Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 34/94 [36%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
» Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-2,8) ,
(2,10) i
(4,35) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 534/899 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Wskaż funkcję kwadratową rosnąca w przedziale
(-\infty,-8\rangle :
Odpowiedzi:
A. y=(x-8)^2+3
B. y=-(x-3)^2-\frac{3}{2}
C. y=-(x+3)^2+8
D. y=-(x+3)^2-8
E. y=(x+8)^2+3
F. y=-(x+8)^2+3
Zadanie 3. 1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 94/158 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Różnica iloczynu liczby
2 oraz liczby
x i kwadratu liczby
x jest największa dla liczby
x równej:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-9)(x+3) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 481/648 [74%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres funkcji
f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Osią symetrii wykresu funkcji f
jest prosta o równaniu:
Odpowiedzi:
A. x-2=0
B. y-2=0
C. y=-4
D. x=-4
Zadanie 7. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=14t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 143/231 [61%]
Rozwiąż
Podpunkt 9.1 (0.2 pkt)
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-2 ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr
m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. (-\infty,p\rangle
C. (p,+\infty)
D. (p,q)
E. \langle p,+\infty)
F. \langle p, q\rangle
Podpunkt 9.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/969 [66%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2+7x-30}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. \mathbb{R}-(p,q)
B. (-\infty,p)\cup(q,+\infty)
C. \mathbb{R}-\{p, q\}
D. \mathbb{R}-\{p\}
E. \langle p,q\rangle
F. (p,q)
Podpunkt 10.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Rozwiąż