Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 34/94 [36%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 » Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-2,4), (2,6) i (4,19).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/536 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wierzchołek paraboli y=x^2+4x leży na prostej o równaniu:
Odpowiedzi:
A. y=4x B. y=-1x
C. y=-4x D. y=1x
E. y=2x F. y=-2x
Zadanie 3.  1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 118/136 [86%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W zbiorze wartości funkcji f(x)=-2(x+2)^2+1 zawarty jest przedział:
Odpowiedzi:
A. (-\infty,1) B. (1,+\infty)
C. (-2,2) D. (-1,2)
Zadanie 4.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/86 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(8, 10). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=4, a liczba 5 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 68/92 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{6}}{2} i g(x)=\frac{\sqrt{6}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x) \lessdot g(x) B. f(x)-g(x)=x^2
C. f(x) > g(x) D. f(x)=g(x)
Zadanie 6.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. y=-4 B. y-2=0
C. x-2=0 D. x=-4
Zadanie 7.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -12,-9\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 69 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 132/197 [67%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Równanie x^2-(k+3)x+36=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p)\cup(q,+\infty)
C. (p,+\infty) D. \langle p,q\rangle
E. (-\infty,p)\cap(q,+\infty) F. (p,q)
Podpunkt 9.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=-x^2+3x+2. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (-\infty,p\rangle
C. (-\infty,p) D. (p, q)
E. (p,+\infty) F. (p,q\rangle
Podpunkt 10.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm