Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=\frac{1}{6}(x-5)^2+6 otrzymano przesuwając wykres funkcji y=\frac{1}{6}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-6x+9 dla argumentu \sqrt{3} przyjmuje wartość \left(......\cdot\sqrt{3}-3\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 178/290 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Funkcja f(x)=2x^2-4x+18 nie przyjmuje wartości:
Odpowiedzi:
A. \frac{16\cdot\pi}{3} B. 8\sqrt{7}
C. \frac{8\sqrt{5}}{5} D. \frac{32+\sqrt{2}}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-3(x+4)(x-2) w przedziale \left\langle -\frac{3}{2},4\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/77 [41%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. A B. D
C. C D. B
Zadanie 6.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji y=x^2-3 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=-3x+1 B. x=1
C. y=3x D. y=3
Zadanie 7.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -13, -9\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+10\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Suma dwóch liczb jest równa 4\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=3 jest równa:
Odpowiedzi:
A. 3 B. 1
C. 0 D. 2
Zadanie 10.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+7x-8}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-\{p, q\} B. (-\infty,p)\cup(q,+\infty)
C. \mathbb{R}-(p,q) D. \langle p,q\rangle
E. \mathbb{R}-\{p\} F. (p,q)
Podpunkt 10.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm