Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=(5,-6) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(9, 18). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=4, a liczba 5 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=x^2-12 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=12x B. y=-12x+1
C. y=12 D. x=-4
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -6, -2\rangle funkcja kwadratowa f(x)=-\left(x+5\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Iloczyn (x-4)(6-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu -1 osiąga wartość największą równą 7. Wiedząc, że do jej wykresu należy punkt należy punkt A=(-3,4), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-4x^2-12x.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=\frac{2}{3}=0.66666666666667
c=\frac{28}{9}=3.11111111111111
p=-2
q=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20386 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dana jest funkcja f(x)=a(x+1)^2-14400, której jednym z miejsc zerowych jest liczba 7.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20413 ⋅ Poprawnie: 4/25 [16%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « O funkcji kwadratowej f wiadomo, że: f(a)=-\frac{5}{2}, f(b)=0 oraz f(c)=-2\frac{1}{2}. Rozwiąż nierówość f(x)\geqslant 0.

Podaj największą liczbę całkowitą spełniającą tą nierówność.

Dane
a=-8
b=-4
c=6
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30066 ⋅ Poprawnie: 45/104 [43%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wierzchołek wykresu funkcji kwadratowej f(x)=ax^2+24x+38, gdzie a > 0, należy do prostej o równaniu y=2. Oblicz współrzędne tego wierzchołka.

Podaj odciętą wierzchołka paraboli.

Odpowiedź:
x_w= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj a.
Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30087 ⋅ Poprawnie: 103/199 [51%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Liczby x i y spełniają warunek x+y=a i są takie, że wyrażenie 2x^2+3y^2 ma najmniejszą możliwą wartość.

Podaj mniejszą z tych liczb.

Dane
a=40
Odpowiedź:
min(x,y)= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max(x,y)= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30100 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 » Trasa na szczyt góry ma długość 3.0 km. Pan Nowak pokonał ją tam i z powrotem w czasie 120 minut, przy czym średnia predkość z jaką pan Nowak wchodził na szczyt była o 4 km/h mniejsza od średniej prędkości z jaką schodził z góry.

Oblicz średnią prędkość z jaką pan Nowak podchodził pod górę.

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm