Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa
określona wzorem f(x)=x^2+2x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A.\langle p, q\rangle
B.\langle p, +\infty)
C.(p, +\infty)
D.(p, q)
E.(-\infty, p\rangle
F.(-\infty, p)
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/12 [33%]
« Dana jest funkcja kwadratowa o tej własnosci, że rozwiązaniem nierówności
f(x) \lessdot 0 jest przedział
(-7,4). Rozwiąż nierówność
-f(x+3) \lessdot 0.
Ile liczb całkowitych nie spełnia tej nierówności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%]
» W trójkąt równoramienny o podstawie a i
ramieniu długości b wpisano prostokąt w taki sposób,
że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość
2x. Wyznacz x tak,
aby pole wpisanego prostokąta było jak największe.
Ile wynosi to największe pole prostokąta?
Dane
a=24
b=37
Odpowiedź:
P_{max}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat