Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
1 i
5 oraz
że najmniejszą jej wartością jest liczba
-1 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(-1-x)(3x+3) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/169 [47%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
«« Funkcja określona wzorem
f(x)=(-5m+6)x^2+3x-14 osiąga
wartość największą wtedy i tylko wtedy, gdy parametr
m należy do
pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p)
C. \langle p,+\infty)
D. (-\infty,p\rangle
E. (p,q)
F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 6, 10\rangle funkcja kwadratowa
f(x)=-\left(x-7\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{3}{2}x+\frac{5}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 25/66 [37%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Zbiorem wartości funkcji kwadratowej
f jest przedział
(-\infty,12\rangle oraz
f(x) > 0\iff x\in(-5,-1) .
Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj
wartość współczynnika a tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20898 ⋅ Poprawnie: 25/32 [78%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz współczynniki
b i
c
trójmianu kwadratowego
y=f(x)=2x^2+bx+c wiedząc, że
funkcja
f przyjmuje wartości niedodatnie tylko dla
x\in\langle -4,6\rangle.
Podaj b .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 173/368 [47%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja
f(x)=x^2+bx+c , gdzie
x\in\langle p, q\rangle .
Oblicz najmniejszą wartość funkcji f .
Dane
b=6
c=12
p=-4
q=-3
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Oblicz największą wartość funkcji
f .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 90/212 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż układ równań:
\begin{cases}
y=x^2-8x-3 \\
y+8x=6
\end{cases}
.
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
y_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20410 ⋅ Poprawnie: 35/150 [23%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Rozwiąż nierówność
-3x^2+bx+c\leqslant 0 .
Ile liczb całkowitych nie należy do rozwiązania?
Dane
b=3
c=126
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30066 ⋅ Poprawnie: 45/104 [43%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wierzchołek wykresu funkcji kwadratowej
f(x)=ax^2-20x+48 , gdzie
a > 0 , należy do
prostej o równaniu
y=-2 . Oblicz współrzędne tego wierzchołka.
Podaj odciętą wierzchołka paraboli.
Odpowiedź:
x_w=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30078 ⋅ Poprawnie: 36/119 [30%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Dana jest funkcja
f(x)=(ax+b)(cx+d) . Oblicz
najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle.
Podaj wartość najmniejszą w tym przedziale.
Dane
a=-2
b=7
c=-1
d=-7
p=-3
q=7
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj wartość największą w tym przedziale.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 4 pkt ⋅ Numer: pp-30099 ⋅ Poprawnie: 18/44 [40%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
Dron
A pokonał trasę długości
25500 km w czasie
o
480.00 godzin krótszym od drona
B i leciał ze
średnią prędkością o
8 km/h większą od drona
B .
Oblicz średnią prędkość drona A .
Odpowiedź:
v_A=
(wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
Oblicz średnią prędkość drona
B .
Odpowiedź:
v_B=
(wpisz liczbę całkowitą)
Rozwiąż