Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/896 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-3\rangle:
Odpowiedzi:
A. y=-(x-2)^2-3 B. y=(x+3)^2-2
C. y=-(x+3)^2-2 D. y=-(x-2)^2+3
E. y=(x-3)^2-2 F. y=-(x+2)^2+1
Zadanie 2.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby 4 oraz 6. Do wykresu tej funkcji należy punkt A=(0,48). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1 T/N : miejscami zerowymi tej funkcji są liczby -2 i 4
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)  
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 12\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2-5x-6)\sqrt{9-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 80/233 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkt P=(-2,0) jest wierzchołkiem paraboli określonej równaniem y=2x^2+4px+q-2. Oblicz wartości współczynników p i q.

Podaj wartość p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj wartość q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20933 ⋅ Poprawnie: 4/12 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta o równaniu y=90 przecina wykres funkcji określonej wzorem f(x)=a(x-x_1)(x-x_2), gdzie x_1\lessdot x_2, w punktach o odciętych równych -7 oraz -3, a największą wartością tej funkcji jest liczba 98.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz miejsca zerowe x_1 i x_2 tej funkcji.
Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-20943 ⋅ Poprawnie: 21/46 [45%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Sprzedawca miesięcznie sprzedaje k=68 laptopów w cenie 3600 złotych sztuka. Zauważył, że każda obniżka ceny laptopa o 25 złotych zwiększa sprzedaż o jedną sztukę miesięcznie.

Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 144/200 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczba i jej kwadrat dają sumę równą 2070. Jaka to liczba?

Podaj najmniejszą możliwą wartość tej liczby.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20407 ⋅ Poprawnie: 25/44 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność -3\cdot f(x)-2\cdot g(x) > 6, gdzie f(x)=x^2-4x+1 i g(x)=x-3.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_L=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30092 ⋅ Poprawnie: 52/130 [40%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Pole powierzchni trójkąta prostokątnego wynosi p cm2. Jedna z jego przyprostokątnych jest o d cm dłuższa niż druga.

Podaj długość przeciwprostokątnej tego trójkąta.

Dane
p=180
d=31
Odpowiedź:
c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm