Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (-4\sqrt{2},192\sqrt{3}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 217/336 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Prosta o równaniu -3x+5=0 jest osią symetrii paraboli:
Odpowiedzi:
A. y=-4x^2+\frac{40}{3}x-4 B. y=-6x^2-\frac{50}{3}x-4
C. y=-4x^2+\frac{20}{3}x-4 D. y=-4x^2+\frac{40}{9}x-4
E. y=-4x^2-\frac{40}{9}x-4 F. y=-6x^2+\frac{50}{3}x-4
Zadanie 3.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt P=(-10,-5) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+2x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p, +\infty) B. (-\infty, p)
C. \langle p, q\rangle D. (-\infty, p\rangle
E. \langle p, +\infty) F. (p, q)
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 292/446 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=-x^2-2x+2 B. y=x^2+2x+4
C. y=-x^2+2x+2 D. y=x^2-2x+4
Zadanie 6.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji y=x^2-3 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=-3x+1 B. x=-4
C. y=3x D. y=3
Zadanie 7.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -12,-9\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 35 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 102/147 [69%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-5)(x-2)^2(x^2-x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (-8-3x)(x+6)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm