Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 34/94 [36%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 » Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-2,11), (2,13) i (4,38).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/529 [59%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 « O funkcji kwadratowej opisanej wzorem f(x)=a(x-p)^2+q wiadomo, że ma dwa miejsca zerowe -9 i -5 oraz że najmniejszą jej wartością jest liczba -1.

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz wartość parametru p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11073 ⋅ Poprawnie: 184/339 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja kwadratowa f(x)=x^2+bx+c, przy czym f(4)=f(8)=6.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(1-x)(3x+3). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11036 ⋅ Poprawnie: 53/70 [75%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja g określona jest wzorem g(x)=x^2-49. Funkcja f określona jest wzorem f(x)=(7-x)(7+x). Wykres funkcji f można otrzymać z wykresu funkcji g:
Odpowiedzi:
A. poprzez symetrię względem osi Oy B. przesuwając go w górę wzdłuż osi Oy
C. poprzez symetrię względem osi Ox D. przesuwając go w prawo wzdłuż osi Ox
E. przesuwając go w dół wzdłuż osi Oy F. przesuwając go w lewo wzdłuż osi Ox
Zadanie 7.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 2, 6\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-5\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 71 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 190/262 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 820 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=x^2+5x+5. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (p, q)
C. (p,q\rangle D. (p,+\infty)
E. \langle p,+\infty) F. (-\infty,p\rangle
Podpunkt 10.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm