Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-7(x+5)^2+6 B. y=6+(-4-x)^2
C. y=5(x-8)^2-7 D. y=(x+7)^2-4
Zadanie 2.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-2(x+3)(x-3) w przedziale \left\langle -\frac{1}{2},4\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11036 ⋅ Poprawnie: 53/70 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja g określona jest wzorem g(x)=x^2-64. Funkcja f określona jest wzorem f(x)=(8-x)(8+x). Wykres funkcji f można otrzymać z wykresu funkcji g:
Odpowiedzi:
A. przesuwając go w górę wzdłuż osi Oy B. poprzez symetrię względem osi Oy
C. poprzez symetrię względem osi Ox D. przesuwając go w dół wzdłuż osi Oy
E. przesuwając go w lewo wzdłuż osi Ox F. przesuwając go w prawo wzdłuż osi Ox
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=10t-5t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-\frac{1}{4} ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p)
C. (p,q) D. (-\infty,p\rangle
E. \langle p,+\infty) F. \langle p, q\rangle
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20929 ⋅ Poprawnie: 38/56 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu 2 osiąga wartość najmniejszą równą 6. Wiedząc, że do jej wykresu należy punkt należy punkt A=(3,11), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Parabola ma wierzchołek w punkcie C=(4,338) i przecina oś Ox w punktach A i B.

Wiedząc, że P_{\triangle ABC}=2197. Wyznacz wzór tej paraboli w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Pewne ciało w czasie t\ [s] przebyło drogę s [m], którą opisuje wzór s(t)=t^2+12t+9, gdzie t\in\langle 3,7\rangle.

Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.

Odpowiedź:
s(t)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20383 ⋅ Poprawnie: 57/107 [53%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Kwadrat liczby jest o 5254 większy od potrojonej wartości tej liczby. Znajdź tę liczbę.

Podaj najmniesze z rozwiązań.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20396 ⋅ Poprawnie: 41/244 [16%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność (a-x)(bx-1) \geqslant 0.

Ile liczb całkowitych z przedziału \langle -20,20\rangle spełnia tę nierówność?

Dane
a=3
b=2
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj długość rozwiązania (długość przedziału).
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30065 ⋅ Poprawnie: 5/40 [12%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Punkt O=(0,0) należy do wykresu funkcji kwadratowej y=g(x). Funkcja h(x)=g(x+1) przyjmuje wartość największą równą m dla x=n. Wyznacz wzory obu funkcji w postaci ogólnej.

Podaj sumę współczynników funkcji g.

Dane
m=4
n=6
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj sumę współczynników h.
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30089 ⋅ Poprawnie: 28/76 [36%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Funkcja liniowa określona jest wzorem y=x-p. Na wykresie tej funkcji znajdź taki punkt o współrzędnych P=(a,b), aby suma a^2+b^2 miała najmniejszą możliwą wartość.

Podaj tę najmniejszą możliwą sumę.

Dane
p=9
Odpowiedź:
min\left(a^2+b^2\right)=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30094 ⋅ Poprawnie: 71/115 [61%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 » Książka miała 868 stron i Kamil przeczytał ją czytając co dziennie taką samą ilość stron. Gdyby jednak czytał co dziennie o 31 stron więcej, to przeczytałby całą książke o 14 dni wcześniej.

Ile dni Kamil czytał książkę?

Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm