Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(3\sqrt{2},108\sqrt{7}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/529 [59%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
-7 i
9 oraz
że najmniejszą jej wartością jest liczba
-56 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/801 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Parabola o wierzchołku
P=(3,4) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=-2(x+3)^2+4
B. y=(x-3)^2-4
C. y=3(x-4)^2+4
D. y=-2(x-3)^2+4
Zadanie 4. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1053/1530 [68%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójmian kwadratowy
y=-3x^2-18x-15 można zapisać w postaci
y=a(x+5)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/80 [40%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Niech
A=(-2,4) . Wiadomo, że
A\cap ZW_g=\emptyset .
Wykres funkcji g pokazano na rysunku:
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 24/29 [82%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w dół wzdłuż osi Oy
B. 12 jednostek w górę wzdłuż osi Oy
C. 12 jednostek w prawo wzdłuż osi Ox
D. 3 jednostki w lewo wzdłuż osi Ox
Zadanie 7. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 71/94 [75%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 39/71 [54%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=4t-2t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 62/115 [53%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest funkcja
f(x)=
\begin{cases}
-\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\
x^2-220,\qquad x\in\langle -15,+\infty)
\end{cases}
.
Liczba rozwiązań równania
f(x)=3 jest równa:
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/725 [54%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(-7-2x)(x+5)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż