Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/896 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-7\rangle:
Odpowiedzi:
A. y=-(x+3)^2-7 B. y=-(x+7)^2+3
C. y=(x-7)^2+3 D. y=-(x+3)^2+7
E. y=-(x-3)^2-\frac{3}{2} F. y=(x+7)^2+3
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x+54)(x-378), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Prosta o równaniu y+......=0 ma dokładnie jeden punkt wspólny z parabolą określoną równaniem y=2(x+9)^2+4.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+2m)^2+8m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. największą wartością funkcji jest -8m B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k+6)x+36=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (p,q) B. (-\infty,p)
C. (-\infty,p)\cap(q,+\infty) D. \langle p,q\rangle
E. (p,+\infty) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 72/119 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wykres funkcji f(x)=x^2-18x+c-15 jest styczny do osi Ox.

Wyznacz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20895 ⋅ Poprawnie: 18/34 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=ax^2+bx+c. Funkcja ta przyjmuje wartości dodatnie tylko w przedziale (0, k), a jej największa wartość wartość wynosi q.

Wyznacz a.

Dane
k=40
q=800
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20362 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Wyznacz zbiór wartości funkcji g(x)=f(x-p)+q.

Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.

Dane
a=1
b=-8
c=-4
p=-5
q=5
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20855 ⋅ Poprawnie: 321/849 [37%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «Wyznacz największą liczbę całkowitą, która spełnia nierówność (8+x)^2\leqslant \left(x-\sqrt{8}\right)\left(x+\sqrt{8}\right).
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm