Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-8,11) ,
(-6,6) i
(-2,8) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 639/965 [66%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Postać kanoniczna trójmianu kwadratowego
y=-3x^2-24x-49
opisana jest wzorem
y=a(x-p)^2+q .
Podaj wartość parametru p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Podaj wartość parametru
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 136/229 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=-6(x-2)^2-\frac{1}{2} o
p=3 jednostek w lewo i
q=13 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-6(x+1)^2-\frac{27}{2}
B. y=-6(x+11)^2+\frac{5}{2}
C. y=-6(x+1)^2+\frac{25}{2}
D. y=-6(x-5)^2+\frac{25}{2}
Zadanie 4. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 562/779 [72%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-2)(x+6) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Dana są funkcje
h(x)=2-x
oraz
g(x)=x+4 .
Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Osią symetrii wykresu funkcji f
jest prosta o równaniu:
Odpowiedzi:
A. y-2=0
B. y=-4
C. x=-4
D. x-2=0
Zadanie 7. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -6,-3\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 39/71 [54%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=16t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 119/170 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
330 , a jedna z jego przyprostokątnych jest o
49 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/533 [47%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{1-49x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. \langle p,q\rangle
B. \langle p,+\infty)
C. (-\infty,p\rangle
D. (p,+\infty)
E. (-\infty,p\rangle\cup\langle q,+\infty)
F. (p,q)
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż