Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-6,7), (-4,2) i (0,4).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-2)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,q\rangle
C. (p,+\infty) D. (-\infty,p)
E. \langle p,+\infty) F. (p,q)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=x^2+2x+4 B. y=-x^2-2x+2
C. y=x^2-2x+4 D. y=-x^2+2x+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+2m)^2+6m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. największą wartością funkcji jest -6m
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
Zadanie 5.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x-7)^2+\frac{5}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 33/105 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane jest funkcja f(x)=-x^2+6x+16, gdzie x\in\langle 1,5\rangle. Wyznacz ZW_f.

Zapisz ZW_f w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
y_l= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20900 ⋅ Poprawnie: 51/89 [57%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dana jest funkcja kwadratowa g(x)=ax^2+bx+c, która spełnia warunek g(-5)=g(-3)=0. Do wykresu funkcji g należy punkt \left(-13,-40\right). Wyznacz współrzędne (x_w,y_w) wierzchołka paraboli będącej wykresem funkcji g.

Podaj x_w.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_w.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20360 ⋅ Poprawnie: 20/51 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Wyznacz najmniejszą wartość funkcji f(x)=bx+ax^2.
Dane
a=\frac{2}{3}=0.66666666666667
b=-\frac{3}{2}=-1.50000000000000
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20382 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Iloczyn dwóch liczb ujemnych jest równy 1836, a jedna z nich jest o 7 mniejsza od połowy drugiej liczby.

Podaj większą z tych liczb.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20422 ⋅ Poprawnie: 67/143 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność (2x-1-2a)x > 6\left(x-\frac{1+2a}{2}\right)\left(x+\frac{1-3a}{3}\right) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30090 ⋅ Poprawnie: 51/122 [41%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Funkcja liniowa określona jest wzorem y=ax+b. Na wykresie tej funkcji znajdź taki punkt o współrzędnych P=(x_0,y_0), aby iloczyn x_0\cdot y_0 był największy możliwy.

Podaj ten największy możliwy iloczyn.

Dane
a=-1
b=-1
Odpowiedź:
x_0\cdot y_0=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm