Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 98/143 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(4,\frac{8\sqrt{7}}{3}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 358/563 [63%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 « Funkcja y=-(x+5)^2+4 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p\rangle
C. \langle p,q\rangle D. (p,q)
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 99/146 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2-x+\frac{5}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/86 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(-1, -36). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=-2, a liczba 5 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 481/648 [74%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. C B. D
C. B D. A
Zadanie 6.  1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczba punktów wspólnych wykresu funkcji h(x)=2x^2+1x+\frac{2}{3} z osiami układu współrzędnych jest równa:
Odpowiedzi:
A. 0 B. 2
C. 3 D. 1
Zadanie 7.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 223/340 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 43 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 666/873 [76%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 » Równanie (2x-5)(x+2)=(2x-5)(2x-6) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/430 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2+\frac{5}{2}x+44} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm