Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(1,10) i
(6,0) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 198/343 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział
(-\infty,4\rangle .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Różnica iloczynu liczby
8 oraz liczby
x i kwadratu liczby
x jest największa dla liczby
x równej:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x-8)(x-8) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 241/318 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/78 [51%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykres funkcji
y=x^2-8 ma dokładnie jeden punkt
wspólny z prostą:
Odpowiedzi:
A. y=8
B. x=2
C. y=-8x+1
D. y=8x
Zadanie 7. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 71/94 [75%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 39/71 [54%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=10t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 177/275 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2-x-2)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 225/429 [52%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2-\frac{1}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (p,+\infty)
C. (-\infty,p\rangle
D. (-\infty,p)\cup\langle q,+\infty)
E. (-\infty,p)
F. (p,q)
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż