Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (4,7) i (9,-3).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 232/353 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Prosta o równaniu -6x-5=0 jest osią symetrii paraboli:
Odpowiedzi:
A. y=4x^2+\frac{25}{3}x-4 B. y=4x^2-\frac{25}{3}x-4
C. y=6x^2-\frac{10}{3}x-4 D. y=6x^2+\frac{10}{3}x-4
E. y=6x^2+10x-4 F. y=6x^2+5x-4
Zadanie 3.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=5(x+6)^2+\frac{3}{2} o p=2 jednostek w lewo i q=12 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=5(x+8)^2-\frac{21}{2} B. y=5(x+4)^2+\frac{27}{2}
C. y=5(x+18)^2+\frac{7}{2} D. y=5(x+8)^2+\frac{27}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x-7)(x+9) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Wyznacz maksymalny przedział, w którym funkcja określona wzorem f(x)=x^2-22x+\frac{7}{2} jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz największą całkowitą wartość funkcji określonej wzorem f(x)=-x^2-7x+7.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 6, 10\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-9\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 116. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (8,-10).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{3}{2}x+45} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm