Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%]
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
« Funkcja
y=-(x-8)^2-7 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,q\rangle
C. (-\infty,p\rangle
D. \langle p,+\infty)
E. (-\infty,p)
F. (p,+\infty)
Podpunkt 1.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(2-3x)(x-3) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-6)(x+6)
określonej dla
x\in(3,7\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. \langle p,q)
C. (-\infty,p\rangle
D. (p,q\rangle
E. (p,+\infty)
F. (p,q)
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=10t-5t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x-1)^2+\frac{31}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q spełnia warunek
f(4)=f(14)=-2 , a jej zbiorem wartości
jest przedział
(-\infty, 3\rangle .
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20898 ⋅ Poprawnie: 25/32 [78%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz współczynniki
b i
c
trójmianu kwadratowego
y=f(x)=2x^2+bx+c wiedząc, że
funkcja
f przyjmuje wartości niedodatnie tylko dla
x\in\langle -1,8\rangle.
Podaj b .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20360 ⋅ Poprawnie: 20/51 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Wyznacz najmniejszą wartość funkcji
f(x)=bx+ax^2 .
Dane
a=\frac{1}{2}=0.50000000000000
b=-\frac{1}{2}=-0.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20401 ⋅ Poprawnie: 57/167 [34%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Rozwiąż nierówność
ax^2+bx > x(cx+d) .
Ile liczb całkowitych z przedziału
\langle 0,100\rangle spełnia tę nierówność?
Dane
a=4
b=8
c=3
d=9
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż