Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 210/336 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2+\frac{5}{2} o p=2 jednostek w lewo i q=12 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+2)^2-\frac{19}{2} B. y=(x-2)^2+\frac{29}{2}
C. y=(x+12)^2+\frac{9}{2} D. y=(x-2)^2-\frac{19}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-5(x-8)(x-7). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz największą całkowitą wartość funkcji określonej wzorem f(x)=-x^2+3x+6.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=12t-2t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 253/534 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{100-81x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. \langle p,+\infty) B. \langle p,q\rangle
C. (p,+\infty) D. (-\infty,p\rangle
E. (-\infty,p\rangle\cup\langle q,+\infty) F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 32/73 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q spełnia warunek f(-8)=f(2)=-6, a jej zbiorem wartości jest przedział (-\infty, -1\rangle.

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 28/60 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Liczba -3 jest miejscem zerowym funkcji kwadratowej h. Maksymalny przedział, w którym ta funkcja jest malejąca jest równy \langle 1,+\infty). W przedziale \langle -6,-5\rangle największą wartością funkcji h jest -60. Wyznacz wzór funkcji h(x)=ax^2+bx+c.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/54 [27%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=\frac{2}{5}=0.40000000000000
c=\frac{43}{21}=2.04000000000000
p=-2
q=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 87/171 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż równanie x^2-\frac{8}{\sqrt{2}}x+6=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20419 ⋅ Poprawnie: 366/862 [42%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność 7x+2+14a-16a^2\geqslant 4x^2+16ax .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Dane
a=4
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Punkt A=(x_0, y_0) należy do paraboli y=ax^2+bx+c i różnica x_0-y_0 jest największa możliwa.

Podaj wartość x_0.

Dane
a=1
b=5
c=-14
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj wartość y_0.
Odpowiedź:
y_0= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm