Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 178/290 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f(x)=3x^2-24x+64 nie przyjmuje wartości:
Odpowiedzi:
A. 8\sqrt{7} B. \frac{16\cdot\pi}{3}
C. \frac{3\sqrt{2}}{4} D. \frac{32+\sqrt{2}}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(-6-x)(3x-6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 63/91 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m+7 przecina prostą o równaniu y=-3, to parametr m należy do pewnego przedziału liczbowego nieograniczonego.

Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 2, 6\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-5\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+2\right)\left(x^2+6x+5\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 80/233 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkt P=(3,0) jest wierzchołkiem paraboli określonej równaniem y=2x^2+4px+q-2. Oblicz wartości współczynników p i q.

Podaj wartość p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj wartość q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20899 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Miejscem zerowym funkcji kwadratowej f jest liczba 3. Funkcja f rośnie wtedy i tylko wtedy gdy x\in(-\infty, 2\rangle. Najmniejsza wartość funkcji f w przedziale \langle 2,10\rangle jest równa -126. Zapisz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 113/259 [43%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz najmniejszą wartość funkcji h(x)=ax^2+bx+c w przedziale \langle p,q\rangle.
Dane
a=1
b=-6
c=12
p=2
q=7
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20379 ⋅ Poprawnie: 142/257 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Równanie x^2+(m-2)x+121=0 ma dokładnie jedno rozwiązanie. Wyznacz m.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20400 ⋅ Poprawnie: 216/420 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność ax\geqslant bx^2+c. Rozwiązaniem tej nierówności jest przedział \langle p,q\rangle.

Podaj p.

Dane
a=24
b=3
c=45
Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30106 ⋅ Poprawnie: 22/40 [55%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Trasę długości 672 km pan Nowak pokonał przechodząc każdego dnia taki sam odcinek drogi. Gdyby jednak na całą wyprawę mógł poświęcić 4 dni więcej, to mógłby dziennie przechodzić o 3 km mniej.

Ile kilometrów dziennie pokonywał pan Nowak?

Odpowiedź:
s= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm