Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=-\frac{2}{3}(x+4)^2+6 otrzymano przesuwając wykres funkcji y=-\frac{2}{3}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 343/642 [53%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wskaż funkcję, która w przedziale (-\infty,5) jest malejąca:
Odpowiedzi:
A. y=-(x-5)^2-7 B. y=-(x+5)^2+5
C. y=(x+7)^2+5 D. y=(x-5)^2+7
E. y=(x+5)^2+7 F. y=(x-7)^2+5
Zadanie 3.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=4(x-5)^2-\frac{3}{2} o p=4 jednostek w lewo i q=13 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=4(x-1)^2-\frac{29}{2} B. y=4(x+8)^2+\frac{5}{2}
C. y=4(x-9)^2+\frac{23}{2} D. y=4(x-1)^2+\frac{23}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-3(x+5)(x+7).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. A B. D
C. B D. C
Zadanie 6.  1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/169 [47%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 «« Funkcja określona wzorem f(x)=(5m+7)x^2+3x-14 osiąga wartość największą wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p\rangle
C. \langle p,+\infty) D. (-\infty,p)
E. \langle p,q\rangle F. (p,q)
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -8, -4\rangle funkcja kwadratowa f(x)=-\left(x+7\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 85 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 » Równanie (2x-7)(x+2)=(2x-7)(2x-9) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2+\frac{5}{2}x+\frac{63}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm