Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=-2(x-3)^2+\frac{5}{2} o
p=2 jednostek w lewo i
q=8 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-2(x-1)^2-\frac{11}{2}
B. y=-2(x-5)^2+\frac{21}{2}
C. y=-2(x-1)^2+\frac{21}{2}
D. y=-2(x+5)^2+\frac{9}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Zbiór tych wszystkich wartości
m , dla których funkcja kwadratowa
określona wzorem
f(x)=x^2+2x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty, p\rangle
B. (p, q)
C. \langle p, q\rangle
D. \langle p, +\infty)
E. (p, +\infty)
F. (-\infty, p)
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji
f(x)=ax^2+bx+c , dla której
D_f=\mathbb{R} .
Wówczas:
Odpowiedzi:
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1
T/N : funkcja jest rosnąca w przedziale (-2, 4)
Zadanie 4. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 235/374 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Suma dwóch liczb jest równa
2\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Iloczyn
(x+9)(6-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20338 ⋅ Poprawnie: 93/226 [41%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta
x=-2 jest osią symetrii paraboli
f(x)=ax^2+bx+1 , a najmniejsza wartość funkcji
f jest równa
-7 .
Wyznacz równanie tej funkcji w postaci ogólnej.
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20349 ⋅ Poprawnie: 7/37 [18%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
«« Dana jest funkcja
f(x)=
\begin{cases}
(x+2)^2-7 \text{, dla } x\leqslant 0 \\
-(x+2)^2+1 \text{, dla }x > 0
\end{cases}
.
Wyznacz zbiór tych wartości, które funkcja f
przyjmuje trzy razy, dla trzech różnych argumentów.
Zbiór ten zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
x_l=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/428 [38%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dana jest funkcja
f(x)=ax^2+bx+c , gdzie
x\in\langle p,q\rangle .
Oblicz najmniejszą wartość funkcji f .
Dane
a=1
b=8
c=1
p=-6
q=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz największą wartość funkcji
f .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20406 ⋅ Poprawnie: 14/38 [36%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Rozwiąż nierówność
f(x)-x\cdot g(x)\geqslant 0 , gdzie
f(x)=x^2+bx+c i
g(x)=x-3 .
Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Dane
b=-8
c=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż