Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
(4,5) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,-6) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. \langle 6,+\infty)
B. (-\infty,6\rangle
C. (-\infty,5\rangle
D. \langle -6,+\infty)
Zadanie 2. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m+2)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. (-\infty,p\rangle
C. \langle p,q\rangle
D. (p,+\infty)
E. \langle p,+\infty)
F. (p,q)
Podpunkt 2.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji określonej wzorem
f(x)=x^2-4
przesunięto o
k=5 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Suma dwóch liczb jest równa
22\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Iloczyn
(x-3)(4-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 247/510 [48%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Największa wartość funkcji
f(x)=a(x-3)(x+1) jest równa
20 .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 87/435 [20%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Osią symetrii wykresu funkcji kwadratowej
f(x)=-x^2+bx+2 jest prosta o równaniu
x=\frac{4}{3} .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20362 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dana jest funkcja
f(x)=ax^2+bx+c .
Wyznacz zbiór wartości funkcji
g(x)=f(x-p)+q .
Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje
wpisz 0 .
Dane
a=2
b=-8
c=-5
p=-2
q=2
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje
wpisz
0 .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20380 ⋅ Poprawnie: 78/197 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Suma kwadratów dwóch kolejnych liczb naturalnych nieparzystych jest równa
3530 .
Podaj mniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 111/228 [48%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
3x^2+bx+c\leqslant 0 .
Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.
Dane
b=-\frac{27}{2}=-13.50000000000000
c=15=15.00000000000000
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30092 ⋅ Poprawnie: 52/130 [40%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
» Pole powierzchni trójkąta prostokątnego wynosi
p cm
2 . Jedna z jego przyprostokątnych
jest o
d cm dłuższa niż druga.
Podaj długość przeciwprostokątnej tego trójkąta.
Dane
p=1386
d=41
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Rozwiąż