Funkcja kwadratowa jest określona wzorem
f(x)=-(2x+8)(x-5). Liczby
x_1 i x_2 są różnymi
miejscami zerowymi funkcji f spełniającymi warunek
x_1+x_2=..........
Podaj brakującą liczbę.
Odpowiedzi:
A.x_1+x_2=1
B.x_1+x_2=-1
C.x_1+x_2=2
D.x_1+x_2=-2
Zadanie 3.1 pkt ⋅ Numer: pp-11027 ⋅ Poprawnie: 42/93 [45%]
Prosta o równaniu x=-2 jest osią symetrii
wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym
rysunku. Zbiór A zawiera wszystkie te wartości
rzeczywiste x, dla których
f(x)\leqslant 0.
Podaj najmniejszą liczbę należącą do zbioru A.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c spełnia warunek
f(1)=-8, a jej najmniejszą wartością jest liczba
-\frac{305}{2}. Maksymalnym przedziałem, w którym funkcja ta jest rosnąca
jest [-16,+\infty).
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 113/259 [43%]
Dane sa wykresy funkcji f i
g. Funkcja f jest
określona wzorem f(x)=-x^2+10x-16, a mniejsze z
jej miejsc zerowych jest jednocześnie miejscem zerowym funkcji
g. Wierzchołek W paraboli,
która jest wykresem funkcji f, leży na wykresie
funkcji g, a wierzchołek Z
paraboli będącej wykresem funkcji g leży na osi
Oy układu współrzędnych.
Wyznacz wzór funkcji g(x)=ax^2+bx+c.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj liczbę c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pp-30084 ⋅ Poprawnie: 16/168 [9%]
» W trójkąt równoramienny o podstawie a i
ramieniu długości b wpisano prostokąt w taki sposób,
że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość
2x. Wyznacz x tak,
aby pole wpisanego prostokąta było jak największe.
Ile wynosi to największe pole prostokąta?
Dane
a=56
b=53
Odpowiedź:
P_{max}=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pp-30106 ⋅ Poprawnie: 22/40 [55%]
Trasę długości 208 km pan Nowak pokonał przechodząc każdego dnia taki sam
odcinek drogi. Gdyby jednak na całą wyprawę mógł poświęcić 10 dni więcej, to
mógłby dziennie przechodzić o 5 km mniej.
Ile kilometrów dziennie pokonywał pan Nowak?
Odpowiedź:
s=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat