Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wierzchołkiem paraboli, która jest wykresem funkcji
f
jest punkt
W=(-5,1) .
Wówczas:
Odpowiedzi:
T/N : f(-10)=f(0)
T/N : f(-7)=f(-2)
T/N : f(-8)=f(-3)
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(1-4x)(x+2) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 481/648 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji
f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -6,-3\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 385/588 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Iloczyn
(x+4)(1-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 35/62 [56%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q dla argumentu
7 osiąga wartość największą równą
1 . Wiedząc, że do jej wykresu należy punkt
należy punkt
A=(5,-2) , wyznacz wzór tej funkcji.
Podaj współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20900 ⋅ Poprawnie: 53/92 [57%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Dana jest funkcja kwadratowa
g(x)=ax^2+bx+c , która
spełnia warunek
g(5)=g(7)=0 . Do wykresu funkcji
g należy punkt
\left(2,\frac{15}{2}\right) .
Wyznacz współrzędne
(x_w,y_w) wierzchołka paraboli będącej
wykresem funkcji
g .
Podaj x_w .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 223/691 [32%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Funkcja kwadratowa jest określona wzorem
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f
w przedziale \langle p,q\rangle .
Dane
a=-1
b=-2
c=9
p=-3
q=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz największą wartość funkcji
f
w tym przedziale.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20380 ⋅ Poprawnie: 79/199 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Suma kwadratów dwóch kolejnych liczb naturalnych nieparzystych jest równa
4234 .
Podaj mniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20394 ⋅ Poprawnie: 15/176 [8%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Rozwiąż nierówność
x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle -10, 10\rangle spełnia tę nierówność?
Dane
b=\frac{8}{3}=2.66666666666667
c=-1=-1.00000000000000
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu,
względem którego zbiór ten jest symetryczny.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30092 ⋅ Poprawnie: 55/133 [41%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
» Pole powierzchni trójkąta prostokątnego wynosi
p cm
2 . Jedna z jego przyprostokątnych
jest o
d cm dłuższa niż druga.
Podaj długość przeciwprostokątnej tego trójkąta.
Dane
p=1224
d=127
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Rozwiąż