Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11595  
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (2\sqrt{2},24\sqrt{7}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11072  
Podpunkt 2.1 (0.5 pkt)
 « O funkcji kwadratowej opisanej wzorem f(x)=a(x-p)^2+q wiadomo, że ma dwa miejsca zerowe -6 i 2 oraz że najmniejszą jej wartością jest liczba -4.

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz wartość parametru p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11083  
Podpunkt 3.1 (1 pkt)
 » Dla x=-4 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą 6.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10986  
Podpunkt 4.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x+7)(x-9) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11064  
Podpunkt 5.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11045  
Podpunkt 6.1 (1 pkt)
Liczby a i b spełniają warunek a\cdot b \lessdot 0.

Liczba rozwiązań układu równań \begin{cases} y=ax^2+b \\ y=0 \end{cases} jest równa:

Odpowiedzi:
A. 1 B. 3
C. 0 D. 2
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11466  
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+2m)^2+10m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. dla pewnego m funkcja ma jedno miejsce zerowe
C. największą wartością funkcji jest -10m D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11645  
Podpunkt 8.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=20t-2t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10976  
Podpunkt 9.1 (0.5 pkt)
 » Równanie (2x-1)(x+2)=(2x-1)(2x-9) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10963  
Podpunkt 10.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=-2x^2+6x+3. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (p,q\rangle
C. (-\infty,p\rangle D. (p, q)
E. (p,+\infty) F. \langle p,+\infty)
Podpunkt 10.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm