Zbiorem wartości funkcji kwadratowej f
określonej wzorem f(x)=m(x+6)(x+4)
jest przedział liczbowy \langle -3,+\infty), a rozwiązaniem
nierówności f(x) \lessdot 0 przedział
(-6,-4).
Wyznacz współczynnik m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11054 ⋅ Poprawnie: 31/57 [54%]
« Najmniejszą wartość w przedziale
\langle 0, 4\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-3\right)^{2}+5
przyjmuje dla argumentu ......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 142/230 [61%]
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-1 ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A.(-\infty,p\rangle
B.(-\infty,p)
C.(p,+\infty)
D.\langle p,+\infty)
E.(p,q)
F.\langle p, q\rangle
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20338 ⋅ Poprawnie: 95/228 [41%]
» Prosta x=-3 jest osią symetrii paraboli
f(x)=ax^2+bx+1, a najmniejsza wartość funkcji
f jest równa -17.
Wyznacz równanie tej funkcji w postaci ogólnej.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%]
« Wykres funkcji kwadratowej f przecina oś
Ox w punktach o odciętych
x=4 oraz x=10 i przechodzi
przez punkt (3,21). Wykres ten przesunięto i
otrzymano wykres funkcji kwadratowej określonej wzorem g(x)=f(x-p).
Wierzchołek wykresu funkcji g leży na osi
Oy. Wyznacz wzór funkcji
g(x)=ax^2+bx+c.
Podaj liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj liczbę c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30080 ⋅ Poprawnie: 43/114 [37%]
» Największa wartość funkcji kwadratowej
f(x)=a(x-5)^2-6 w przedziale
\langle -1,1\rangle jest równa
10. Wyznacz najmniejszą wartość funkcji
f w przedziale
\langle -1,1\rangle.
Podaj tę wartość.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pp-30103 ⋅ Poprawnie: 20/44 [45%]
Na odcinku 255 km pierwszy pociąg Pendolino osiągnął czas o 30 minut krótszy
od pociągu Intercity. Średnia prędkość pociągu Intercity była o 17 km/h
mniejsza od średniej prędkości pociągu Pendolino.
Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?
Odpowiedź:
v_{sr}=(wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat