Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(-3,\frac{9\sqrt{2}}{5}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-11\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-4(x+1971)^2+m-50 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 1971 B. 1921
C. 2171 D. 2071
Zadanie 4.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-3(x+4)(x-2) w przedziale \left\langle -\frac{3}{2},2\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
» Dana są funkcje h(x)=2-x oraz g(x)=x+4.

Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:

Odpowiedzi:
A. A B. D
C. C D. B
Zadanie 6.  1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/159 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ile punktów wspólnych z osią Ox ma wykres funkcji kwadratowej f(x)=-9+(x-3)^2:
Odpowiedzi:
A. 1 B. 3
C. 0 D. 2
Zadanie 7.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -12,-9\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 35 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+10x-11}{x-10}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f ma jedno miejsce zerowe T/N : f ma dwa miejsca zerowe
T/N : f przyjmuje wartości dodatnie  
Zadanie 10.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2-\frac{8}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,q\rangle
C. (p,q) D. (-\infty,p)\cup\langle q,+\infty)
E. (-\infty,p) F. (p,+\infty)
Podpunkt 10.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm