Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 345/643 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wskaż funkcję, która w przedziale (-\infty,-6) jest malejąca:
Odpowiedzi:
A. y=-(x+6)^2+1 B. y=(x+6)^2-1
C. y=(x-1)^2-6 D. y=(x+1)^2-6
E. y=-(x-6)^2-6 F. y=(x-6)^2-1
Zadanie 2.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-7)(x-1). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x-7)^2-1 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=1 B. y=-2
C. x=7 D. x=-5
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 39 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 538/882 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : x^2+\frac{2}{3}x+\frac{1}{9} > 0 T/N : 2x^2-3x-1 \geqslant 0
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 59/99 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle 2,+\infty), a osią symetrii jej wykresu jest prosta x=-1.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20898 ⋅ Poprawnie: 26/33 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz współczynniki b i c trójmianu kwadratowego y=f(x)=2x^2+bx+c wiedząc, że funkcja f przyjmuje wartości niedodatnie tylko dla x\in\langle -1,2\rangle.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/430 [38%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=2
b=-4
c=-6
p=-4
q=5
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20375 ⋅ Poprawnie: 313/435 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie (-3-x)\left(x^2-x-2\right)=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj iloczyn wszystkich rozwiązań tego równania.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20422 ⋅ Poprawnie: 67/144 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność (2x-1-2a)x > 6\left(x-\frac{1+2a}{2}\right)\left(x+\frac{1-3a}{3}\right) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30084 ⋅ Poprawnie: 16/168 [9%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » W trójkąt równoramienny o podstawie a i ramieniu długości b wpisano prostokąt w taki sposób, że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość 2x. Wyznacz x tak, aby pole wpisanego prostokąta było jak największe.

Ile wynosi to największe pole prostokąta?

Dane
a=160
b=89
Odpowiedź:
P_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm