Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 885/1154 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję kwadratową, której zbiorem wartości jest przedział \langle -2,+\infty):
Odpowiedzi:
A. y=-2(x+2)^2+2 B. y=(x+3)^2+2
C. y=-(x+3)^2-2 D. y=(x-5)^2+2
E. y=-(x-4)^2-2 F. y=(x+5)^2-2
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+5x}{\sqrt{5-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Prosta o równaniu y+......=0 ma dokładnie jeden punkt wspólny z parabolą określoną równaniem y=2(x+4)^2+6.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 235/374 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 28\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : x^2+\frac{2}{3}x+\frac{1}{9} > 0 T/N : 2x^2-6x+3 \geqslant 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 68/162 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Najmniejszą wartość równą -7 trójmian y=x^2+bx+c osiąga dla x=1.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20934 ⋅ Poprawnie: 9/36 [25%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c przyjmuje wartości nie większe od 16 wtedy i tylko wtedy, gdy x\in(-\infty,5\rangle\cup\langle 11,+\infty), a wierzchołek jej wykresu należy do prostej o równaniu y=22.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20360 ⋅ Poprawnie: 20/51 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Wyznacz najmniejszą wartość funkcji f(x)=bx+ax^2.
Dane
a=2=2.00000000000000
b=-\frac{1}{2}=-0.50000000000000
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20379 ⋅ Poprawnie: 142/257 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Równanie x^2+(m-2)x+169=0 ma dokładnie jedno rozwiązanie. Wyznacz m.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm