Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(4,\frac{16\sqrt{3}}{7}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Parabola
y=(-2-10x)^2-7
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Różnica iloczynu liczby
10 oraz liczby
x i kwadratu liczby
x jest największa dla liczby
x równej:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+2x+35}{\sqrt{-5-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{10}}{2} i
g(x)=\frac{\sqrt{10}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x) > g(x)
B. f(x) \lessdot g(x)
C. f(x)-g(x)=x^2
D. f(x)=g(x)
Zadanie 6. 1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 40/74 [54%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Wykres funkcji kwadratowej opisanej wzorem
g(x)=-x^2+7x+23
przecięto prostą o równaniu
y=5 . Niech
P i
Q będą punktami
przecięcia tych wykresów.
Oblicz |PQ| .
Odpowiedź:
|PQ|=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=8t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2-4x-5)\sqrt{9-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2-6x-16}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. (p,q)
B. \mathbb{R}-\{p\}
C. \langle p,q\rangle
D. (-\infty,p)\cup(q,+\infty)
E. \mathbb{R}-(p,q)
F. \mathbb{R}-\{p, q\}
Podpunkt 10.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Rozwiąż