Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(3,\frac{9\sqrt{2}}{5}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 « Funkcja y=-(x-8)^2+2 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (p,q)
C. \langle p,+\infty) D. \langle p,q\rangle
E. (-\infty,p\rangle F. (-\infty,p)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=x^2-\sqrt{17} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left(-\infty,p\right\rangle B. \left(p, q\right)
C. \left\langle p,+\infty\right) D. \left\langle p, q \right\rangle
Zadanie 4.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/560 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby 2 oraz -7. Do wykresu tej funkcji należy punkt A=(1,-16). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 71/217 [32%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej h(x)=a(x+b)^2+c.

Zatem:

Odpowiedzi:
A. c=-5 B. b=5
C. c=5 D. b=-5
Zadanie 6.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 268/393 [68%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. x-2=0 B. x=-4
C. y-2=0 D. y=-4
Zadanie 7.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 472/931 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -13, -9\rangle funkcja kwadratowa f(x)=-\left(x+12\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 89 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 695/866 [80%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wiadomo, że 64x^2-16x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{100-49x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty) B. (p,+\infty)
C. \langle p,+\infty) D. (p,q)
E. (-\infty,p\rangle F. \langle p,q\rangle
Podpunkt 10.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm