Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=-6(x+1)^2+\frac{7}{2} o
p=2 jednostek w lewo i
q=10 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-6(x+3)^2+\frac{27}{2}
B. y=-6(x+3)^2-\frac{13}{2}
C. y=-6(x+11)^2+\frac{11}{2}
D. y=-6(x-1)^2+\frac{27}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/205 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz największą wartość funkcji określonej wzorem
f(x)=-3(x+5)(x-1) w przedziale
\left\langle -\frac{5}{2},2\right\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta o równaniu
y+2m=0 ma dokładnie jeden punkt
wspólny z wykresem funkcji kwadratowej określonej wzorem
f(x)=-\frac{1}{2}x^2+2x-9 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+3m)^2+9m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca
B. największą wartością funkcji jest -9m
C. dla pewnego m funkcja ma jedno miejsce zerowe
D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
Zadanie 5. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(-8-3x)(x+1)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 18/53 [33%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Zbiorem wartości funkcji kwadratowej
f jest przedział
(-\infty,32\rangle oraz
f(x) > 0\iff x\in(-8,0) .
Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj
wartość współczynnika a tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20933 ⋅ Poprawnie: 4/12 [33%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prosta o równaniu
y=90 przecina wykres funkcji określonej wzorem
f(x)=a(x-x_1)(x-x_2) ,
gdzie
x_1\lessdot x_2 , w punktach o odciętych równych
-8 oraz
-4 , a największą wartością
tej funkcji jest liczba
98 .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz miejsca zerowe
x_1 i
x_2 tej funkcji.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20355 ⋅ Poprawnie: 21/82 [25%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=-1
b=\frac{2}{3}=0.66666666666667
c=-\frac{19}{9}=-2.11111111111111
p=-2
q=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 84/168 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Rozwiąż równanie
x^2-\frac{2}{\sqrt{2}}x=0 .
Podaj najmniejszą z liczb spełniających to równanie.
Odpowiedź:
Podpunkt 9.2 (1 pkt)
Podaj największą z liczb spełniających to równanie.
Odpowiedź:
Rozwiąż