Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 637/962 [66%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Postać kanoniczna trójmianu kwadratowego y=-2x^2+20x-51 opisana jest wzorem y=a(x-p)^2+q.

Podaj wartość parametru p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 1.2 (0.5 pkt)
 Podaj wartość parametru q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -2 oraz 6, a wierzchołek paraboli będącej jej wykresem ma współrzędne (2,-48), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x+2)(x-6) B. f(x)=3(x-2)(x-6)
C. f(x)=\frac{9}{4}(x-2)(x-6) D. f(x)=3(x+2)(x+6)
Zadanie 3.  1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz największą całkowitą wartość funkcji określonej wzorem f(x)=-x^2-5x-4.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 4, 8\rangle funkcja kwadratowa f(x)=-\left(x-5\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (-4,6).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu 6 osiąga wartość największą równą 1. Wiedząc, że do jej wykresu należy punkt należy punkt A=(4,-2), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20938 ⋅ Poprawnie: 84/111 [75%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 O funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c wiadomo, że przyjmuje wartości ujemne wtedy i tylko wtedy, gdy x\in(-\infty, 3)\cup(8,+\infty), a do jej wykresu należy punkt A=(6,12).

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=\frac{2}{5}=0.40000000000000
c=\frac{41}{21}=1.96000000000000
p=-2
q=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wyznacz większe z rozwiązań równania 2x^2-28x+82=0.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 111/228 [48%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność 3x^2+bx+c\leqslant 0.

Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.

Dane
b=-\frac{3}{2}=-1.50000000000000
c=-\frac{63}{2}=-31.50000000000000
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30101 ⋅ Poprawnie: 24/59 [40%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
» Powierzchnia prostokąta P wynosi 6000 m2. Prostokąt Q ma wymiary o 10 m i 15 m większe od wymiarów prostokąta P oraz pole powierzchni większe o 2250 m2.

Podaj najmniejszą możliwą długość boku prostokąta P.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największą możliwą długość boku prostokąta P.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm