Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 134/245 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » W przedziale \langle -1,2\rangle funkcja y=3x^2-3x+2 osiąga wartość najmniejszą równą ......... .

Podaj brakującą liczbę.

Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(-x-9)(x-6). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=-6 B. x_1+x_2=6
C. x_1+x_2=3 D. x_1+x_2=-3
Zadanie 3.  1 pkt ⋅ Numer: pp-11034 ⋅ Poprawnie: 114/249 [45%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Przesuwając wykres funkcji określonej wzorem h(x)=x^2-9 o k=3 jednostek w lewo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 124. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=3x^2+5x+1. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (p,q\rangle
C. (p,+\infty) D. (-\infty,p\rangle
E. (p, q) F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/204 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Współrzędna y wierzchołka wykresu funkcji f(x)=ax^2+2x-1 jest równa -2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20932 ⋅ Poprawnie: 17/23 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c spełnia warunek f(10)=-5, a jej najmniejszą wartością jest liczba -\frac{299}{2}. Maksymalnym przedziałem, w którym funkcja ta jest rosnąca jest [-7,+\infty).

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 221/686 [32%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=4
c=8
p=-1
q=9
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20782 ⋅ Poprawnie: 61/81 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane jest równanie (x^3+216)(x^2+4x-45)=0.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20388 ⋅ Poprawnie: 44/132 [33%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Wyznacz dziedzinę funkcji: f(x)=\frac{\sqrt{ax^2+bx+c}}{x} .

Ile liczb całkowitych należy do dziedziny tej funkcji?

Dane
a=-1
b=1
c=90
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30068 ⋅ Poprawnie: 32/124 [25%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dana jest funkcja g(x)=x^2+4px+1, która spełnia warunek ZW_{g}=\langle a,+\infty). Wyznacz p.

Podaj najmniejsze możliwe p.

Dane
a=-2
Odpowiedź:
p_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe p.
Odpowiedź:
p_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30086 ⋅ Poprawnie: 98/305 [32%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Pan Nowak ma d metrów bieżących siatki i zamierza ogrodzić ogródek w kształcie prostokąta o możliwie największej powierzchni, przy czym na jednym z boków tego prostokąta musi zostawić 4 m na bramę wjazdową. Jakie wymiary powinien mieć prostokątny ogródek, aby jego pole powierzchni było jak największe?

Podaj krótszy bok tego prostokąta.

Dane
d=72
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj pole powierzchni tego prostokąta.
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30100 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 » Trasa na szczyt góry ma długość 11.5 km. Pan Nowak pokonał ją tam i z powrotem w czasie 483 minut, przy czym średnia predkość z jaką pan Nowak wchodził na szczyt była o 3 km/h mniejsza od średniej prędkości z jaką schodził z góry.

Oblicz średnią prędkość z jaką pan Nowak podchodził pod górę.

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm