Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(-2,\frac{4\sqrt{2}}{5}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-4x+4
dla argumentu
\sqrt{2} przyjmuje wartość
\left(......\cdot\sqrt{2}-2\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=-x^2-\sqrt{17} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
Odpowiedzi:
A. \left(-\infty,p\right\rangle
B. \left\langle p,+\infty\right)
C. \left\langle p, q \right\rangle
D. \left(p, q\right)
Zadanie 4. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójmian kwadratowy
y=-4x^2-8x+32 można zapisać w postaci
y=a(x-2)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-1 o
k=3 jednostek
w prawo otrzymamy wykres funkcji opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 63/91 [69%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Jeśli wykres funkcji kwadratowej określonej wzorem
f(x)=x^2+4x+m-15
przecina prostą o równaniu
y=-3 , to parametr
m należy do pewnego przedziału liczbowego nieograniczonego.
Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
43 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
» Równanie
(2x-1)(x+2)=(2x-1)(2x-6) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{1-49x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. \langle p,+\infty)
B. (-\infty,p\rangle\cup\langle q,+\infty)
C. (-\infty,p\rangle
D. (p,q)
E. (p,+\infty)
F. \langle p,q\rangle
Podpunkt 10.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż