Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(3,8) i
(8,-2) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 343/642 [53%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wskaż funkcję, która w przedziale
(-\infty,-4) jest malejąca:
Odpowiedzi:
A. y=(x-4)^2+6
B. y=-(x+4)^2-6
C. y=(x+4)^2+6
D. y=-(x-4)^2-4
E. y=(x-6)^2-4
F. y=(x+6)^2-4
Zadanie 3. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Parabola o wierzchołku
P=(-5,8) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=3(x-8)^2+8
B. y=-2(x-5)^2+8
C. y=-2(x+5)^2+8
D. y=(x+5)^2-8
Zadanie 4. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+2x+15}{\sqrt{-3-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 79/132 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji
kwadratowej
y=f(x) .
Funkcja g określona jest wzorem
g(x)=4\cdot f(x)+6 . Wówczas zbiór
ZW_g jest pewnym przedziałem liczbowym.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10994 ⋅ Poprawnie: 87/175 [49%]
Rozwiąż
Podpunkt 6.1 (0.2 pkt)
« Zbiorem wartości funkcji
f(x)=2x^2+4x+m-2 jest przedział liczbowy zawarty w przedziale
\langle 0,+\infty) , wtedy i tylko wtedy, gdy parametr
m należy do pewnego przedziału.
Przedział, do którego należy parametr m ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,q\rangle
C. (-\infty,p\rangle
D. (-\infty,p)
E. \langle p,+\infty)
F. (p,+\infty)
Podpunkt 6.2 (0.8 pkt)
Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -12,-9\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=12t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x-4)^2+\frac{25}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2-\frac{4}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. (-\infty,p)\cup\langle q,+\infty)
C. (p,+\infty)
D. \langle p,q\rangle
E. (p,q)
F. (-\infty,p\rangle
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż