Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=3+(-2-x)^2 B. y=8(x-4)^2-8
C. y=-5(x+7)^2+3 D. y=(x+5)^2-4
Zadanie 2.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x-7)(x+3) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/159 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ile punktów wspólnych z osią Ox ma wykres funkcji kwadratowej f(x)=7-3(x-3)^2:
Odpowiedzi:
A. 3 B. 2
C. 1 D. 0
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : 2x^2+6x-1 \geqslant 0 T/N : x^2+18x+162\geqslant 0
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 57/95 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=4x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle -3,+\infty), a osią symetrii jej wykresu jest prosta x=-2.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/16 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+c przyjmuje wartości ujemne tylko wtedy, gdy x\in\left(d, e\right). Wiadomo, że wykres funkcji f przechodzi przez punkt A=(p,q).

Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników a+b+c.

Dane
d=-3
e=1.5
p=0
q=-18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Zapisz wzór tej funkcji w postaci kanonicznej f(x)=a(x-p)^2+q. Podaj wartość współczynnika p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 128/220 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wiadomo, że x-y=70, a także, że suma x^2+y^2 jest najmniejsza możliwa.

Podaj liczbę x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20380 ⋅ Poprawnie: 78/197 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Suma kwadratów dwóch kolejnych liczb naturalnych nieparzystych jest równa 5834.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20398 ⋅ Poprawnie: 193/403 [47%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność (x-a)(a-x-2) > 3(x-a-2).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30102 ⋅ Poprawnie: 26/38 [68%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Grupa miłośników klubu pływackiego wykupiła wspólnie abonament na okres jednego roku. Miesięczna opłata abonamentowa wynosiła 630 zł. Podzielono ją na równe części, tak aby każdy płacił taką samą kwotę. Po upływie miesiąca do grupy dołączyło jeszcze d=7 osób i wówczas miesięczna opłata przypadająca na jedną osobę zmalała o 3 zł.

Ile osób początkowo liczyła grupa miłośników pływania?

Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm