Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Parabola o wierzchołku P=(4,7) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=3(x-7)^2+7 B. y=(x-4)^2-7
C. y=-2(x-4)^2+7 D. y=-2(x+4)^2+7
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby 3 i \frac{7}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-\frac{13}{2}x+\frac{21}{2}.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 79/132 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej y=f(x).

Funkcja g określona jest wzorem g(x)=7\cdot f(x)+5. Wówczas zbiór ZW_g jest pewnym przedziałem liczbowym.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -6,-3\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (3-7x)(x+7)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 65/110 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wykres funkcji f(x)=x^2+6x+c-15 jest styczny do osi Ox.

Wyznacz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/16 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+c przyjmuje wartości ujemne tylko wtedy, gdy x\in\left(d, e\right). Wiadomo, że wykres funkcji f przechodzi przez punkt A=(p,q).

Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników a+b+c.

Dane
d=-7
e=2.5
p=1
q=-48
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Zapisz wzór tej funkcji w postaci kanonicznej f(x)=a(x-p)^2+q. Podaj wartość współczynnika p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20360 ⋅ Poprawnie: 20/51 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Wyznacz najmniejszą wartość funkcji f(x)=bx+ax^2.
Dane
a=1=1.00000000000000
b=-\frac{3}{4}=-0.75000000000000
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20382 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Iloczyn dwóch liczb ujemnych jest równy 2640, a jedna z nich jest o 7 mniejsza od połowy drugiej liczby.

Podaj większą z tych liczb.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20394 ⋅ Poprawnie: 14/175 [8%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność x^2+bx+c \lessdot 0.

Ile liczb całkowitych z przedziału \langle -10, 10\rangle spełnia tę nierówność?

Dane
b=-\frac{9}{4}=-2.25000000000000
c=\frac{1}{2}=0.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30060 ⋅ Poprawnie: 31/65 [47%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Zbiorem wartości funkcji kwadratowej jest przedział (-\infty,c\rangle oraz f(x_1)=f(x_2)=d.

Zapisz wzór tej funkcji w postaci ogólnej. Podaj najmniejszy współczynnik występujący w tym wzorze.

Dane
c=4
x1=1
x2=3
d=-1
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największy współczynnik występujący w tym wzorze.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30082 ⋅ Poprawnie: 29/61 [47%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Wyznacz wartość największą funkcji f(x)=\frac{1}{x^2+12x+31} w przedziale \langle a,b\rangle.

Podaj tę wartość.

Dane
a=-1
b=3
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30099 ⋅ Poprawnie: 18/44 [40%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dron A pokonał trasę długości 23520 km w czasie o 840.00 godzin krótszym od drona B i leciał ze średnią prędkością o 14 km/h większą od drona B.

Oblicz średnią prędkość drona A.

Odpowiedź:
v_A= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Oblicz średnią prędkość drona B.
Odpowiedź:
v_B= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm