Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 1.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=-x^2-\sqrt{3} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left\langle p, q \right\rangle B. \left(p, q\right)
C. \left\langle p,+\infty\right) D. \left(-\infty,p\right\rangle
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby -5 i \frac{9}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-\frac{3}{2}x+\frac{135}{2}.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11034 ⋅ Poprawnie: 114/249 [45%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Przesuwając wykres funkcji określonej wzorem h(x)=x^2-3 o k=3 jednostek w lewo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+2m)^2+4m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x
C. największą wartością funkcji jest -4m D. dla m=-\frac{1}{2} funkcja jest rosnąca
Zadanie 5.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+19x+88}{x-20}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f ma jedno miejsce zerowe T/N : f przyjmuje tylko wartości ujemne
T/N : f ma dwa miejsca zerowe  
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 57/95 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle 4,+\infty), a osią symetrii jej wykresu jest prosta x=-6.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Parabola ma wierzchołek w punkcie C=(1,121) i przecina oś Ox w punktach A i B.

Wiedząc, że P_{\triangle ABC}=\frac{1331}{2}. Wyznacz wzór tej paraboli w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=1
b=6
c=12
p=-4
q=1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Dla jakiego x funkcja f osiąga minimum?
Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20385 ⋅ Poprawnie: 37/79 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż układ równań: \begin{cases} y=-\frac{1}{2}x^2+7x+2 \\ y=-\frac{1}{2}x+2 \end{cases} .

Podaj największe możliwe x.

Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20405 ⋅ Poprawnie: 26/128 [20%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz wszystkie liczby całkowite spełniające nierówność x(x+a) \lessdot b.

Ile jest tych liczb?

Dane
a=\frac{27}{2}=13.50000000000000
b=-45=-45.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Ile z tych liczb jest ujemnych?
Odpowiedź:
ile_{<0}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30092 ⋅ Poprawnie: 52/130 [40%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Pole powierzchni trójkąta prostokątnego wynosi p cm2. Jedna z jego przyprostokątnych jest o d cm dłuższa niż druga.

Podaj długość przeciwprostokątnej tego trójkąta.

Dane
p=4620
d=17
Odpowiedź:
c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm