» Prosta x=2 jest osią symetrii paraboli
f(x)=ax^2+bx+1, a najmniejsza wartość funkcji
f jest równa -7.
Wyznacz równanie tej funkcji w postaci ogólnej.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%]
Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c
jest przedział \left[-8, +\infty\right). Funkcja ta spełnia warunek
f(-2)=-\frac{15}{2}, a suma
jej miejsc zerowych jest równa -6.
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20355 ⋅ Poprawnie: 21/82 [25%]
» W trójkąt równoramienny o podstawie a i
ramieniu długości b wpisano prostokąt w taki sposób,
że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość
2x. Wyznacz x tak,
aby pole wpisanego prostokąta było jak największe.
Ile wynosi to największe pole prostokąta?
Dane
a=56
b=53
Odpowiedź:
P_{max}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat