Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (-4\sqrt{2},160\sqrt{7}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 173/317 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-2(x-2)^2+5.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x+1)-1.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 199/271 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=6(x-8)^2-4 B. y=(x+4)^2-1
C. y=-1(x+5)^2-9 D. y=(8-x)^2+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/129 [44%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2-5x+14}{\sqrt{2-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11020 ⋅ Poprawnie: 57/112 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
«« Funkcja kwadratowa spełnia warunki: y=px^2+qx+r i p\cdot r \lessdot 0.

Wykres tej funkcji pokazano na rysunku:

Odpowiedzi:
A. A B. B
C. C D. D
Zadanie 6.  1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 90/139 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Układ równań \begin{cases} y=m \\ y=-3x^2+6x-10 \end{cases} ma dokładnie jedno rozwiązanie.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 223/340 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 57 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-32=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 538/882 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : x^2-6x+2 \geqslant 0 T/N : x^2-2x+2\geqslant 0


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm