Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-4(x-6)^2-8 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,q\rangle
C. (p,q) D. (-\infty,p)
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-9)(x+7). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11020 ⋅ Poprawnie: 56/110 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
«« Funkcja kwadratowa spełnia warunki: y=px^2+qx+r i p\cdot r \lessdot 0.

Wykres tej funkcji pokazano na rysunku:

Odpowiedzi:
A. D B. A
C. B D. C
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (7,-10).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 74/170 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Najmniejszą wartość równą -11 trójmian y=x^2+bx+c osiąga dla x=1.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Parabola ma wierzchołek w punkcie C=(4,225) i przecina oś Ox w punktach A i B.

Wiedząc, że P_{\triangle ABC}=\frac{3375}{2}. Wyznacz wzór tej paraboli w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=1=1.00000000000000
c=\frac{9}{4}=2.25000000000000
p=-3
q=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20385 ⋅ Poprawnie: 37/79 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż układ równań: \begin{cases} y=-\frac{1}{2}x^2+2x+2 \\ y=-\frac{1}{2}x+2 \end{cases} .

Podaj największe możliwe x.

Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20416 ⋅ Poprawnie: 16/78 [20%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność x^2+bx+c > 0.

Ile liczb całkowitych dodatnich, co najwyżej dwucyfrowych spełnia tę nierówność?

Dane
b=3
c=-108
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Ile liczb całkowitych ujemnych nie spełnia tej nierówności?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30084 ⋅ Poprawnie: 16/168 [9%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » W trójkąt równoramienny o podstawie a i ramieniu długości b wpisano prostokąt w taki sposób, że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość 2x. Wyznacz x tak, aby pole wpisanego prostokąta było jak największe.

Ile wynosi to największe pole prostokąta?

Dane
a=24
b=13
Odpowiedź:
P_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm