Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(3,12) i
(8,2) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-26x+169
dla argumentu
\sqrt{13} przyjmuje wartość
\left(......\cdot\sqrt{13}-13\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Dla
x=6 funkcja
f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą
4 .
Wyznacz wartość współczynnika c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem
f(x)=-\frac{1}{2}(x-1008)(x+144) , jest prosta określona:
równaniem
x-......=0 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 215/313 [68%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
(1 pkt)
Jeden z poniższych wzorów opisuje funkcję postaci
y=ax^2+bx+c , której wykres pokazano na rysunku:
Wskaż ten wzór:
Odpowiedzi:
A. y=a(x-2)^2+1
B. y=a(x+1)^2+2
C. y=a(x-1)^2+2
D. y=a(x+1)^2-2
E. y=a(x-1)^2-2
F. y=a(x-2)^2-1
Zadanie 6. 1 pkt ⋅ Numer: pp-11046 ⋅ Poprawnie: 282/415 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wskaż wykres mający
3 punkty wspólne z osiami
układu współrzędnych:
Odpowiedzi:
A. y=3x^2+6x+7
B. y=2x^2+5x+5
C. y=2x^2+3x+3
D. y=-4(x+3)^2+19
Zadanie 7. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle -12, -8\rangle funkcja kwadratowa
f(x)=-\left(x+11\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=16t-8t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
1128
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Iloczyn
(x-8)(5-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Rozwiąż