Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 605/791 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=-8x^2-184x-216 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby -2 i \frac{5}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2+\frac{1}{2}x+5.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 319/532 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 52. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 331/548 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+4\right)\left(x^2-2x-5\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 59/152 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Najmniejszą wartość równą -6 trójmian y=x^2+bx+c osiąga dla x=2.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 20/45 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Liczba -4 jest miejscem zerowym funkcji kwadratowej h. Maksymalny przedział, w którym ta funkcja jest malejąca jest równy \langle 1,+\infty). W przedziale \langle -7,-6\rangle największą wartością funkcji h jest -48. Wyznacz wzór funkcji h(x)=ax^2+bx+c.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Pewne ciało w czasie t\ [s] przebyło drogę s [m], którą opisuje wzór s(t)=t^2+6t+5, gdzie t\in\langle 3,7\rangle.

Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.

Odpowiedź:
s(t)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20383 ⋅ Poprawnie: 57/107 [53%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Kwadrat liczby jest o 3658 większy od potrojonej wartości tej liczby. Znajdź tę liczbę.

Podaj najmniesze z rozwiązań.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20395 ⋅ Poprawnie: 22/89 [24%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Rozwiąż nierówność ax^2+bx+c > 0.

Ile liczb całkowitych z przedziału \langle -10, 10\rangle spełnia tę nierówność?

Dane
a=-1
b=-\frac{5}{3}=-1.66666666666667
c=\frac{2}{3}=0.66666666666667
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30060 ⋅ Poprawnie: 31/65 [47%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Zbiorem wartości funkcji kwadratowej jest przedział (-\infty,c\rangle oraz f(x_1)=f(x_2)=d.

Zapisz wzór tej funkcji w postaci ogólnej. Podaj najmniejszy współczynnik występujący w tym wzorze.

Dane
c=2
x1=-6
x2=4
d=-73
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największy współczynnik występujący w tym wzorze.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30084 ⋅ Poprawnie: 16/168 [9%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » W trójkąt równoramienny o podstawie a i ramieniu długości b wpisano prostokąt w taki sposób, że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość 2x. Wyznacz x tak, aby pole wpisanego prostokąta było jak największe.

Ile wynosi to największe pole prostokąta?

Dane
a=24
b=13
Odpowiedź:
P_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30094 ⋅ Poprawnie: 65/102 [63%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 » Książka miała 529 stron i Kamil przeczytał ją czytając co dziennie taką samą ilość stron. Gdyby jednak czytał co dziennie o 506 stron więcej, to przeczytałby całą książke o 22 dni wcześniej.

Ile dni Kamil czytał książkę?

Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm