Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli y=x^2-10x leży na prostej o równaniu:
Odpowiedzi:
A. y=\frac{5}{2}x B. y=-10x
C. y=-\frac{5}{2}x D. y=10x
E. y=5x F. y=-5x
Zadanie 2.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(1, 12). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=-4, a liczba -1 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 215/313 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Jeden z poniższych wzorów opisuje funkcję postaci y=ax^2+bx+c, której wykres pokazano na rysunku:

Wskaż ten wzór:

Odpowiedzi:
A. y=a(x-1)^2+2 B. y=a(x+1)^2+2
C. y=a(x+1)^2-2 D. y=a(x-2)^2-1
E. y=a(x-1)^2-2 F. y=a(x-2)^2+1
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 45 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 131/196 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k+2)x+9=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p)\cap(q,+\infty)
C. (p,q) D. \langle p,q\rangle
E. (-\infty,p)\cup(q,+\infty) F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 76/172 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Najmniejszą wartość równą -17 trójmian y=x^2+bx+c osiąga dla x=4.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-4x^2+8x.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/54 [27%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=-1=-1.00000000000000
c=\frac{11}{4}=2.75000000000000
p=-2
q=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 87/171 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż równanie x^2+\frac{2}{\sqrt{2}}x-4=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20413 ⋅ Poprawnie: 4/25 [16%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « O funkcji kwadratowej f wiadomo, że: f(a)=-\frac{5}{2}, f(b)=0 oraz f(c)=-2\frac{1}{2}. Rozwiąż nierówość f(x)\geqslant 0.

Podaj największą liczbę całkowitą spełniającą tą nierówność.

Dane
a=-9
b=-5
c=3
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30077 ⋅ Poprawnie: 20/88 [22%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wykres funkcji kwadratowej f przecina oś Ox w punktach o odciętych x=2 oraz x=4 i przechodzi przez punkt (1,-6). Wykres ten przesunięto i otrzymano wykres funkcji kwadratowej określonej wzorem g(x)=f(x-p). Wierzchołek wykresu funkcji g leży na osi Oy. Wyznacz wzór funkcji g(x)=ax^2+bx+c.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30079 ⋅ Poprawnie: 22/92 [23%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Liczba c jest rozwiązaniem równania 8^{p}+2^{q}\cdot x=0, zaś liczba d wynosi \frac{125^{500}}{5^{1500}}. Funkcja kwadratowa g(x)=(x-c)(x-d) określona jest w przedziale \langle x_1,x_2\rangle.

Podaj najmniejszą wartość funkcji g.

Dane
p=16
q=45
x1=-4
x2=-1
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największą wartość funkcji g.
Odpowiedź:
g_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30097 ⋅ Poprawnie: 13/34 [38%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 » Średni czas drukowania n stron wyraża się wzorem P(n)=an^2+bn. Zauważono, że drukowanie 6 stron trwa średnio t_1=11 sekund, a drukowanie 12 stron średnio t_2=40 sekund.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Ile kartek można wydrukować średnio w ciągu 88 sekund? Wynik zaokrąglij w dół.
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm