Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(4,7) i
(9,-3) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 232/353 [65%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Prosta o równaniu
-6x-5=0 jest osią symetrii
paraboli:
Odpowiedzi:
A. y=4x^2+\frac{25}{3}x-4
B. y=4x^2-\frac{25}{3}x-4
C. y=6x^2-\frac{10}{3}x-4
D. y=6x^2+\frac{10}{3}x-4
E. y=6x^2+10x-4
F. y=6x^2+5x-4
Zadanie 3. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=5(x+6)^2+\frac{3}{2} o
p=2 jednostek w lewo i
q=12 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=5(x+8)^2-\frac{21}{2}
B. y=5(x+4)^2+\frac{27}{2}
C. y=5(x+18)^2+\frac{7}{2}
D. y=5(x+8)^2+\frac{27}{2}
Zadanie 4. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x-7)(x+9) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Wyznacz maksymalny przedział, w którym funkcja określona wzorem
f(x)=x^2-22x+\frac{7}{2}
jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wyznacz największą całkowitą wartość funkcji określonej wzorem
f(x)=-x^2-7x+7 .
Odpowiedź:
max_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle 6, 10\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-9\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
116 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 9. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(8,-10) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{3}{2}x+45}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż