Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 134/245 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» W przedziale
\langle -1,2\rangle funkcja
y=2x^2+x+2 osiąga wartość najmniejszą
równą
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f
określonej wzorem
f(x)=m(x-1)(x-5)
jest przedział liczbowy
\langle -8,+\infty) , a rozwiązaniem
nierówności
f(x) \lessdot 0 przedział
(1,5) .
Wyznacz współczynnik m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta o równaniu
y+2m=0 ma dokładnie jeden punkt
wspólny z wykresem funkcji kwadratowej określonej wzorem
f(x)=-\frac{1}{2}x^2-10x+1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -10,-7\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
» Równanie
(2x-1)(x+2)=(2x-1)(2x-6) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q spełnia warunek
f(-1)=f(9)=3 , a jej zbiorem wartości
jest przedział
(-\infty, 8\rangle .
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20939 ⋅ Poprawnie: 6/35 [17%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa określona wzorem
f(x)=ax^2+bx+c dla argumentu
4 przyjmuje wartość najmniejszą, równą
3 ,
a jeden z punktów przecięcia jej wykresu z prostą o równaniu
y=5
ma odciętą
2 .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=-1
b=-\frac{1}{2}=-0.50000000000000
c=\frac{31}{16}=1.93750000000000
p=-2
q=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20408 ⋅ Poprawnie: 53/169 [31%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Rozwiąż nierówność
2x^2+13x > 24 .
Ile liczb całkowitych nie należy do rozwiązania?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż