Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
» Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-2,11) ,
(2,13) i
(4,38) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%]
Rozwiąż
Podpunkt 2.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2+8 x-12 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. \frac{1}{2}
C. -\infty
D. -\frac{1}{2}
E. -\frac{3}{4}
F. \frac{3}{4}
Zadanie 3. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 117/135 [86%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-4(x+2)^2+4 zawarty
jest przedział:
Odpowiedzi:
A. (-4,5)
B. (-\infty,4)
C. (-2,5)
D. (4,+\infty)
Zadanie 4. 1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f
określonej wzorem
f(x)=m(x-4)(x-8)
jest przedział liczbowy
\langle -16,+\infty) , a rozwiązaniem
nierówności
f(x) \lessdot 0 przedział
(4,8) .
Wyznacz współczynnik m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja określona wzorem
g(x)=ax^2+bx+c . Postać iloczynowa
funkcji
g opisana jest wzorem
g(x)=a(x+3)(x-1) .
Wyznacz współczynnik c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11036 ⋅ Poprawnie: 53/70 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja
g określona jest wzorem
g(x)=x^2-64 . Funkcja
f
określona jest wzorem
f(x)=(8-x)(8+x) . Wykres
funkcji
f można otrzymać z wykresu funkcji
g :
Odpowiedzi:
A. przesuwając go w górę wzdłuż osi Oy
B. przesuwając go w dół wzdłuż osi Oy
C. przesuwając go w prawo wzdłuż osi Ox
D. przesuwając go w lewo wzdłuż osi Ox
E. poprzez symetrię względem osi Ox
F. poprzez symetrię względem osi Oy
Zadanie 7. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Suma dwóch liczb jest równa
26\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x+7)^2+\frac{23}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{23}{2}x-28}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż