Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(3,\frac{9\sqrt{2}}{5}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
« Funkcja
y=-(x-8)^2+2 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p,+\infty)
B. (p,q)
C. \langle p,+\infty)
D. \langle p,q\rangle
E. (-\infty,p\rangle
F. (-\infty,p)
Podpunkt 2.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=x^2-\sqrt{17} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
Odpowiedzi:
A. \left(-\infty,p\right\rangle
B. \left(p, q\right)
C. \left\langle p,+\infty\right)
D. \left\langle p, q \right\rangle
Zadanie 4. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/560 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
2
oraz
-7 . Do wykresu tej funkcji należy punkt
A=(1,-16) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 71/217 [32%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej
h(x)=a(x+b)^2+c .
Zatem:
Odpowiedzi:
A. c=-5
B. b=5
C. c=5
D. b=-5
Zadanie 6. 1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 268/393 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Osią symetrii wykresu funkcji f
jest prosta o równaniu:
Odpowiedzi:
A. x-2=0
B. x=-4
C. y-2=0
D. y=-4
Zadanie 7. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 472/931 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle -13, -9\rangle funkcja kwadratowa
f(x)=-\left(x+12\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
89 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 695/866 [80%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wiadomo, że
64x^2-16x+1=0 .
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{100-49x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty)
B. (p,+\infty)
C. \langle p,+\infty)
D. (p,q)
E. (-\infty,p\rangle
F. \langle p,q\rangle
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż