Wykres funkcji kwadratowej określonej wzorem
y=\frac{1}{5}(x+4)^2-6 otrzymano przesuwając wykres funkcji
y=\frac{1}{5}x^2 o p jednostek
wzdłuż osi Ox i o q jednostek
wzdłuż osi Oy, przy czym liczby p i
q mogą być ujemne.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 100/215 [46%]
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-\frac{5}{4} ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A.(-\infty,p)
B.(p,+\infty)
C.\langle p, q\rangle
D.(p,q)
E.\langle p,+\infty)
F.(-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20928 ⋅ Poprawnie: 67/118 [56%]
Funkcja kwadratowa f określona wzorem
f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy,
gdy x\in\langle0,+\infty), zbiorem jej wartości
jest przedział \langle-3, +\infty), a do jej wykresu
należy punkt A=(1,-1). Wyznacz wzór tej funkcji.
Podaj współczynnik a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20932 ⋅ Poprawnie: 17/23 [73%]
Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c spełnia warunek
f(5)=-7, a jej najmniejszą wartością jest liczba
-\frac{303}{2}. Maksymalnym przedziałem, w którym funkcja ta jest rosnąca
jest [-12,+\infty).
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20360 ⋅ Poprawnie: 21/52 [40%]