Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt (-12,-5) jest wierzchołkiem paraboli. Punkt o współrzędnych P=(0,6) należy do tej paraboli.

Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:

Odpowiedzi:
A. \langle 5,+\infty) B. \langle -5,+\infty)
C. (-\infty,5\rangle D. (-\infty,-5\rangle
Zadanie 2.  1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(-1-3x)(x-3) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 481/648 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. A B. C
C. D D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 266/400 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 2\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 190/262 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 210 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 76/172 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Najmniejszą wartość równą -32 trójmian y=x^2+bx+c osiąga dla x=5.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20938 ⋅ Poprawnie: 87/115 [75%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 O funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c wiadomo, że przyjmuje wartości ujemne wtedy i tylko wtedy, gdy x\in(-\infty, -5)\cup(0,+\infty), a do jej wykresu należy punkt A=(-2,12).

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20355 ⋅ Poprawnie: 22/83 [26%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=-1=-1.00000000000000
c=\frac{7}{4}=1.75000000000000
p=-4
q=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20385 ⋅ Poprawnie: 38/80 [47%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż układ równań: \begin{cases} y=-\frac{1}{2}x^2-13x+15 \\ y=-\frac{1}{2}x+2 \end{cases} .

Podaj największe możliwe x.

Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20421 ⋅ Poprawnie: 15/49 [30%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność 5(2x+3-4a)-2x^2+8ax-8a^2\geqslant 3(x-2a)^2 .

Rozwiązanie zapisz w postaci przedziału i podaj jego środek.

Dane
a=-4
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30067 ⋅ Poprawnie: 43/176 [24%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx-15 jest malejąca w przedziale (-\infty,-2\rangle, a rosnąca w przedziale \langle -2,+\infty). Wierzchołek paraboli będącej wykresem tej funkcji należy do prostej o równaniu y=4x-19.

Zapisz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz miejsca zerowe tej funkcji.

Podaj mniejsze z miejsc zerowych.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Punkt A=(x_0, y_0) należy do paraboli y=ax^2+bx+c i różnica x_0-y_0 jest największa możliwa.

Podaj wartość x_0.

Dane
a=1
b=-3
c=-20
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj wartość y_0.
Odpowiedź:
y_0= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30103 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Na odcinku 221 km pierwszy pociąg Pendolino osiągnął czas o 26 minut krótszy od pociągu Intercity. Średnia prędkość pociągu Intercity była o 17 km/h mniejsza od średniej prędkości pociągu Pendolino.

Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm