Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 98/143 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(-3,\frac{9\sqrt{2}}{2}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 706/1015 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Największą wartością funkcji kwadratowej
f(x)=-4(x+4)^2+6 jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11073 ⋅ Poprawnie: 183/338 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja kwadratowa
f(x)=x^2+bx+c , przy czym
f(-7)=f(6)=1 .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-8)(x+6) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/339 [35%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji
f(x)=ax^2+bx+c , dla której
D_f=\mathbb{R} .
Wówczas:
Odpowiedzi:
T/N : f(-5)=h(8)
T/N : funkcja f nie jest różnowartościowa
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1
Zadanie 6. 1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wyznacz największą całkowitą wartość funkcji określonej wzorem
f(x)=-x^2+3x+5 .
Odpowiedź:
max_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle 5, 9\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-8\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
28 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 9. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/186 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x+6)^2-\frac{3}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/881 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : x^2+x+\frac{1}{4} > 0
T/N : 2x^2+3x-6 \geqslant 0
Rozwiąż