Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=-3(x-7)^2-2 B. g(x)=4(x+3)^2-\sqrt{10}
C. g(x)=2(x-1)^2+2 D. g(x)=3(x-3)^2+7
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x+714)(x-102), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11027 ⋅ Poprawnie: 42/93 [45%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu x=-5 jest osią symetrii wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym rysunku. Zbiór A zawiera wszystkie te wartości rzeczywiste x, dla których f(x)\leqslant 0.

Podaj najmniejszą liczbę należącą do zbioru A.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 92. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Iloczyn (x-1)(4-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20928 ⋅ Poprawnie: 66/116 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy, gdy x\in\langle1,+\infty), zbiorem jej wartości jest przedział \langle1, +\infty), a do jej wykresu należy punkt A=(2,3). Wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20348 ⋅ Poprawnie: 23/58 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja kwadratowa o tej własnosci, że rozwiązaniem nierówności f(x) \lessdot 0 jest przedział (1,8). Rozwiąż nierówność -f(x+3) \lessdot 0.

Ile liczb całkowitych nie spełnia tej nierówności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 221/686 [32%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=-2
c=4
p=-5
q=3
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20370 ⋅ Poprawnie: 30/58 [51%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Funkcja kwadratowa f(x)=32x^2+bx+\frac{49}{2} ma tylko jedno miejsce zerowe. Oblicz b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 
Odpowiedź:
b_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20808 ⋅ Poprawnie: 149/447 [33%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność ax^2+c \leqslant bx.

Podaj największą liczbę, która spełnia tę nierówność.

Dane
a=4
b=2
c=-110
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Ile liczb całkowitych spełnia tę nierówność?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30068 ⋅ Poprawnie: 32/124 [25%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dana jest funkcja g(x)=x^2+4px+1, która spełnia warunek ZW_{g}=\langle a,+\infty). Wyznacz p.

Podaj najmniejsze możliwe p.

Dane
a=-10
Odpowiedź:
p_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe p.
Odpowiedź:
p_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30084 ⋅ Poprawnie: 16/168 [9%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » W trójkąt równoramienny o podstawie a i ramieniu długości b wpisano prostokąt w taki sposób, że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość 2x. Wyznacz x tak, aby pole wpisanego prostokąta było jak największe.

Ile wynosi to największe pole prostokąta?

Dane
a=120
b=61
Odpowiedź:
P_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30103 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Na odcinku 294 km pierwszy pociąg Pendolino osiągnął czas o 28 minut krótszy od pociągu Intercity. Średnia prędkość pociągu Intercity była o 15 km/h mniejsza od średniej prędkości pociągu Pendolino.

Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm