Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/34 [55%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(2,3) ,
(4,-2) i
(8,0) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/536 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wierzchołek paraboli
y=x^2-10x leży na prostej
o równaniu:
Odpowiedzi:
A. y=-\frac{5}{2}x
B. y=5x
C. y=-5x
D. y=-10x
E. y=10x
F. y=\frac{5}{2}x
Zadanie 3. 1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Dla
x=4 funkcja
f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą
-6 .
Wyznacz wartość współczynnika c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 563/780 [72%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-2)(x+4) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 95/157 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-2 o
k=3 jednostek
w prawo otrzymamy wykres funkcji opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 70/112 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykres funkcji kwadratowej
f(x)=-4(x-7)^2-9 ma dwa
punkty wspólne z prostą:
Odpowiedzi:
A. x=-7
B. x=7
C. y=-8
D. y=-12
Zadanie 7. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 223/340 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=10t-5t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 666/873 [76%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
» Równanie
(2x-3)(x+2)=(2x-3)(2x-5) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=-3x^2+6x-3 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,+\infty)
B. \langle p,+\infty)
C. (p,q\rangle
D. (p, q)
E. (-\infty,p)
F. (-\infty,p\rangle
Podpunkt 10.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż