Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 815/1146 [71%] Rozwiąż 
Podpunkt 1.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2-6 x-12 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 1.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{1}{2} B. -\frac{3}{4}
C. +\infty D. -\infty
E. \frac{1}{2} F. \frac{3}{4}
Zadanie 2.  1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 676/827 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(x+11)(x+3). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=-28 B. x_1+x_2=-14
C. x_1+x_2=14 D. x_1+x_2=28
Zadanie 3.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=x^2-6 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. x=-3 B. y=-6x+1
C. y=6x D. y=6
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 47 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 666/873 [76%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 » Równanie (2x-9)(x+2)=(2x-9)(2x-6) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20929 ⋅ Poprawnie: 39/58 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu -5 osiąga wartość najmniejszą równą 9. Wiedząc, że do jej wykresu należy punkt należy punkt A=(-4,14), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20349 ⋅ Poprawnie: 7/38 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Dana jest funkcja f(x)= \begin{cases} (x+3)^2-4 \text{, dla } x\leqslant 0 \\ -(x+3)^2+14 \text{, dla }x > 0 \end{cases} .

Wyznacz zbiór tych wartości, które funkcja f przyjmuje trzy razy, dla trzech różnych argumentów.

Zbiór ten zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 223/691 [32%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=-5
c=-4
p=-7
q=4
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20386 ⋅ Poprawnie: 30/47 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dana jest funkcja f(x)=a(x+1)^2-14400, której jednym z miejsc zerowych jest liczba 7.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20400 ⋅ Poprawnie: 216/421 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność ax\geqslant bx^2+c. Rozwiązaniem tej nierówności jest przedział \langle p,q\rangle.

Podaj p.

Dane
a=4
b=2
c=-16
Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30078 ⋅ Poprawnie: 37/121 [30%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dana jest funkcja f(x)=(ax+b)(cx+d). Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartość najmniejszą w tym przedziale.

Dane
a=1
b=2
c=-2
d=-6
p=-7
q=7
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj wartość największą w tym przedziale.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm