Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 195/340 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,15\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+12x-35}{\sqrt{5-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu y+2m=0 ma dokładnie jeden punkt wspólny z wykresem funkcji kwadratowej określonej wzorem f(x)=-\frac{1}{2}x^2+8x+10.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 476/937 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -9, -5\rangle funkcja kwadratowa f(x)=-\left(x+8\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=2x^2+6x+2. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (p,q\rangle
C. (-\infty,p) D. \langle p,+\infty)
E. (p, q) F. (-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q spełnia warunek f(4)=f(14)=1, a jej zbiorem wartości jest przedział (-\infty, 6\rangle.

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20345 ⋅ Poprawnie: 34/57 [59%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-\frac{x^2}{2}+2x+2.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=\frac{2}{5}=0.40000000000000
c=\frac{64}{21}=3.04000000000000
p=-3
q=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20406 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż nierówność f(x)-x\cdot g(x)\geqslant 0, gdzie f(x)=x^2+bx+c i g(x)=x-3.

Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
b=6
c=8
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm