Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 234/412 [56%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Parabola y=(10-2x)^2-2 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(1-4x)(x+2) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 82/119 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu której funkcji należy punkt o współrzędnych A=(512, 0):
Odpowiedzi:
A. y=(x+512)^2 B. y=x^2+1024
C. y=(x+1024)(2x-1024) D. y=x^2-8192
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 2, 6\rangle funkcja kwadratowa f(x)=-\left(x-3\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-7)(x-4)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 72/119 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wykres funkcji f(x)=x^2-4x+c-15 jest styczny do osi Ox.

Wyznacz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/16 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+c przyjmuje wartości ujemne tylko wtedy, gdy x\in\left(d, e\right). Wiadomo, że wykres funkcji f przechodzi przez punkt A=(p,q).

Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników a+b+c.

Dane
d=-2
e=3.5
p=1
q=-15
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Zapisz wzór tej funkcji w postaci kanonicznej f(x)=a(x-p)^2+q. Podaj wartość współczynnika p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 128/220 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wiadomo, że x-y=42, a także, że suma x^2+y^2 jest najmniejsza możliwa.

Podaj liczbę x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20377 ⋅ Poprawnie: 66/112 [58%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz punkty przecięcia paraboli określonej wzorem y=2x^2+29x+12 z prostą o równaniu y=-2.

Podaj najmniejszą możliwą współrzędną punktu przecięcia się obu wykresów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 111/228 [48%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność 3x^2+bx+c\leqslant 0.

Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.

Dane
b=\frac{9}{2}=4.50000000000000
c=-30=-30.00000000000000
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Punkt A=(x_0, y_0) należy do paraboli y=ax^2+bx+c i różnica x_0-y_0 jest największa możliwa.

Podaj wartość x_0.

Dane
a=1
b=-5
c=-20
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj wartość y_0.
Odpowiedź:
y_0= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm