Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(2,\frac{4\sqrt{2}}{7}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(3)=-10 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 178/290 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Funkcja
f(x)=3x^2+6x+17 nie przyjmuje wartości:
Odpowiedzi:
A. 7\sqrt{7}
B. \frac{\sqrt{5}}{4}
C. \frac{28+\sqrt{2}}{2}
D. \frac{14\cdot\pi}{3}
Zadanie 4. 1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=f(x)
należy punkt
P=(0, -6) . Osią symetrii wykresu
tej funkcji jest prosta określona równaniem
x=-1 , a liczba
2
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Wyznacz wartość współczynnika a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-8)(x+8)
określonej dla
x\in(2,6\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. (-\infty,p\rangle
C. \langle p,q)
D. (p,q\rangle
E. \langle p,q\rangle
F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11046 ⋅ Poprawnie: 282/415 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wskaż wykres mający
3 punkty wspólne z osiami
układu współrzędnych:
Odpowiedzi:
A. y=-6x^2+5x-4
B. y=4x^2+2x+6
C. y=-6x^2-6x-2
D. y=-4(x-1)^2+13
Zadanie 7. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/940 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle -6, -2\rangle funkcja kwadratowa
f(x)=-\left(x+5\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
73 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-72=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{5}{2}x+6}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż