Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-14\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(1-x)(2x-6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 214/313 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Jeden z poniższych wzorów opisuje funkcję postaci y=ax^2+bx+c, której wykres pokazano na rysunku:

Wskaż ten wzór:

Odpowiedzi:
A. y=a(x-1)^2-2 B. y=a(x-2)^2+1
C. y=a(x+1)^2-2 D. y=a(x-1)^2+2
E. y=a(x+1)^2+2 F. y=a(x-2)^2-1
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+8m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. największą wartością funkcji jest -8m B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x
C. dla pewnego m funkcja ma jedno miejsce zerowe D. dla m=-\frac{1}{2} funkcja jest rosnąca
Zadanie 5.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : 2x^2-3x-6 \geqslant 0 T/N : x^2+2x+2\geqslant 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu -4 osiąga wartość największą równą 10. Wiedząc, że do jej wykresu należy punkt należy punkt A=(-6,7), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 87/435 [20%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Osią symetrii wykresu funkcji kwadratowej f(x)=-x^2+bx+2 jest prosta o równaniu x=\frac{1}{3}.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20368 ⋅ Poprawnie: 45/102 [44%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz najmniejszą wartość funkcji g(x)=ax^2+bx+c w przedziale \langle p,q\rangle.
Dane
a=-1
b=6
c=-6
p=-2
q=2
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 144/200 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczba i jej kwadrat dają sumę równą 2652. Jaka to liczba?

Podaj najmniejszą możliwą wartość tej liczby.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20398 ⋅ Poprawnie: 193/403 [47%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność (x-a)(a-x-2) > 3(x-a-2).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30067 ⋅ Poprawnie: 40/171 [23%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx-24 jest malejąca w przedziale (-\infty,-2\rangle, a rosnąca w przedziale \langle -2,+\infty). Wierzchołek paraboli będącej wykresem tej funkcji należy do prostej o równaniu y=3x-26.

Zapisz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz miejsca zerowe tej funkcji.

Podaj mniejsze z miejsc zerowych.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30079 ⋅ Poprawnie: 21/90 [23%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Liczba c jest rozwiązaniem równania 8^{p}+2^{q}\cdot x=0, zaś liczba d wynosi \frac{125^{500}}{5^{1500}}. Funkcja kwadratowa g(x)=(x-c)(x-d) określona jest w przedziale \langle x_1,x_2\rangle.

Podaj najmniejszą wartość funkcji g.

Dane
p=21
q=60
x1=-4
x2=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największą wartość funkcji g.
Odpowiedź:
g_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30095 ⋅ Poprawnie: 13/51 [25%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 « Trasa pomiędzy miastami A i B ma długość 279 km. Pociąg Intercity pokonał tę trasę w czasie o 31 minut dłuższym od pociągu Pendolino. Średnia prędkość pociągu Intercity była o 18 km/h mniejsza od wartości średniej prędkości z jaką jechał pociąg Pendolino.

Podaj średnią prędkośc pociągu Intercity.

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Podaj średnią prędkość pociągu Pendolino.
Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm