« Zbiorem wartości funkcji
f(x)=5x^2-10x+m-2 jest przedział liczbowy zawarty w przedziale
\langle 0,+\infty), wtedy i tylko wtedy, gdy parametr
m należy do pewnego przedziału.
Przedział, do którego należy parametr m ma postać:
Odpowiedzi:
A.(p,+\infty)
B.(-\infty,p)
C.\langle p,+\infty)
D.(p,q)
E.\langle p,q\rangle
F.(-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 466/732 [63%]
« Najmniejszą wartość w przedziale
\langle 5, 9\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-8\right)^{2}+5
przyjmuje dla argumentu ......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%]
Prosta o równaniu y=90 przecina wykres funkcji określonej wzorem
f(x)=a(x-x_1)(x-x_2),
gdzie x_1\lessdot x_2, w punktach o odciętych równych
-3 oraz 1, a największą wartością
tej funkcji jest liczba 98.
Wyznacz współczynnik a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz miejsca zerowe x_1 i x_2 tej funkcji.
Odpowiedzi:
x_1
=
(wpisz liczbę całkowitą)
x_2
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 202/659 [30%]
» Funkcja kwadratowa f(x)=ax^2+bx-15 jest
malejąca w przedziale (-\infty,-2\rangle, a rosnąca
w przedziale \langle -2,+\infty). Wierzchołek
paraboli będącej wykresem tej funkcji należy do prostej o równaniu
y=4x-19.
Zapisz wzór tej funkcji w postaci kanonicznej
y=a(x-p)^2+q. Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj q.
Odpowiedź:
q=(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Wyznacz miejsca zerowe tej funkcji.
Podaj mniejsze z miejsc zerowych.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat