Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/405 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=(-1,10) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/93 [53%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+3)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p,q\rangle
C. (-\infty,p\rangle D. (p,q)
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11045 ⋅ Poprawnie: 41/79 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Liczby a i b spełniają warunek a\cdot b \lessdot 0.

Liczba rozwiązań układu równań \begin{cases} y=ax^2+b \\ y=0 \end{cases} jest równa:

Odpowiedzi:
A. 1 B. 0
C. 3 D. 2
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 204/339 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+25m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x B. dla pewnego m funkcja ma jedno miejsce zerowe
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. największą wartością funkcji jest -25m
Zadanie 5.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 225/429 [52%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2+\frac{6}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. \langle p,q\rangle
C. (p,q) D. (-\infty,p)\cup\langle q,+\infty)
E. (-\infty,p\rangle F. (-\infty,p)
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 59/99 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=4x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle 2,+\infty), a osią symetrii jej wykresu jest prosta x=4.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20896 ⋅ Poprawnie: 12/17 [70%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f określona jest dla wszystkich liczb rzeczywistych x wzorem f(x)=ax^2+bx+c. Przedział (p,q) jest rozwiązaniem nierówności f(x) > 0, natomiast liczba t jest największą wartością funkcji f.

Oblicz wartość współczynnika a.

Dane
p=-1
q=7
t=32
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz wartość współczynnika b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-20943 ⋅ Poprawnie: 22/48 [45%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Sprzedawca miesięcznie sprzedaje k=62 laptopów w cenie 3600 złotych sztuka. Zauważył, że każda obniżka ceny laptopa o 25 złotych zwiększa sprzedaż o jedną sztukę miesięcznie.

Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 146/203 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczba i jej kwadrat dają sumę równą 3422. Jaka to liczba?

Podaj najmniejszą możliwą wartość tej liczby.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20397 ⋅ Poprawnie: 43/120 [35%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność -x^2+bx+c \lessdot 0.

Ile liczb całkowitych z przedziału \langle -20,20\rangle nie spełnia tej nierówności?

Dane
b=2
c=3
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30062 ⋅ Poprawnie: 27/134 [20%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz współczynniki p i q funkcji g(x)=ax^2+px+q wiedząc, że ZW_f=\langle m,+\infty) oraz g(0)=n.

Podaj p^2.

Dane
a=4
m=2
n=66
Odpowiedź:
p^2= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30091 ⋅ Poprawnie: 22/67 [32%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wykres funkcji f(x)=-2x^2 przesunięto o p=2 jednostek wzdłuż osi Ox oraz o q=6 jednostek wzdłuż osi Oy i otrzymano wykres funkcji g. Rozwiąż nierówność g(x)+5 \lessdot 3x.

Jaka jest najmniejsza liczba, która nie spełnia tej nierówności?

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Wyznacz ZW_g.

Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Funkcja g określona jest wzorem g(x)=-2x^2+bx+c.

Podaj b\cdot c.

Odpowiedź:
b\cdot c= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30099 ⋅ Poprawnie: 20/48 [41%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dron A pokonał trasę długości 44880 km w czasie o 720.00 godzin krótszym od drona B i leciał ze średnią prędkością o 12 km/h większą od drona B.

Oblicz średnią prędkość drona A.

Odpowiedź:
v_A= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Oblicz średnią prędkość drona B.
Odpowiedź:
v_B= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm