« Zbiorem wartości funkcji
f(x)=4x^2+8x+m-2 jest przedział liczbowy zawarty w przedziale
\langle 0,+\infty), wtedy i tylko wtedy, gdy parametr
m należy do pewnego przedziału.
Przedział, do którego należy parametr m ma postać:
Odpowiedzi:
A.(p,q)
B.(-\infty,p\rangle
C.\langle p,q\rangle
D.(-\infty,p)
E.(p,+\infty)
F.\langle p,+\infty)
Podpunkt 3.2 (0.8 pkt)
Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 266/400 [66%]
Sprzedawca miesięcznie sprzedaje k=54 laptopów w cenie 3600
złotych sztuka. Zauważył, że każda obniżka ceny laptopa o 10
złotych zwiększa sprzedaż o jedną sztukę miesięcznie.
Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20379 ⋅ Poprawnie: 142/258 [55%]
» Funkcja kwadratowa f(x)=ax^2+bx+12 jest
malejąca w przedziale (-\infty,-4\rangle, a rosnąca
w przedziale \langle -4,+\infty). Wierzchołek
paraboli będącej wykresem tej funkcji należy do prostej o równaniu
y=-4x-20.
Zapisz wzór tej funkcji w postaci kanonicznej
y=a(x-p)^2+q. Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj q.
Odpowiedź:
q=(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Wyznacz miejsca zerowe tej funkcji.
Podaj mniejsze z miejsc zerowych.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30078 ⋅ Poprawnie: 37/121 [30%]
Na odcinku 253 km pierwszy pociąg Pendolino osiągnął czas o 33 minut krótszy
od pociągu Intercity. Średnia prędkość pociągu Intercity była o 23 km/h
mniejsza od średniej prędkości pociągu Pendolino.
Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?
Odpowiedź:
v_{sr}=(wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat