Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 173/317 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-3(x+3)^2-5.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-1)-3.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 166/295 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(-1+4x)(x-4).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 388/558 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz maksymalny przedział, w którym funkcja określona wzorem f(x)=x^2-4x+\frac{7}{2} jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 71/94 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/969 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+13x+42}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. \mathbb{R}-\{p\} D. \mathbb{R}-(p,q)
E. (-\infty,p)\cup(q,+\infty) F. \mathbb{R}-\{p, q\}
Podpunkt 5.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 75/123 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wykres funkcji f(x)=x^2-14x+c-15 jest styczny do osi Ox.

Wyznacz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 88/438 [20%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Osią symetrii wykresu funkcji kwadratowej f(x)=-x^2+bx+2 jest prosta o równaniu x=-\frac{8}{3}.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20356 ⋅ Poprawnie: 25/92 [27%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=-2
c=-\frac{1}{2}=-0.50000000000000
p=-2
q=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20379 ⋅ Poprawnie: 142/258 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Równanie x^2+(m-2)x+9=0 ma dokładnie jedno rozwiązanie. Wyznacz m.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20403 ⋅ Poprawnie: 112/208 [53%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz wszystkie argumenty x, dla których funkcja f(x)=4x^2+bx+c przyjmuje wartości niedodatnie.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
b=3=3.00000000000000
c=\frac{1}{2}=0.50000000000000
Odpowiedź:
l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30066 ⋅ Poprawnie: 48/107 [44%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wierzchołek wykresu funkcji kwadratowej f(x)=ax^2+16x+28, gdzie a > 0, należy do prostej o równaniu y=-4. Oblicz współrzędne tego wierzchołka.

Podaj odciętą wierzchołka paraboli.

Odpowiedź:
x_w= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj a.
Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Punkt A=(x_0, y_0) należy do paraboli y=ax^2+bx+c i różnica x_0-y_0 jest największa możliwa.

Podaj wartość x_0.

Dane
a=1
b=-5
c=-9
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj wartość y_0.
Odpowiedź:
y_0= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30102 ⋅ Poprawnie: 28/40 [70%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 « Grupa miłośników klubu pływackiego wykupiła wspólnie abonament na okres jednego roku. Miesięczna opłata abonamentowa wynosiła 288 zł. Podzielono ją na równe części, tak aby każdy płacił taką samą kwotę. Po upływie miesiąca do grupy dołączyło jeszcze d=4 osób i wówczas miesięczna opłata przypadająca na jedną osobę zmalała o 6 zł.

Ile osób początkowo liczyła grupa miłośników pływania?

Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm