Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 813/1144 [71%]
Rozwiąż
Podpunkt 1.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2-4 x+1 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 1.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{3}{4}
B. -\infty
C. +\infty
D. -\frac{1}{2}
E. \frac{1}{2}
F. -\frac{3}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-3(x+3)(x-8) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczba punktów wspólnych wykresu funkcji
h(x)=2x^2+\frac{4}{3}x+\frac{2}{3} z osiami układu
współrzędnych jest równa:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=-x^2-3x+5 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. (-\infty,p)
C. (p,+\infty)
D. (-\infty,p\rangle
E. (p,q)
F. (p,q\rangle
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 25/66 [37%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Zbiorem wartości funkcji kwadratowej
f jest przedział
(-\infty,32\rangle oraz
f(x) > 0\iff x\in(-3,5) .
Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj
wartość współczynnika a tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20349 ⋅ Poprawnie: 7/37 [18%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
«« Dana jest funkcja
f(x)=
\begin{cases}
(x+4)^2-7 \text{, dla } x\leqslant 0 \\
-(x+4)^2+25 \text{, dla }x > 0
\end{cases}
.
Wyznacz zbiór tych wartości, które funkcja f
przyjmuje trzy razy, dla trzech różnych argumentów.
Zbiór ten zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
x_l=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=1
b=-\frac{2}{3}=-0.66666666666667
c=\frac{19}{9}=2.11111111111111
p=-3
q=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 144/200 [72%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Liczba i jej kwadrat dają sumę równą
2070 .
Jaka to liczba?
Podaj najmniejszą możliwą wartość tej liczby.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8)
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną
wszystkich końców liczbowych tych przedziałów.
Dane
a=-1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30060 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Zbiorem wartości funkcji kwadratowej jest przedział
(-\infty,c\rangle oraz
f(x_1)=f(x_2)=d .
Zapisz wzór tej funkcji w postaci ogólnej. Podaj najmniejszy współczynnik
występujący w tym wzorze.
Dane
c=-6
x1=2
x2=4
d=-9
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największy współczynnik występujący w tym wzorze.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30087 ⋅ Poprawnie: 103/199 [51%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Liczby
x i
y spełniają
warunek
x+y=a i są takie, że wyrażenie
2x^2+3y^2 ma najmniejszą możliwą wartość.
Podaj mniejszą z tych liczb.
Dane
a=90
Odpowiedź:
min(x,y)=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj większą z tych liczb.
Odpowiedź:
max(x,y)=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pp-30103 ⋅ Poprawnie: 20/44 [45%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
Na odcinku 207 km pierwszy pociąg Pendolino osiągnął czas o
7 minut krótszy
od pociągu Intercity. Średnia prędkość pociągu Intercity była o
7 km/h
mniejsza od średniej prędkości pociągu Pendolino.
Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Rozwiąż