Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(-4,\frac{8\sqrt{2}}{3}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-26x+169
dla argumentu
\sqrt{13} przyjmuje wartość
\left(......\cdot\sqrt{13}-13\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
(1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=-6(x+2071)^2+m+50
jest przedział
(-\infty, 2021\rangle .
Wówczas liczba m jest równa:
Odpowiedzi:
A. 2121
B. 1921
C. 2071
D. 1971
Zadanie 4. 1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem
f(x)=-\frac{1}{2}(x+132)(x-660) , jest prosta określona:
równaniem
x-......=0 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem
y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=-x^2-2x+2
B. y=x^2-2x+4
C. y=-x^2+2x+2
D. y=x^2+2x+4
Zadanie 6. 1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/169 [47%]
Rozwiąż
Podpunkt 6.1 (0.2 pkt)
«« Funkcja określona wzorem
f(x)=(8m+5)x^2+3x-14 osiąga
wartość największą wtedy i tylko wtedy, gdy parametr
m należy do
pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,q\rangle
C. (-\infty,p)
D. (-\infty,p\rangle
E. \langle p,+\infty)
F. (p,+\infty)
Podpunkt 6.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle -12, -8\rangle funkcja kwadratowa
f(x)=-\left(x+11\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Suma dwóch liczb jest równa
32\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2-10x+24)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Iloczyn
(x-9)(6-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Rozwiąż