« W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju 1225
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 247/510 [48%]
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej wzorem
f(x)=3x^2+bx+c jest prosta o równaniu x=5,
a najmniejszą wartością tej funkcji jest 1.
Wyznacz współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20359 ⋅ Poprawnie: 51/109 [46%]
» Funkcja kwadratowa f(x)=ax^2+bx+15 jest
malejąca w przedziale (-\infty,-3\rangle, a rosnąca
w przedziale \langle -3,+\infty). Wierzchołek
paraboli będącej wykresem tej funkcji należy do prostej o równaniu
y=-3x-21.
Zapisz wzór tej funkcji w postaci kanonicznej
y=a(x-p)^2+q. Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj q.
Odpowiedź:
q=(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Wyznacz miejsca zerowe tej funkcji.
Podaj mniejsze z miejsc zerowych.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30091 ⋅ Poprawnie: 22/67 [32%]
» Wykres funkcji f(x)=-2x^2 przesunięto o
p=2 jednostek wzdłuż osi Ox
oraz o q=1 jednostek wzdłuż osi
Oy i otrzymano wykres funkcji
g.
Rozwiąż nierówność g(x)+5 \lessdot 3x.
Jaka jest najmniejsza liczba, która nie spełnia tej nierówności?
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Wyznacz ZW_g.
Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
p=(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
Funkcja g określona jest wzorem
g(x)=-2x^2+bx+c.
Podaj b\cdot c.
Odpowiedź:
b\cdot c=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pp-30102 ⋅ Poprawnie: 26/38 [68%]
« Grupa miłośników klubu pływackiego wykupiła wspólnie abonament na okres
jednego roku. Miesięczna opłata abonamentowa wynosiła 1170 zł. Podzielono ją na
równe części, tak aby każdy płacił taką samą kwotę.
Po upływie miesiąca do grupy dołączyło jeszcze d=6 osób i wówczas miesięczna
opłata przypadająca na jedną osobę zmalała o 4 zł.
Ile osób początkowo liczyła grupa miłośników pływania?
Odpowiedź:
k=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat