Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x+6)^2+2m-4 należy do prostej o równaniu y=1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -6 oraz -2, a wierzchołek paraboli będącej jej wykresem ma współrzędne (-4,-12), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=\frac{9}{4}(x-6)(x+2) B. f(x)=3(x+6)(x+2)
C. f(x)=3(x+6)(x-2) D. f(x)=3(x-6)(x+2)
Zadanie 3.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/77 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. A B. C
C. D D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=20t-2t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 6\pi\cdot x > 3x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 80/233 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkt P=(1,0) jest wierzchołkiem paraboli określonej równaniem y=2x^2+4px+q-2. Oblicz wartości współczynników p i q.

Podaj wartość p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj wartość q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20935 ⋅ Poprawnie: 13/22 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Średnia arytmetyczna miejsc zerowych funkcji kwadratowej określonej wzorem f(x)=ax^2+bx jest równa 1. Rzędna wierzchołka paraboli będącej wykresem tej funkcji jest równa -7.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 120/208 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wiadomo, że x-y=54, a także, że suma x^2+y^2 jest najmniejsza możliwa.

Podaj liczbę x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20378 ⋅ Poprawnie: 20/61 [32%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wyznacz punkty przecięcia paraboli o równaniu y=2x^2+11x-11 z prostą określoną wzorem y=x-1.

Podaj sumę współrzędnych tego z punktów przecięcia, który w układzie współrzędnych położony jest najbardziej na lewo.

Odpowiedź:
x_L+y_L= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj sumę współrzędnych tego z punktów przecięcia, który w układzie współrzędnych położony jest najbardziej na prawo.
Odpowiedź:
x_P+y_P= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20396 ⋅ Poprawnie: 41/244 [16%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność (a-x)(bx-1) \geqslant 0.

Ile liczb całkowitych z przedziału \langle -20,20\rangle spełnia tę nierówność?

Dane
a=-1
b=3
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj długość rozwiązania (długość przedziału).
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30077 ⋅ Poprawnie: 20/88 [22%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wykres funkcji kwadratowej f przecina oś Ox w punktach o odciętych x=4 oraz x=6 i przechodzi przez punkt (3,6). Wykres ten przesunięto i otrzymano wykres funkcji kwadratowej określonej wzorem g(x)=f(x-p). Wierzchołek wykresu funkcji g leży na osi Oy. Wyznacz wzór funkcji g(x)=ax^2+bx+c.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30089 ⋅ Poprawnie: 28/76 [36%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Funkcja liniowa określona jest wzorem y=x-p. Na wykresie tej funkcji znajdź taki punkt o współrzędnych P=(a,b), aby suma a^2+b^2 miała najmniejszą możliwą wartość.

Podaj tę najmniejszą możliwą sumę.

Dane
p=7
Odpowiedź:
min\left(a^2+b^2\right)=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30097 ⋅ Poprawnie: 13/34 [38%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 » Średni czas drukowania n stron wyraża się wzorem P(n)=an^2+bn. Zauważono, że drukowanie 6 stron trwa średnio t_1=8 sekund, a drukowanie 10 stron średnio t_2=20 sekund.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Ile kartek można wydrukować średnio w ciągu 49 sekund? Wynik zaokrąglij w dół.
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm