Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10199 ⋅ Poprawnie: 157/208 [75%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wskaż liczbę, która spełnia równanie:
\left|\frac{2}{7}x-3 \right| = -\frac{4}{7}x-2
Odpowiedzi:
A. \frac{35}{2}
B. \frac{35}{3}
C. -\frac{35}{2}
D. -\frac{35}{3}
Zadanie 2. 1 pkt ⋅ Numer: pp-10184 ⋅ Poprawnie: 261/407 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oceń, które z poniższych równości są prawdziwe dla każdej liczby rzeczywistej
x :
Odpowiedzi:
T/N : |x-6|=|-x-6|
T/N : \sqrt{(x+4)^2}=x+4
Zadanie 3. 1 pkt ⋅ Numer: pr-11595 ⋅ Poprawnie: 10/21 [47%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Rozwiązaniem nierówności
\left|x+\sqrt{3}-4\right| \leqslant 4
jest zbiór postaci:
Odpowiedzi:
A. \langle p,+\infty)
B. (-\infty, p\rangle\cup \langle q,+\infty)
C. (-\infty, q\rangle
D. (p,q)
E. \langle p,q\rangle
F. (-\infty, p)\cup (q,+\infty)
Podpunkt 3.2 (0.8 pkt)
Zapisz rozwiązanie tej nierówności w postaci sumy przedziałów. Podaj najmniejszym z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pr-10493 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zbiór rozwiązań nierówności
7x-2(m-9)\geqslant x+11
jest przedziałem
\langle 2,+\infty) .
Podaj wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10395 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz wszystkie wartości parametru
k\in\mathbb{R} , dla których
równanie
2x+10=|m+11|(x+6) o niewiadomej
x ma conajmniej jedno rozwiązanie. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-21119 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie
|9x-78|-6=2\sqrt{9x^2-156x+676}
.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20041 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż nierówność
|2x+8|+|x+1| > 5
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 3 pkt ⋅ Numer: pr-20966 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Przeprowadź dyskusję rozwiązalności układu równań w zależności od wartości parametru
a :
\begin{cases}
2ax+2y=-1 \\
8x+2ay=2a+6
\end{cases}
.
Podaj wartość parametru a , dla której
układ ten jest sprzeczny.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj wartość parametru
a , dla której
układ ten jest nieoznaczony.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Jeśli układ jest oznaczony, to jego rozwiązaniem jest para liczb postaci
\left(\frac{k}{ma+n},y\right) , gdzie
k,m,n,\in\mathbb{Z} i
n< 0 .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20897 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dla jakich wartości parametru
m równanie
|x-1|=m+2 ma dokładnie dwa rozwiązania o
przeciwnych znakach?
Ile całkowitych wartości m ze zbioru
(-10,10) spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30016 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Trzy nierówności
\begin{cases}
y\leqslant -x+8+2a \\
y\leqslant \frac{9}{5}x+\frac{12}{5}-\frac{4}{5}a \\
y\geqslant \frac{5}{9}x-\frac{4}{3}+\frac{4}{9}a
\end{cases}
opisują trójkąt o wierzchołkach, których współrzędne są całkowite.
Podaj sumę wszystkich sześciu współrzędnych wierzchołków tego trójkąta.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Trójkąt ten jest równoramienny o podstawie
AB .
Oblicz długość wysokości opuszczonej na bok AB .
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż