Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 715/975 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,-8\rangle, a zbiorem jej wartości jest przedział \langle 2,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 514/716 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -3 oraz 1, a wierzchołek paraboli będącej jej wykresem ma współrzędne (-1,-12), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x+3)(x+1) B. f(x)=\frac{9}{4}(x-3)(x-1)
C. f(x)=3(x-3)(x-1) D. f(x)=3(x+3)(x-1)
Zadanie 3.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x+10)^2+2 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. x=10 B. x=-10
C. y=-1 D. y=3
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=5 jest równa:
Odpowiedzi:
A. 2 B. 1
C. 3 D. 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 80/233 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkt P=(6,0) jest wierzchołkiem paraboli określonej równaniem y=2x^2+4px+q-2. Oblicz wartości współczynników p i q.

Podaj wartość p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj wartość q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20939 ⋅ Poprawnie: 6/35 [17%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c dla argumentu 11 przyjmuje wartość najmniejszą, równą -10, a jeden z punktów przecięcia jej wykresu z prostą o równaniu y=-8 ma odciętą 9.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20365 ⋅ Poprawnie: 83/185 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p, q\rangle.

Dane
a=-1
b=4
c=-5
p=1
q=5
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20395 ⋅ Poprawnie: 22/89 [24%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Rozwiąż nierówność ax^2+bx+c > 0.

Ile liczb całkowitych z przedziału \langle -10, 10\rangle spełnia tę nierówność?

Dane
a=1
b=-\frac{5}{2}=-2.50000000000000
c=1=1.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm