Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział
(-\infty,6\rangle .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczby
2 i
-\frac{9}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-5x+18 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji
f(x)=ax^2+bx+c , dla której
D_f=\mathbb{R} .
Wówczas:
Odpowiedzi:
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)
T/N : funkcja f nie jest różnowartościowa
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1
Zadanie 4. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=14t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{11}{2}x-\frac{9}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 74/170 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Najmniejszą wartość równą
-12 trójmian
y=x^2+bx+c osiąga dla
x=3 .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 87/435 [20%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Osią symetrii wykresu funkcji kwadratowej
f(x)=-x^2+bx+2 jest prosta o równaniu
x=-\frac{1}{3} .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 128/220 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wiadomo, że
x-y=46 , a także, że suma
x^2+y^2
jest najmniejsza możliwa.
Podaj liczbę x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 144/200 [72%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Liczba i jej kwadrat dają sumę równą
2352 .
Jaka to liczba?
Podaj najmniejszą możliwą wartość tej liczby.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20396 ⋅ Poprawnie: 41/244 [16%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Rozwiąż nierówność
(a-x)(bx-1) \geqslant 0 .
Ile liczb całkowitych z przedziału
\langle -20,20\rangle spełnia tę nierówność?
Dane
a=1
b=2
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj długość rozwiązania (długość przedziału).
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30066 ⋅ Poprawnie: 45/104 [43%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wierzchołek wykresu funkcji kwadratowej
f(x)=ax^2-18x+26 , gdzie
a > 0 , należy do
prostej o równaniu
y=-1 . Oblicz współrzędne tego wierzchołka.
Podaj odciętą wierzchołka paraboli.
Odpowiedź:
x_w=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Rozwiąż