Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x+2)^2+2m-7 należy do prostej o równaniu y=5.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+4x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. (-\infty, p)
C. \langle p, q\rangle D. (p, +\infty)
E. (-\infty, p\rangle F. \langle p, +\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=x^2-3 przesunięto o k=2 jednostek w prawo. W wyniku tego przesunięcia otrzymano wykres funkcji określonej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 261/394 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 14\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+10x+9}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-(p,q) B. \mathbb{R}-\{p, q\}
C. (-\infty,p)\cup(q,+\infty) D. (p,q)
E. \langle p,q\rangle F. \mathbb{R}-\{p\}
Podpunkt 5.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20338 ⋅ Poprawnie: 93/226 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta x=-1 jest osią symetrii paraboli f(x)=ax^2+bx+1, a najmniejsza wartość funkcji f jest równa -3. Wyznacz równanie tej funkcji w postaci ogólnej.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20896 ⋅ Poprawnie: 11/15 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f określona jest dla wszystkich liczb rzeczywistych x wzorem f(x)=ax^2+bx+c. Przedział (p,q) jest rozwiązaniem nierówności f(x) > 0, natomiast liczba t jest największą wartością funkcji f.

Oblicz wartość współczynnika a.

Dane
p=-7
q=-5
t=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz wartość współczynnika b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20360 ⋅ Poprawnie: 20/51 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Wyznacz najmniejszą wartość funkcji f(x)=bx+ax^2.
Dane
a=2=2.00000000000000
b=-\frac{3}{2}=-1.50000000000000
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20414 ⋅ Poprawnie: 40/120 [33%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Rozwiąż nierówność \left(2x^2+a\right)^2 \lessdot \left(b-2x^2\right)^2.

Podaj najmniejszą dodatnią liczbę, która nie spełnia tej nierówności.

Dane
a=3
b=7
Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm