Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 706/1015 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Największą wartością funkcji kwadratowej f(x)=-4(x+1)^2+5 jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-3)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,+\infty)
C. (p,+\infty) D. (-\infty,p\rangle
E. \langle p,q\rangle F. (-\infty,p)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11045 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Liczby a i b spełniają warunek a\cdot b \lessdot 0.

Liczba rozwiązań układu równań \begin{cases} y=ax^2+b \\ y=0 \end{cases} jest równa:

Odpowiedzi:
A. 2 B. 0
C. 3 D. 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2-3\right)\left(x^2+6x+5\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 33/105 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane jest funkcja f(x)=-x^2+6x+16, gdzie x\in\langle -1,4\rangle. Wyznacz ZW_f.

Zapisz ZW_f w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
y_l= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20896 ⋅ Poprawnie: 11/15 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f określona jest dla wszystkich liczb rzeczywistych x wzorem f(x)=ax^2+bx+c. Przedział (p,q) jest rozwiązaniem nierówności f(x) > 0, natomiast liczba t jest największą wartością funkcji f.

Oblicz wartość współczynnika a.

Dane
p=-5
q=-1
t=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz wartość współczynnika b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20355 ⋅ Poprawnie: 21/82 [25%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=-1=-1.00000000000000
c=\frac{7}{4}=1.75000000000000
p=-2
q=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20383 ⋅ Poprawnie: 57/107 [53%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Kwadrat liczby jest o 4288 większy od potrojonej wartości tej liczby. Znajdź tę liczbę.

Podaj najmniesze z rozwiązań.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20860 ⋅ Poprawnie: 109/219 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność 2(x-5)(x-7)+3x-15 > 3(x-6)+1.

Podaj najmniejszą liczbę, która nie spełnia tej nierówności.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30075 ⋅ Poprawnie: 27/111 [24%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dane sa wykresy funkcji f i g. Funkcja f jest określona wzorem f(x)=-2x^2+16x-14, a mniejsze z jej miejsc zerowych jest jednocześnie miejscem zerowym funkcji g. Wierzchołek W paraboli, która jest wykresem funkcji f, leży na wykresie funkcji g, a wierzchołek Z paraboli będącej wykresem funkcji g leży na osi Oy układu współrzędnych. Wyznacz wzór funkcji g(x)=ax^2+bx+c.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj liczbę c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30082 ⋅ Poprawnie: 29/61 [47%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Wyznacz wartość największą funkcji f(x)=\frac{1}{x^2+12x+31} w przedziale \langle a,b\rangle.

Podaj tę wartość.

Dane
a=-1
b=0
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30096 ⋅ Poprawnie: 22/44 [50%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Zbiornik wody, którego objetość wynosi 5916 m3 można napełnić wodą lecącą z dwóch kranów. Pierwszy kran napełnia zbiornik w czasie t_1=493 godzin, natomiast drugi w czasie t_2=348 godzin. W ciągu jednej godziny przez kran pierwszy przelatuje o 5 m3 wody mniej niż przez kran drugi.

Ile godzin potrwa napełnianianie pustego zbiornika jeśli wodę będą dostarczały obia krany?

Odpowiedź:
ile\ [h]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm