, dla których rórnanie to jest tożsamościowe.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę zapisaną dziesiętnie)
max= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30836 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} rozwiązaniem układu równań \begin{cases} (m+1)x+y=5 \\ -x+(m+3)y=m+5 \end{cases} jest para liczb (x,y) taka, że |x|=|y-1|. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm