Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-2(x-3)^2-5 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p,+\infty)
B. (-\infty,p)
C. (p,q)
D. \langle p,q\rangle
E. \langle p,+\infty)
F. (-\infty,p\rangle
Podpunkt 1.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(5-x)(2x-6) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -8, -4\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+5\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : x^2-10x+50\geqslant 0
T/N : x^2+x+\frac{1}{4} > 0
Zadanie 6. 2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 176/295 [59%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dana jest funkcja
f(x)=a(x+1)^2-4 , do wykresu której
nalezy punkt
P=(-3,-28) .
Wyznacz a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 87/435 [20%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Osią symetrii wykresu funkcji kwadratowej
f(x)=-x^2+bx+2 jest prosta o równaniu
x=-\frac{5}{3} .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20362 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dana jest funkcja
f(x)=ax^2+bx+c .
Wyznacz zbiór wartości funkcji
g(x)=f(x-p)+q .
Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje
wpisz 0 .
Dane
a=1
b=4
c=-7
p=-5
q=4
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje
wpisz
0 .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20375 ⋅ Poprawnie: 310/431 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż równanie
(-2-x)\left(x^2+10x+21\right)=0 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj iloczyn wszystkich rozwiązań tego równania.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8)
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną
wszystkich końców liczbowych tych przedziałów.
Dane
a=-2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30061 ⋅ Poprawnie: 39/93 [41%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dana jest funkcja kwadratowa
f(x)=ax^2+bx+c , która
spełnia warunek
f(x_1)=f(x_2)=y_1 .
Najmniejszą wartością funkcji
f jest liczba
y_2 .
Oblicz wartość współczynnika a .
Dane
x_1=3
x_2=7
y_1=-12
y_2=-16
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz wartość współczynnika
b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż