Wykres funkcji określonej wzorem f(x)=x^2-3
przesunięto o k=4 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c.
Wyznacz współczynniki b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/940 [50%]
Prosta o równaniu y=90 przecina wykres funkcji określonej wzorem
f(x)=a(x-x_1)(x-x_2),
gdzie x_1\lessdot x_2, w punktach o odciętych równych
2 oraz 6, a największą wartością
tej funkcji jest liczba 98.
Wyznacz współczynnik a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz miejsca zerowe x_1 i x_2 tej funkcji.
Odpowiedzi:
x_1
=
(wpisz liczbę całkowitą)
x_2
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 202/659 [30%]
» Wykres funkcji f(x)=-2x^2 przesunięto o
p=2 jednostek wzdłuż osi Ox
oraz o q=6 jednostek wzdłuż osi
Oy i otrzymano wykres funkcji
g.
Rozwiąż nierówność g(x)+5 \lessdot 3x.
Jaka jest najmniejsza liczba, która nie spełnia tej nierówności?
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Wyznacz ZW_g.
Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
p=(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
Funkcja g określona jest wzorem
g(x)=-2x^2+bx+c.
Podaj b\cdot c.
Odpowiedź:
b\cdot c=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pp-30092 ⋅ Poprawnie: 52/130 [40%]