Wykres funkcji kwadratowej określonej wzorem
y=-\frac{3}{5}(x+5)^2-1 otrzymano przesuwając wykres funkcji
y=-\frac{3}{5}x^2 o p jednostek
wzdłuż osi Ox i o q jednostek
wzdłuż osi Oy, przy czym liczby p i
q mogą być ujemne.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%]
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,-2\rangle, a zbiorem jej wartości
jest przedział \langle -6,+\infty).
Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.
Podaj wartości parametrów p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%]
« W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju 496
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10.1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]