Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (3,6) i (-4,-15).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(-4-x)(3x-6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10994 ⋅ Poprawnie: 87/175 [49%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Zbiorem wartości funkcji f(x)=6x^2-12x+m-2 jest przedział liczbowy zawarty w przedziale \langle 0,+\infty), wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Przedział, do którego należy parametr m ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (p,q)
C. (-\infty,p) D. \langle p,q\rangle
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 55 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2+4x+3)\sqrt{9-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20929 ⋅ Poprawnie: 38/52 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu -6 osiąga wartość najmniejszą równą 1. Wiedząc, że do jej wykresu należy punkt należy punkt A=(-5,6), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji w postaci ogólnej.

Podaj współczynnik b występujący we wzorze.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj liczbę a+c.
Odpowiedź:
a+c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 202/659 [30%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=-3
c=-4
p=-2
q=6
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20393 ⋅ Poprawnie: 7/86 [8%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Rozwiąż nierówność ax^2+bx+c \leqslant 0 .

Ile liczb całkowitych z przedziału \langle -10,10\rangle spełnia tę nierówność?

Dane
a=-1
b=-\frac{5}{2}=-2.50000000000000
c=\frac{3}{2}=1.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm