Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 85/118 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=\frac{1}{3}(x-5)^2-2 otrzymano przesuwając wykres funkcji y=\frac{1}{3}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 198/343 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-10\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 134/185 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x+7)^2+2m-4 należy do prostej o równaniu y=3.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 372/570 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby 4 oraz 2. Do wykresu tej funkcji należy punkt A=(3,2). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/180 [50%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-7)(x+7) określonej dla x\in(1,5\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. \langle p,q)
C. (p,q\rangle D. (-\infty,p\rangle
E. (p,q) F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/171 [46%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 «« Funkcja określona wzorem f(x)=(2m-6)x^2+3x-14 osiąga wartość największą wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. \langle p,+\infty)
C. (p,+\infty) D. (-\infty,p)
E. (p,q) F. (-\infty,p\rangle
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 0, 4\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-3\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 67 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-50=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/725 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (1-6x)(x+5)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm