Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
(1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=-6(x+2011)^2+m-10
jest przedział
(-\infty, 2021\rangle .
Wówczas liczba m jest równa:
Odpowiedzi:
A. 2041
B. 2051
C. 2001
D. 2031
Zadanie 2. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczby
5 i
-\frac{7}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2+\frac{3}{2}x+\frac{35}{2} .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 82/119 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu której funkcji należy punkt o współrzędnych
A=(512, 0) :
Odpowiedzi:
A. y=x^2-8192
B. y=(x+512)^2
C. y=x^2+1024
D. y=(x+1024)(2x-1024)
Zadanie 4. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
41 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2-8x-20}{x+8} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f przyjmuje wartości dodatnie
T/N : f ma zbiór \mathbb{R} za dziedzinę
T/N : f ma dwa miejsca zerowe
Zadanie 6. 2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 25/66 [37%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Zbiorem wartości funkcji kwadratowej
f jest przedział
(-\infty,16\rangle oraz
f(x) > 0\iff x\in(-1,7) .
Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj
wartość współczynnika a tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20932 ⋅ Poprawnie: 17/23 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa określona wzorem
f(x)=ax^2+bx+c spełnia warunek
f(11)=-10 , a jej najmniejszą wartością jest liczba
-\frac{309}{2} . Maksymalnym przedziałem, w którym funkcja ta jest rosnąca
jest
[-6,+\infty) .
Wyznacz współczynniki a i b .
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 128/220 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wiadomo, że
x-y=44 , a także, że suma
x^2+y^2
jest najmniejsza możliwa.
Podaj liczbę x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20379 ⋅ Poprawnie: 142/257 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Równanie
x^2+(m-2)x+49=0 ma dokładnie jedno
rozwiązanie. Wyznacz
m .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20391 ⋅ Poprawnie: 23/60 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dla jakich wartości parametru
b funkcja
y=x^2+bx+c nie ma miejsc zerowych?
Rozwiązanie zapisz w postaci przedziału. Podaj długość tego przedziału.
Dane
c=49
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30060 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Zbiorem wartości funkcji kwadratowej jest przedział
(-\infty,c\rangle oraz
f(x_1)=f(x_2)=d .
Zapisz wzór tej funkcji w postaci ogólnej. Podaj najmniejszy współczynnik
występujący w tym wzorze.
Dane
c=-5
x1=-2
x2=8
d=-105
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największy współczynnik występujący w tym wzorze.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż