Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
P=(6,-11) należy do wykresu funkcji
g(x)=x^2-mx+1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 180/328 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=-2(x+6)(x-5) .
Wyznacz maksymalny przedział, w którym funkcja
f jest
rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji
g(x)=ax^2+bc+c .
Które z poniższych zdań jest prawdziwe?
Odpowiedzi:
A. f(x) > 0 \iff x \lessdot 1
B. miejscami zerowymi funkcji to -2 i 6
C. funkcja rośnie w przedziale (-2,4)
D. miejsca zerowe tej funkcji to -2 i 4
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 466/923 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle -13, -9\rangle funkcja kwadratowa
f(x)=-\left(x+12\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
f(x)=
\begin{cases}
-\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\
x^2-220,\qquad x\in\langle -15,+\infty)
\end{cases}
.
Liczba rozwiązań równania
f(x)=5 jest równa:
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 60/153 [39%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Najmniejszą wartość równą
-10 trójmian
y=x^2+bx+c osiąga dla
x=3 .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 87/435 [20%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Osią symetrii wykresu funkcji kwadratowej
f(x)=-x^2+bx+2 jest prosta o równaniu
x=-\frac{11}{3} .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-20943 ⋅ Poprawnie: 21/46 [45%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Sprzedawca miesięcznie sprzedaje
k=66 laptopów w cenie 3600
złotych sztuka. Zauważył, że każda obniżka ceny laptopa o
15
złotych zwiększa sprzedaż o jedną sztukę miesięcznie.
Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20399 ⋅ Poprawnie: 83/199 [41%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Rozwiąż nierówność
ax^2+bx > cx^2+dx .
Podaj długość rozwiązania (długość przedziału).
Dane
a=-3
b=-3
c=2
d=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj najmniejszą liczbę całkowitą dodatnią, która nie spełnia tej
nierówności.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż