Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-4,10) ,
(-2,5) i
(2,7) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
-9 i
7 oraz
że najmniejszą jej wartością jest liczba
-40 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=5(x+5)^2+\frac{7}{2} o
p=3 jednostek w lewo i
q=12 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=5(x+2)^2+\frac{31}{2}
B. y=5(x+8)^2+\frac{31}{2}
C. y=5(x+17)^2+\frac{13}{2}
D. y=5(x+8)^2-\frac{17}{2}
Zadanie 4. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
8
oraz
2 . Do wykresu tej funkcji należy punkt
A=(3,-10) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 479/645 [74%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres funkcji
f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykres funkcji kwadratowej
f(x)=-4(x+4)^2+1 ma dwa
punkty wspólne z prostą:
Odpowiedzi:
A. x=4
B. y=3
C. y=-1
D. x=-4
Zadanie 7. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=18t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
210 , a jedna z jego przyprostokątnych jest o
1 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{16-36x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty)
B. (p,q)
C. (-\infty,p\rangle
D. \langle p,+\infty)
E. \langle p,q\rangle
F. (p,+\infty)
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż