Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 34/94 [36%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 » Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-2,8), (2,10) i (4,35).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 534/899 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-8\rangle:
Odpowiedzi:
A. y=(x-8)^2+3 B. y=-(x-3)^2-\frac{3}{2}
C. y=-(x+3)^2+8 D. y=-(x+3)^2-8
E. y=(x+8)^2+3 F. y=-(x+8)^2+3
Zadanie 3.  1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 94/158 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Różnica iloczynu liczby 2 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-9)(x+3). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 481/648 [74%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. C B. D
C. A D. B
Zadanie 6.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. x-2=0 B. y-2=0
C. y=-4 D. x=-4
Zadanie 7.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=14t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-2 ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p\rangle
C. (p,+\infty) D. (p,q)
E. \langle p,+\infty) F. \langle p, q\rangle
Podpunkt 9.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/969 [66%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+7x-30}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-(p,q) B. (-\infty,p)\cup(q,+\infty)
C. \mathbb{R}-\{p, q\} D. \mathbb{R}-\{p\}
E. \langle p,q\rangle F. (p,q)
Podpunkt 10.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm