Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(4\sqrt{2},192\sqrt{2}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(2)=4 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
P=(12,5) należy do wykresu funkcji
g(x)=x^2-mx+1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/205 [47%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz największą wartość funkcji określonej wzorem
f(x)=-2(x+3)(x-3) w przedziale
\left\langle -\frac{1}{2},4\right\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Wyznacz maksymalny przedział, w którym funkcja określona wzorem
f(x)=x^2-24x+\frac{7}{4}
jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11054 ⋅ Poprawnie: 29/55 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pole powierzchni figury ograniczonej parabolą o równaniu
y=x^2-100
i osią
Ox jest:
Odpowiedzi:
A. większe od 1000
B. równe 1000
C. mniejsze od 1000
D. większe od 2000
Zadanie 7. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 472/740 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle 9, 13\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-12\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
89 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 107/157 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-8)(x-4)^2(x^2+x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(9-7x)(x+5)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż