Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(0,10) i
(5,0) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/536 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wierzchołek paraboli
y=x^2+10x leży na prostej
o równaniu:
Odpowiedzi:
A. y=5x
B. y=\frac{5}{2}x
C. y=-\frac{5}{2}x
D. y=10x
E. y=-5x
F. y=-10x
Zadanie 3. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 118/136 [86%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-3(x+1)^2+3 zawarty
jest przedział:
Odpowiedzi:
A. (-3,4)
B. (-1,4)
C. (-\infty,3)
D. (3,+\infty)
Zadanie 4. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 563/780 [72%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-2)(x+6) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 295/454 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem
y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=x^2+2x+4
B. y=-x^2+2x+2
C. y=x^2-2x+4
D. y=-x^2-2x+2
Zadanie 6. 1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Wykres funkcji kwadratowej opisanej wzorem
g(x)=-x^2+6x+1
przecięto prostą o równaniu
y=9 . Niech
P i
Q będą punktami
przecięcia tych wykresów.
Oblicz |PQ| .
Odpowiedź:
|PQ|=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 223/340 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=12t-6t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-5)(x-3)^2(x^2+x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 253/534 [47%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{49-36x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (p,+\infty)
B. (-\infty,p\rangle
C. \langle p,q\rangle
D. (-\infty,p\rangle\cup\langle q,+\infty)
E. (p,q)
F. \langle p,+\infty)
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż