Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 203/352 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa g spełnia warunek g(-11)=g(6). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x+m=0.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+6x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. \langle p, q\rangle
C. (p, +\infty) D. (-\infty, p\rangle
E. \langle p, +\infty) F. (-\infty, p)
Podpunkt 2.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11036 ⋅ Poprawnie: 53/70 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja g określona jest wzorem g(x)=x^2-64. Funkcja f określona jest wzorem f(x)=(8-x)(8+x). Wykres funkcji f można otrzymać z wykresu funkcji g:
Odpowiedzi:
A. przesuwając go w górę wzdłuż osi Oy B. przesuwając go w lewo wzdłuż osi Ox
C. przesuwając go w prawo wzdłuż osi Ox D. poprzez symetrię względem osi Ox
E. przesuwając go w dół wzdłuż osi Oy F. poprzez symetrię względem osi Oy
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{7}{2}x+30} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu -4 osiąga wartość największą równą 0. Wiedząc, że do jej wykresu należy punkt należy punkt A=(-6,-3), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji w postaci ogólnej.

Podaj współczynnik b występujący we wzorze.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj liczbę a+c.
Odpowiedź:
a+c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20356 ⋅ Poprawnie: 25/91 [27%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=2
b=-12
c=\frac{37}{2}=18.50000000000000
p=1
q=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 90/212 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż układ równań: \begin{cases} y=x^2-20x-3 \\ y+20x=6 \end{cases} .

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20420 ⋅ Poprawnie: 40/99 [40%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność ax^2-bx\geqslant (x-c)(x-d) .

Podaj średnią arytmetyczną wszystkich liczb całkowitych, które nie spełniają tej nierówności.

Dane
a=5
b=25
c=5
d=13
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30092 ⋅ Poprawnie: 52/130 [40%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Pole powierzchni trójkąta prostokątnego wynosi p cm2. Jedna z jego przyprostokątnych jest o d cm dłuższa niż druga.

Podaj długość przeciwprostokątnej tego trójkąta.

Dane
p=990
d=79
Odpowiedź:
c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm