Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(-1,3) i
(-8,-18) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/897 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Wskaż funkcję kwadratową rosnąca w przedziale
(-\infty,-6\rangle :
Odpowiedzi:
A. y=(x-6)^2-8
B. y=(x+6)^2-8
C. y=-(x+6)^2-8
D. y=-(x-8)^2-6
E. y=-(x-8)^2+6
F. y=-(x+8)^2+4
Zadanie 3. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Parabola o wierzchołku
P=(-9,-12) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=(x+9)^2+12
B. y=3(x+12)^2-12
C. y=-2(x-9)^2-12
D. y=-2(x+9)^2-12
Zadanie 4. 1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz największą wartość funkcji określonej wzorem
f(x)=-2(x+3)(x-3) w przedziale
\left\langle -\frac{1}{2},4\right\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/77 [41%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Niech
A=(-2,4) . Wiadomo, że
A\cap ZW_g=\emptyset .
Wykres funkcji g pokazano na rysunku:
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y+......=0 ma dokładnie jeden
punkt wspólny z parabolą określoną równaniem
y=2(x+7)^2-10 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -12, -8\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+9\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
63 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-2=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{4-x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (p,q)
B. (-\infty,p\rangle\cup\langle q,+\infty)
C. \langle p,q\rangle
D. \langle p,+\infty)
E. (p,+\infty)
F. (-\infty,p\rangle
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż