Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 234/412 [56%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Parabola
y=(10-2x)^2-2
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(1-4x)(x+2) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 82/119 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu której funkcji należy punkt o współrzędnych
A=(512, 0) :
Odpowiedzi:
A. y=(x+512)^2
B. y=x^2+1024
C. y=(x+1024)(2x-1024)
D. y=x^2-8192
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 2, 6\rangle funkcja kwadratowa
f(x)=-\left(x-3\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-7)(x-4)^2(x^2+x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 72/119 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Wykres funkcji
f(x)=x^2-4x+c-15 jest styczny do osi
Ox .
Wyznacz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/16 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Funkcja kwadratowa
f(x)=ax^2+bx+c przyjmuje
wartości ujemne tylko wtedy, gdy
x\in\left(d, e\right) . Wiadomo, że wykres
funkcji
f przechodzi przez punkt
A=(p,q) .
Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników
a+b+c .
Dane
d=-2
e=3.5
p=1
q=-15
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Zapisz wzór tej funkcji w postaci kanonicznej
f(x)=a(x-p)^2+q . Podaj wartość współczynnika
p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 128/220 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wiadomo, że
x-y=42 , a także, że suma
x^2+y^2
jest najmniejsza możliwa.
Podaj liczbę x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20377 ⋅ Poprawnie: 66/112 [58%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz punkty przecięcia paraboli określonej wzorem
y=2x^2+29x+12
z prostą o równaniu
y=-2 .
Podaj najmniejszą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 111/228 [48%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
3x^2+bx+c\leqslant 0 .
Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.
Dane
b=\frac{9}{2}=4.50000000000000
c=-30=-30.00000000000000
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Punkt
A=(x_0, y_0) należy do paraboli
y=ax^2+bx+c i różnica
x_0-y_0 jest największa możliwa.
Podaj wartość x_0 .
Dane
a=1
b=-5
c=-20
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
y_0=
(wpisz liczbę całkowitą)
Rozwiąż