Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 155/204 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji kwadratowej f:

Zbiór wartości funkcji określonej wzorem y=-f(x)+1 jest równy:

Odpowiedzi:
A. (-\infty,3\rangle B. (-\infty, 5\rangle
C. \langle -3,+\infty) D. (-\infty,-3\rangle
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-4)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. \langle p,q\rangle
C. (-\infty,p\rangle D. (-\infty,p)
E. (p,+\infty) F. (p,q)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/12 [33%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-3)(x+3) określonej dla x\in(1,5\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,q\rangle
C. (p,+\infty) D. (-\infty,p\rangle
E. (p,q\rangle F. \langle p,q)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 466/923 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -9, -5\rangle funkcja kwadratowa f(x)=-\left(x+8\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2-x-42}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-(p,q) B. (-\infty,p)\cup(q,+\infty)
C. \langle p,q\rangle D. \mathbb{R}-\{p, q\}
E. (p,q) F. \mathbb{R}-\{p\}
Podpunkt 5.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 163/278 [58%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja f(x)=a(x+1)^2-4, do wykresu której nalezy punkt P=(-3,-12).

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20349 ⋅ Poprawnie: 7/37 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Dana jest funkcja f(x)= \begin{cases} (x+7)^2-3 \text{, dla } x\leqslant 0 \\ -(x+7)^2+95 \text{, dla }x > 0 \end{cases} .

Wyznacz zbiór tych wartości, które funkcja f przyjmuje trzy razy, dla trzech różnych argumentów.

Zbiór ten zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 7/33 [21%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu paraboli y=2x^2-3x-1 należy punkt Q=(2am, y) taki, że różnica 2am-y jest największa z możliwych.

Podaj m.

Dane
a=5
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20391 ⋅ Poprawnie: 23/60 [38%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dla jakich wartości parametru b funkcja y=x^2+bx+c nie ma miejsc zerowych?

Rozwiązanie zapisz w postaci przedziału. Podaj długość tego przedziału.

Dane
c=169
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm