Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Parabola o wierzchołku
P=(10,8) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=-2(x-10)^2+8
B. y=-2(x+10)^2+8
C. y=(x-10)^2-8
D. y=3(x-8)^2+8
Zadanie 2. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(5-x)(3x+3) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/12 [33%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-9)(x+9)
określonej dla
x\in(1,5\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p\rangle
C. (p,q\rangle
D. (p,q)
E. \langle p,q)
F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
83 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=3x^2+4x-3 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p, q)
B. (p,q\rangle
C. (-\infty,p)
D. (-\infty,p\rangle
E. (p,+\infty)
F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 18/53 [33%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Zbiorem wartości funkcji kwadratowej
f jest przedział
(-\infty,9\rangle oraz
f(x) > 0\iff x\in(-2,4) .
Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj
wartość współczynnika a tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20345 ⋅ Poprawnie: 34/57 [59%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których
prosta
y=m ma dwa punkty wspólne z wykresem
funkcji
f(x)=-\frac{x^2}{2}+2x+2 .
Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f
w przedziale \langle p,q\rangle .
Dane
a=3
b=-12
c=9
p=1
q=6
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Dla jakiego
x funkcja
f
osiąga minimum?
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20808 ⋅ Poprawnie: 149/447 [33%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż nierówność
ax^2+c \leqslant bx .
Podaj największą liczbę, która spełnia tę nierówność.
Dane
a=4
b=6
c=-88
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Ile liczb całkowitych spełnia tę nierówność?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż