Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11711 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie 2x-|3-|x-1||-2, gdzie x\in(5,+\infty), w postaci ax+b, gdzie a,b\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11707 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż równanie \frac{\left|7-x\right|-\frac{53}{10}}{2}=8.

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Rozwiąż równanie \frac{\left|7-x\right|-\frac{53}{10}}{2}=8.

Podaj największe z rozwiązań tego równania.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10194 ⋅ Poprawnie: 277/401 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Suma przedziałów (-\infty, 4\rangle\cup \langle 10,+\infty)

jest zbiorem rozwiązań nierówności:

Odpowiedzi:
A. \left|x-7\right| > 3 B. \left|x-7\right| \leqslant 3
C. \left|x-7\right| \geqslant 3 D. \left|x-7\right| \lessdot 3
Zadanie 4.  1 pkt ⋅ Numer: pr-10101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Ta wartość parametru m, dla której równanie m^2x+4(1-x)+m^2=4m nie posiada rozwiązania, jest:
Odpowiedzi:
A. liczbą złożoną B. liczbą podzielną przez 3
C. liczbą ujemną D. liczbą pierwszą
Zadanie 5.  1 pkt ⋅ Numer: pr-10403 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Układ równań \begin{cases} -4x+5y=-1 \\ (3m+3)x-20y=-4 \end{cases} jest sprzeczny.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20431 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz najmniejszą liczbę spełniającą nierówność \left|\frac{x-\sqrt{a}}{1-\sqrt{a}}\right| \leqslant \sqrt{a} .
Dane
a=4
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz największą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20039 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż nierówność \frac{|x-5\sqrt{3}|}{5\sqrt{3}-x}+\sqrt[7]{625\cdot(-125)}\geqslant x+5-4\sqrt{3} .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20975 ⋅ Poprawnie: 45/33 [136%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} 2x-3y=3-|-1-k| \\ -3x+5y=|3k+3|-5 \end{cases} jest para liczb o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20932 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru p\in\mathbb{R}, dla których równanie |x-2|=p+\frac{4}{3} ma dokładnie dwa rozwiązania dodatnie.

Podaj najmniejsze możliwe p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30834 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-5x+2m-10 i g(x)=3x-6m-2 przecinają się w punkcie o współrzednych (x,y) takim, że |x-1|-|10-y|\leqslant 1. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm