Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
(-9,5) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,12) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. \langle 5,+\infty)
B. \langle -5,+\infty)
C. (-\infty,-5\rangle
D. (-\infty,5\rangle
Zadanie 2. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m+2)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p\rangle
C. (p,q)
D. \langle p,+\infty)
E. (-\infty,p)
F. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Dana są funkcje
h(x)=2-x
oraz
g(x)=x+4 .
Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
89 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
9\pi\cdot x > 7x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 33/105 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane jest funkcja
f(x)=-x^2+6x+16 , gdzie
x\in\langle 2,7\rangle . Wyznacz
ZW_f .
Zapisz ZW_f w postaci przedziału. Podaj lewy koniec
tego przedziału.
Odpowiedź:
y_l=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji
w postaci ogólnej.
Podaj współczynnik b występujący we wzorze.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj liczbę a+c .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 173/368 [47%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja
f(x)=x^2+bx+c , gdzie
x\in\langle p, q\rangle .
Oblicz najmniejszą wartość funkcji f .
Dane
b=6
c=11
p=-6
q=-4
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Oblicz największą wartość funkcji
f .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20379 ⋅ Poprawnie: 142/257 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Równanie
x^2+(m-2)x+4=0 ma dokładnie jedno
rozwiązanie. Wyznacz
m .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż