Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=-\frac{3}{5}(x+2)^2+4 otrzymano przesuwając wykres funkcji y=-\frac{3}{5}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 343/642 [53%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wskaż funkcję, która w przedziale (-\infty,-2) jest malejąca:
Odpowiedzi:
A. y=(x-1)^2-2 B. y=(x+2)^2+1
C. y=(x+1)^2-2 D. y=-(x+2)^2-1
E. y=-(x-2)^2-2 F. y=(x-2)^2+1
Zadanie 3.  1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 178/290 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Funkcja f(x)=2x^2+8x+15 nie przyjmuje wartości:
Odpowiedzi:
A. \frac{7\cdot\pi}{3} B. \frac{7\sqrt{7}}{2}
C. \frac{14+\sqrt{2}}{2} D. \frac{2\sqrt{3}}{5}
Zadanie 4.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-3(x-1)(x+6).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : funkcja f nie jest różnowartościowa T/N : miejscami zerowymi tej funkcji są liczby -2 i 4
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1  
Zadanie 6.  1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem g(x)=x^2+3. Jej wykres ma dokładnie jeden punkt wspólny z prostą y=-9, gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w dół wzdłuż osi Oy B. 12 jednostek w górę wzdłuż osi Oy
C. 3 jednostki w lewo wzdłuż osi Ox D. 12 jednostek w prawo wzdłuż osi Ox
Zadanie 7.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 39 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=5 jest równa:
Odpowiedzi:
A. 0 B. 1
C. 2 D. 3
Zadanie 10.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 4\pi\cdot x > 3x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm