Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (3,4) i (8,-6).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 706/1015 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Największą wartością funkcji kwadratowej f(x)=-4(x+6)^2-8 jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 179/291 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Funkcja f(x)=3x^2-24x+66 nie przyjmuje wartości:
Odpowiedzi:
A. \frac{36+\sqrt{2}}{2} B. \frac{18\cdot\pi}{3}
C. 9\sqrt{7} D. \frac{7\sqrt{3}}{3}
Zadanie 4.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 100/215 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-2(x+1)(x-5) w przedziale \left\langle \frac{3}{2},7\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 481/648 [74%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. C B. A
C. D D. B
Zadanie 6.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji y=x^2-16 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=16x B. x=8
C. y=16 D. y=-16x+1
Zadanie 7.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 204/339 [60%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+25m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. dla pewnego m funkcja ma jedno miejsce zerowe D. największą wartością funkcji jest -25m
Zadanie 8.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 124. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-128=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/969 [66%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2-15x+54}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-\{p\} B. \langle p,q\rangle
C. \mathbb{R}-\{p, q\} D. \mathbb{R}-(p,q)
E. (-\infty,p)\cup(q,+\infty) F. (p,q)
Podpunkt 10.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm