Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja
y=x^2-3 .
Do zbioru ZW_f nie należy liczba:
Odpowiedzi:
A. 9-4\sqrt{7}
B. 10-10\sqrt{2}
C. 7-4\sqrt{5}
D. 4-4\sqrt{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x-3)(x-9) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji określonej wzorem
f(x)=x^2-4
przesunięto o
k=6 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
124 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{49-100x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p\rangle
C. (p,+\infty)
D. (p,q)
E. \langle p,+\infty)
F. (-\infty,p\rangle\cup\langle q,+\infty)
Podpunkt 5.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 33/105 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane jest funkcja
f(x)=-x^2+6x+16 , gdzie
x\in\langle -1,8\rangle . Wyznacz
ZW_f .
Zapisz ZW_f w postaci przedziału. Podaj lewy koniec
tego przedziału.
Odpowiedź:
y_l=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji
w postaci ogólnej.
Podaj współczynnik b występujący we wzorze.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj liczbę a+c .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 221/686 [32%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Funkcja kwadratowa jest określona wzorem
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f
w przedziale \langle p,q\rangle .
Dane
a=-1
b=4
c=-6
p=-3
q=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz największą wartość funkcji
f
w tym przedziale.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20385 ⋅ Poprawnie: 37/79 [46%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Rozwiąż układ równań:
\begin{cases}
y=-\frac{1}{2}x^2+7x+19 \\
y=-\frac{1}{2}x+2
\end{cases}
.
Podaj największe możliwe x .
Odpowiedź:
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20387 ⋅ Poprawnie: 685/963 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż nierówność
\frac{1}{a}x^2\leqslant 2x-a .
Podaj największą liczbę spełniającą tę nierówność.
Dane
a=7
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30080 ⋅ Poprawnie: 43/113 [38%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
» Największa wartość funkcji kwadratowej
f(x)=a(x-5)^2-6 w przedziale
\langle -1,1\rangle jest równa
10 . Wyznacz najmniejszą wartość funkcji
f w przedziale
\langle -1,1\rangle .
Podaj tę wartość.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż