Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/34 [55%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (2,3), (4,-2) i (8,0).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/536 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wierzchołek paraboli y=x^2-10x leży na prostej o równaniu:
Odpowiedzi:
A. y=-\frac{5}{2}x B. y=5x
C. y=-5x D. y=-10x
E. y=10x F. y=\frac{5}{2}x
Zadanie 3.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Dla x=4 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą -6.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 563/780 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-2)(x+4) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 95/157 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Przesuwając wykres funkcji określonej wzorem h(x)=x^2-2 o k=3 jednostek w prawo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 70/112 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x-7)^2-9 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. x=-7 B. x=7
C. y=-8 D. y=-12
Zadanie 7.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 223/340 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=10t-5t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 666/873 [76%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 » Równanie (2x-3)(x+2)=(2x-3)(2x-5) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=-3x^2+6x-3. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. \langle p,+\infty)
C. (p,q\rangle D. (p, q)
E. (-\infty,p) F. (-\infty,p\rangle
Podpunkt 10.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm