Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-11-rown-nier-z-war-i-par-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11559 ⋅ Poprawnie: 167/220 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Równanie |x-3|+1=0:
Odpowiedzi:
A. ma dokładnie jedno rozwiązanie B. ma więcej niż dwa rozwiązania
C. nie ma rozwiązań D. ma dokładnie dwa rozwiązania
Zadanie 2.  1 pkt ⋅ Numer: pr-11601 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dane jest wyrażenie \sqrt{4x^2-36x+81}-2\sqrt{(x-3)^2}+3|x-1|, gdzie x\in(-\infty,1). Zapisz to wyrażenie w postaci ax+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10190 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Rozwiązaniem nierówności
|x+1| > 2
jest zbiór liczbowy postaci:
Odpowiedzi:
A. (-\infty,p\rangle \cup \langle q,+\infty) B. (p,q)
C. \langle p,q) D. (-\infty,p)\cup(q,+\infty)
E. \langle p,q\rangle F. (p,q\rangle
Podpunkt 3.2 (0.8 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10493 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór rozwiązań nierówności 7x-2(m-11)\geqslant x+11 jest przedziałem \langle 2,+\infty).

Podaj wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10406 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest układ równań \begin{cases} x-3y=-1 \\ mx+y=-6 \end{cases} .

Wyznacz wartość parametru m, dla której układ ten nie jest układem równań oznaczonych.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20906 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż równanie \sqrt{x^2+4x+4}-|-6-3x|=-8 .

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20765 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż równanie: |a-x|+a=x.

Podaj najmniejszą liczbę spełniającą to równanie. Jeśli taka liczba nie istnieje wpisz 0.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największą liczbę spełniającą to równanie. Jeśli taka liczba nie istnieje wpisz 0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20970 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dla jakich wartości parametru m wykresy funkcji liniowych f(x)=-\frac{1}{2}x-\frac{2m+1}{4} oraz g(x)=\frac{3}{2}x+\frac{4m-3}{2} przecinają sie w punkcie, który należy do wykresu funkcji h(x)=\frac{1}{2}x+4?

Podaj najmmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20931 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których równanie x-2|x+2|=\frac{9-2m}{2} ma tylko rozwiązania niedodatnie.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejszą możliwą wartość parametru m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30832 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dla jakich wartości parametru k rowiązaniem układu równań \begin{cases} x+y-\frac{k}{a}+1=0 \\ 2x-y-\frac{k}{a}-4=0 \end{cases} jest para liczb będąca współrzędnymi punktu należącego do prostokąta o wierzchołkach A=(6,0), B=(3,0), C=(3, -2) i D=(6,-2)?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm