Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (-6,12) i (-1,2).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-3(x+7)^2+8 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. (-\infty,p) D. (-\infty,p\rangle
E. (p,q) F. \langle p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 203/352 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa g spełnia warunek g(-10)=g(11). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x+m=0.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(1+3x)(x-3).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/609 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
« Funkcja f, której wykres pokazano na rysunku zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right) B. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
C. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right) D. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)
Zadanie 6.  1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prosta o równaniu y+2m=0 ma dokładnie jeden punkt wspólny z wykresem funkcji kwadratowej określonej wzorem f(x)=-\frac{1}{2}x^2+10x-8.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -10, -6\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+7\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 85 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 378 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (-8-9x)(x+4)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm