Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (8,12) i (1,-9).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/896 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,6\rangle:
Odpowiedzi:
A. y=-(x-4)^2-2 B. y=-(x-6)^2+4
C. y=(x-6)^2+4 D. y=-(x+4)^2-6
E. y=(x+6)^2+4 F. y=-(x+4)^2+6
Zadanie 3.  1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 134/245 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W przedziale \langle -1,2\rangle funkcja y=3x^2-3x-3 osiąga wartość najmniejszą równą ......... .

Podaj brakującą liczbę.

Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(1-3x)(x-3).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/77 [41%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. C B. A
C. D D. B
Zadanie 6.  1 pkt ⋅ Numer: pp-11036 ⋅ Poprawnie: 53/70 [75%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja g określona jest wzorem g(x)=x^2-9. Funkcja f określona jest wzorem f(x)=(3-x)(3+x). Wykres funkcji f można otrzymać z wykresu funkcji g:
Odpowiedzi:
A. przesuwając go w prawo wzdłuż osi Ox B. przesuwając go w lewo wzdłuż osi Ox
C. przesuwając go w dół wzdłuż osi Oy D. poprzez symetrię względem osi Ox
E. poprzez symetrię względem osi Oy F. przesuwając go w górę wzdłuż osi Oy
Zadanie 7.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -11, -7\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+8\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=8t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-50=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{4-36x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p\rangle
C. \langle p,+\infty) D. (-\infty,p\rangle\cup\langle q,+\infty)
E. (p,q) F. \langle p,q\rangle
Podpunkt 10.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm