Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (0,5) i (5,-5).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wskaż funkcję kwadratową, której zbiorem wartości jest przedział \langle 1,+\infty):
Odpowiedzi:
A. y=(x+3)^2+1 B. y=-(x-3)^2+1
C. y=-(x+4)^2+1 D. y=(x+1)^2-1
E. y=-2(x+2)^2-1 F. y=(x-3)^2-1
Zadanie 3.  1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Parabola o wierzchołku P=(-4,1) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=-2(x+4)^2+1 B. y=3(x-1)^2+1
C. y=(x+4)^2-1 D. y=-2(x-4)^2+1
Zadanie 4.  1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(-x+5)(x-4). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=18 B. x_1+x_2=9
C. x_1+x_2=-9 D. x_1+x_2=-18
Zadanie 5.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/77 [41%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. B B. C
C. A D. D
Zadanie 6.  1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz największą całkowitą wartość funkcji określonej wzorem f(x)=-x^2-3x-7.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -12,-9\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Suma dwóch liczb jest równa 12\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2-2\right)\left(x^2-4x-2\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+2x-3}} .

Zbiór ten ma postać:

Odpowiedzi:
A. (p,q) B. \mathbb{R}-(p,q)
C. \langle p,q\rangle D. (-\infty,p)\cup(q,+\infty)
E. \mathbb{R}-\{p\} F. \mathbb{R}-\{p, q\}
Podpunkt 10.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm