Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 170/221 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Zbiór wartości funkcji określonej wzorem y=-f(x)+1 jest równy:
Odpowiedzi:
A. \langle 5,+\infty)
B. \langle -3,+\infty)
C. (-\infty,-3\rangle
D. (-\infty, 5\rangle
Zadanie 2. 1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=-(10x+10)(x+3) . Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji
f spełniającymi warunek
x_1+x_2=......... .
Podaj brakującą liczbę.
Odpowiedzi:
A. x_1+x_2=8
B. x_1+x_2=4
C. x_1+x_2=-8
D. x_1+x_2=-4
Zadanie 3. 1 pkt ⋅ Numer: pp-11020 ⋅ Poprawnie: 56/110 [50%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Funkcja kwadratowa spełnia warunki:
y=px^2+qx+r i
p\cdot r \lessdot 0 .
Wykres tej funkcji pokazano na rysunku:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+5m)^2+25m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca
B. dla pewnego m funkcja ma jedno miejsce zerowe
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
D. największą wartością funkcji jest -25m
Zadanie 5. 1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-\frac{8}{3} ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr
m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. (-\infty,p\rangle
C. (p,q)
D. (p,+\infty)
E. \langle p, q\rangle
F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q spełnia warunek
f(3)=f(13)=2 , a jej zbiorem wartości
jest przedział
(-\infty, 7\rangle .
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 87/435 [20%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Osią symetrii wykresu funkcji kwadratowej
f(x)=-x^2+bx+2 jest prosta o równaniu
x=\frac{10}{3} .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Pewne ciało w czasie
t\ [s] przebyło drogę
s [m] ,
którą opisuje wzór
s(t)=t^2+6t+13 , gdzie
t\in\langle 4,8\rangle .
Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.
Odpowiedź:
s(t)=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 90/212 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż układ równań:
\begin{cases}
y=x^2-13x-3 \\
y+13x=13
\end{cases}
.
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
y_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20400 ⋅ Poprawnie: 216/420 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
ax\geqslant bx^2+c .
Rozwiązaniem tej nierówności jest przedział
\langle p,q\rangle .
Podaj p .
Dane
a=21
b=3
c=36
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30066 ⋅ Poprawnie: 45/104 [43%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wierzchołek wykresu funkcji kwadratowej
f(x)=ax^2-40x+102 , gdzie
a > 0 , należy do
prostej o równaniu
y=2 . Oblicz współrzędne tego wierzchołka.
Podaj odciętą wierzchołka paraboli.
Odpowiedź:
x_w=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Rozwiąż