Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/34 [55%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-3,10), (-1,5) i (3,7).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(-10+3x)^2+3 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 94/158 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Różnica iloczynu liczby 8 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/93 [53%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+1)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. (-\infty,p) D. \langle p,+\infty)
E. (p,q) F. (-\infty,p\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/80 [40%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. C B. A
C. D D. B
Zadanie 6.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji y=x^2-8 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=-8x+1 B. x=2
C. y=8x D. y=8
Zadanie 7.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -6, -2\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+3\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 266/400 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Suma dwóch liczb jest równa 14\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-32=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 225/429 [52%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2-\frac{1}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,q\rangle
C. (p,+\infty) D. (-\infty,p\rangle
E. (-\infty,p)\cup\langle q,+\infty) F. (-\infty,p)
Podpunkt 10.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm