Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 358/563 [63%]
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
« Funkcja
y=-(x+4)^2-1 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,+\infty)
C. (p,+\infty)
D. (-\infty,p\rangle
E. \langle p,q\rangle
F. (-\infty,p)
Podpunkt 1.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 367/696 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-2(x-5)(x+4) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x+1)^2+7 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=-1
B. y=6
C. y=8
D. x=3
Zadanie 4. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
63 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/186 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x+1)^2+\frac{25}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 251/514 [48%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Największa wartość funkcji
f(x)=a(x-3)(x+1) jest równa
24 .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20348 ⋅ Poprawnie: 24/61 [39%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja kwadratowa o tej własnosci, że rozwiązaniem nierówności
f(x) \lessdot 0 jest przedział
(1,5) . Rozwiąż nierówność
-f(x+3) \lessdot 0 .
Ile liczb całkowitych nie spełnia tej nierówności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/54 [27%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=1
b=-\frac{2}{3}=-0.66666666666667
c=\frac{19}{9}=2.11111111111111
p=-3
q=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20383 ⋅ Poprawnie: 59/109 [54%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Kwadrat liczby jest o
4158 większy od potrojonej
wartości tej liczby. Znajdź tę liczbę.
Podaj najmniesze z rozwiązań.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20410 ⋅ Poprawnie: 36/153 [23%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Rozwiąż nierówność
-3x^2+bx+c\leqslant 0 .
Ile liczb całkowitych nie należy do rozwiązania?
Dane
b=21
c=-18
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30060 ⋅ Poprawnie: 32/66 [48%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Zbiorem wartości funkcji kwadratowej jest przedział
(-\infty,c\rangle oraz
f(x_1)=f(x_2)=d .
Zapisz wzór tej funkcji w postaci ogólnej. Podaj najmniejszy współczynnik
występujący w tym wzorze.
Dane
c=-4
x1=-1
x2=5
d=-40
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największy współczynnik występujący w tym wzorze.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż