Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
-6 i
2 oraz
że najmniejszą jej wartością jest liczba
-2 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2-3x-2}{\sqrt{-2-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-4 o
k=3 jednostek
w prawo otrzymamy wykres funkcji opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 229/342 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -9,-6\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2+4x+3}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty)
B. \langle p,q\rangle
C. (p,q)
D. \mathbb{R}-\{p\}
E. \mathbb{R}-\{p, q\}
F. \mathbb{R}-(p,q)
Podpunkt 5.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/204 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Współrzędna
y wierzchołka wykresu funkcji
f(x)=ax^2+2x-1 jest równa
0 .
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20345 ⋅ Poprawnie: 34/57 [59%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których
prosta
y=m ma dwa punkty wspólne z wykresem
funkcji
f(x)=-\frac{x^2}{2}+2x+6 .
Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=-1
b=-\frac{2}{5}=-0.40000000000000
c=\frac{41}{21}=1.96000000000000
p=-3
q=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20377 ⋅ Poprawnie: 66/112 [58%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz punkty przecięcia paraboli określonej wzorem
y=2x^2+29x+12
z prostą o równaniu
y=-2 .
Podaj najmniejszą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20402 ⋅ Poprawnie: 14/96 [14%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Rozwiąż nierówność
-x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle 0,100\rangle spełnia tę nierówność?
Dane
b=15
c=-44
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30101 ⋅ Poprawnie: 24/59 [40%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Powierzchnia prostokąta
P wynosi
6000 m
2 .
Prostokąt
Q ma wymiary o 10 m i 15 m większe od wymiarów
prostokąta
P oraz pole powierzchni większe o
2250 m
2 .
Podaj najmniejszą możliwą długość boku prostokąta
P .
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj największą możliwą długość boku prostokąta
P .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż