Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 637/962 [66%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Postać kanoniczna trójmianu kwadratowego
y=3x^2-30x+\frac{221}{3}
opisana jest wzorem
y=a(x-p)^2+q .
Podaj wartość parametru p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 1.2 (0.5 pkt)
Podaj wartość parametru
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójmian kwadratowy
y=4x^2-8x-140 można zapisać w postaci
y=a(x-7)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-3(x+2018)(x-666) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(600) < f(670)
T/N : f(-701) \lessdot f(-801)
Zadanie 4. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
85 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
6\pi\cdot x > 5x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 74/170 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Najmniejszą wartość równą
-11 trójmian
y=x^2+bx+c osiąga dla
x=3 .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=ax^2+bx+c
jest przedział
\left[-2, +\infty\right) . Funkcja ta spełnia warunek
f(-4)=-\frac{3}{2} , a suma
jej miejsc zerowych jest równa
-10 .
Wyznacz współczynniki a i b .
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=1
b=-\frac{2}{5}=-0.40000000000000
c=\frac{43}{21}=2.04000000000000
p=-3
q=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 144/200 [72%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Liczba i jej kwadrat dają sumę równą
3906 .
Jaka to liczba?
Podaj najmniejszą możliwą wartość tej liczby.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20406 ⋅ Poprawnie: 14/38 [36%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż nierówność
f(x)-x\cdot g(x)\geqslant 0 , gdzie
f(x)=x^2+bx+c i
g(x)=x-3 .
Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Dane
b=7
c=8
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Punkt
A=(x_0, y_0) należy do paraboli
y=ax^2+bx+c i różnica
x_0-y_0 jest największa możliwa.
Podaj wartość x_0 .
Dane
a=1
b=5
c=-17
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
y_0=
(wpisz liczbę całkowitą)
Rozwiąż