Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 94/158 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Różnica iloczynu liczby
12 oraz liczby
x i kwadratu liczby
x jest największa dla liczby
x równej:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(-1+3x)(x-3) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11045 ⋅ Poprawnie: 41/79 [51%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczby
a i
b spełniają
warunek
a\cdot b \lessdot 0 .
Liczba rozwiązań układu równań
\begin{cases}
y=ax^2+b \\
y=0
\end{cases}
jest równa:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 223/340 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/969 [66%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2-11x+30}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,q\rangle
C. \mathbb{R}-\{p\}
D. \mathbb{R}-\{p, q\}
E. (-\infty,p)\cup(q,+\infty)
F. \mathbb{R}-(p,q)
Podpunkt 5.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 35/62 [56%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q dla argumentu
6 osiąga wartość największą równą
10 . Wiedząc, że do jej wykresu należy punkt
należy punkt
A=(4,7) , wyznacz wzór tej funkcji.
Podaj współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20936 ⋅ Poprawnie: 51/143 [35%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa określona wzorem
f(x)=-4x^2+bx+c
jest malejąca wtedy i tylko wtedy, gdy
x\in\langle -1,+\infty) .
Wiedząc, że
f(-2)=1 , oblicz współczynniki
b i
c .
Podaj liczbę b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 64/115 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f
w przedziale \langle p,q\rangle .
Dane
a=3
b=12
c=13
p=-3
q=1
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Dla jakiego
x funkcja
f
osiąga minimum?
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 146/203 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Liczba i jej kwadrat dają sumę równą
3192 .
Jaka to liczba?
Podaj najmniejszą możliwą wartość tej liczby.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20423 ⋅ Poprawnie: 71/174 [40%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz dziedzinę funkcji
f(x)=\frac{\sqrt{-x^2+bx+c}}{\sqrt{a-x^2}} .
Odpowiedź zapisz w postaci przedziału i podaj lewy koniec tego przedziału.
Dane
a=36
b=-5
c=36
Odpowiedź:
l=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30061 ⋅ Poprawnie: 40/96 [41%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dana jest funkcja kwadratowa
f(x)=ax^2+bx+c , która
spełnia warunek
f(x_1)=f(x_2)=y_1 .
Najmniejszą wartością funkcji
f jest liczba
y_2 .
Oblicz wartość współczynnika a .
Dane
x_1=3
x_2=7
y_1=-48
y_2=-64
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz wartość współczynnika
b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż