Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 441/844 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-2(x+2041)^2+m+20 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 1961 B. 2001
C. 1981 D. 2041
Zadanie 2.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 563/780 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-6)(x+2) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/80 [40%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. C B. D
C. A D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -12,-9\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/108 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+4x-45}{x-4}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f ma dwa miejsca zerowe T/N : f przyjmuje wartości dodatnie
T/N : f ma zbiór \mathbb{R} za dziedzinę  
Zadanie 6.  2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/206 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Współrzędna y wierzchołka wykresu funkcji f(x)=ax^2+2x-1 jest równa -4.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20934 ⋅ Poprawnie: 9/37 [24%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c przyjmuje wartości nie większe od 16 wtedy i tylko wtedy, gdy x\in(-\infty,-6\rangle\cup\langle 0,+\infty), a wierzchołek jej wykresu należy do prostej o równaniu y=22.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 64/115 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=3
b=12
c=11
p=-4
q=2
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Dla jakiego x funkcja f osiąga minimum?
Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20782 ⋅ Poprawnie: 61/83 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane jest równanie (x^3+216)(x^2+5x-36)=0.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20408 ⋅ Poprawnie: 53/169 [31%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność 2x^2-7x > 22.

Ile liczb całkowitych nie należy do rozwiązania?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą z tych liczb.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30083 ⋅ Poprawnie: 62/220 [28%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Ze sznurka o długości d cm zrobiono dwa prostokąty P_1 i P_2. W prostokącie P_1 jeden z boków jest dwukrotnie dłuższy od drugiego, zaś w prostokącie P_2 jeden bok jest czterokrotnie krótszy od boku drugiego. Wówczas okazało się, że suma pól powierzchni obu prostokątów P_1 i P_2 była najmniejsza z możliwych.

Podaj długość krótszego boku prostokąta P_1.

Dane
d=129
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj długość krótszego boku prostokąta P_2.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm