Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (-5,4) i (0,-6).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -5 oraz -3, a wierzchołek paraboli będącej jej wykresem ma współrzędne (-4,-3), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x+5)(x+3) B. f(x)=\frac{9}{4}(x-5)(x+3)
C. f(x)=3(x-5)(x+3) D. f(x)=3(x+5)(x-3)
Zadanie 3.  1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Przesuwając wykres funkcji określonej wzorem h(x)=x^2-4 o k=3 jednostek w prawo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=6t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+4\right)\left(x^2-3x-6\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 57/95 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=2x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle -2,+\infty), a osią symetrii jej wykresu jest prosta x=-4.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20934 ⋅ Poprawnie: 9/36 [25%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c przyjmuje wartości nie większe od 15 wtedy i tylko wtedy, gdy x\in(-\infty,-5\rangle\cup\langle 1,+\infty), a wierzchołek jej wykresu należy do prostej o równaniu y=21.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20942 ⋅ Poprawnie: 56/140 [40%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest prostokąt o bokach długości 7 i 8. Długość krótszego boku tego prostokąta zwiększono o x, a długość boku dłuższego zmniejszono o x. Funkcja opisana wzorem f(x)=ax^2+bx+c wyraża pole powierzchni zmienionego prostokąta.

Podaj współczynniki tej funkcji.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe pole powierzchi tego prostokąta.
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20377 ⋅ Poprawnie: 66/112 [58%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz punkty przecięcia paraboli określonej wzorem y=2x^2+29x+12 z prostą o równaniu y=-2.

Podaj najmniejszą możliwą współrzędną punktu przecięcia się obu wykresów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20405 ⋅ Poprawnie: 26/128 [20%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz wszystkie liczby całkowite spełniające nierówność x(x+a) \lessdot b.

Ile jest tych liczb?

Dane
a=\frac{11}{2}=5.50000000000000
b=-\frac{9}{2}=-4.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Ile z tych liczb jest ujemnych?
Odpowiedź:
ile_{<0}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30094 ⋅ Poprawnie: 71/115 [61%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Książka miała 504 stron i Kamil przeczytał ją czytając co dziennie taką samą ilość stron. Gdyby jednak czytał co dziennie o 4 stron więcej, to przeczytałby całą książke o 3 dni wcześniej.

Ile dni Kamil czytał książkę?

Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm