Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(2\sqrt{2},72\sqrt{3}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-20x+100
dla argumentu
\sqrt{10} przyjmuje wartość
\left(......\cdot\sqrt{10}-10\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
(1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=-5(x+2041)^2+m+20
jest przedział
(-\infty, 2021\rangle .
Wówczas liczba m jest równa:
Odpowiedzi:
A. 2061
B. 2001
C. 2041
D. 1961
Zadanie 4. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+7x-12}{\sqrt{3-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 197/293 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja określona wzorem
f(x)=4x^2+......\cdot x+18 jest
malejąca w przedziale
(-\infty,1) i rosnąca w przedziale
(1,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 229/342 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -6,-3\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Suma dwóch liczb jest równa
24\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest funkcja
f(x)=
\begin{cases}
-\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\
x^2-220,\qquad x\in\langle -15,+\infty)
\end{cases}
.
Liczba rozwiązań równania
f(x)=7 jest równa:
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{49-4x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p\rangle\cup\langle q,+\infty)
C. (p,q)
D. \langle p,+\infty)
E. (-\infty,p\rangle
F. (p,+\infty)
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż