Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Dla x=5 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą 1.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+7)(x+3) jest przedział liczbowy \langle -12,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-7,-3).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. x=-4 B. x-2=0
C. y-2=0 D. y=-4
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 61 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 630 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 33/105 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane jest funkcja f(x)=-x^2+6x+16, gdzie x\in\langle -1,4\rangle. Wyznacz ZW_f.

Zapisz ZW_f w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
y_l= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20934 ⋅ Poprawnie: 9/36 [25%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c przyjmuje wartości nie większe od 25 wtedy i tylko wtedy, gdy x\in(-\infty,-4\rangle\cup\langle 2,+\infty), a wierzchołek jej wykresu należy do prostej o równaniu y=31.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/428 [38%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=3
b=6
c=12
p=-5
q=1
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wyznacz większe z rozwiązań równania 2x^2-60x+438=0.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20404 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność 6x^2 > b+cx.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
b=-8=-8.00000000000000
c=26=26.00000000000000
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30100 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Trasa na szczyt góry ma długość 9.0 km. Pan Nowak pokonał ją tam i z powrotem w czasie 315 minut, przy czym średnia predkość z jaką pan Nowak wchodził na szczyt była o 1 km/h mniejsza od średniej prędkości z jaką schodził z góry.

Oblicz średnią prędkość z jaką pan Nowak podchodził pod górę.

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm