Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 234/412 [56%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Parabola y=(-12+3x)^2-2 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+8)(x+2) jest przedział liczbowy \langle -27,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-8,-2).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. y-2=0 B. x=-4
C. x-2=0 D. y=-4
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -6, -2\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+3\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-32=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 72/119 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wykres funkcji f(x)=x^2-6x+c-15 jest styczny do osi Ox.

Wyznacz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-8, +\infty\right). Funkcja ta spełnia warunek f(7)=-\frac{15}{2}, a suma jej miejsc zerowych jest równa 12.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Pewne ciało w czasie t\ [s] przebyło drogę s [m], którą opisuje wzór s(t)=t^2+6t+2, gdzie t\in\langle 3,7\rangle.

Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.

Odpowiedź:
s(t)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 144/200 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczba i jej kwadrat dają sumę równą 2162. Jaka to liczba?

Podaj najmniejszą możliwą wartość tej liczby.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20421 ⋅ Poprawnie: 15/48 [31%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność 5(2x+3-4a)-2x^2+8ax-8a^2\geqslant 3(x-2a)^2 .

Rozwiązanie zapisz w postaci przedziału i podaj jego środek.

Dane
a=-1
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30068 ⋅ Poprawnie: 32/124 [25%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dana jest funkcja g(x)=x^2+4px+1, która spełnia warunek ZW_{g}=\langle a,+\infty). Wyznacz p.

Podaj najmniejsze możliwe p.

Dane
a=-13
Odpowiedź:
p_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe p.
Odpowiedź:
p_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30091 ⋅ Poprawnie: 22/67 [32%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wykres funkcji f(x)=-2x^2 przesunięto o p=4 jednostek wzdłuż osi Ox oraz o q=7 jednostek wzdłuż osi Oy i otrzymano wykres funkcji g. Rozwiąż nierówność g(x)+5 \lessdot 3x.

Jaka jest najmniejsza liczba, która nie spełnia tej nierówności?

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Wyznacz ZW_g.

Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Funkcja g określona jest wzorem g(x)=-2x^2+bx+c.

Podaj b\cdot c.

Odpowiedź:
b\cdot c= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30096 ⋅ Poprawnie: 22/44 [50%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Zbiornik wody, którego objetość wynosi 4860 m3 można napełnić wodą lecącą z dwóch kranów. Pierwszy kran napełnia zbiornik w czasie t_1=405 godzin, natomiast drugi w czasie t_2=324 godzin. W ciągu jednej godziny przez kran pierwszy przelatuje o 3 m3 wody mniej niż przez kran drugi.

Ile godzin potrwa napełnianianie pustego zbiornika jeśli wodę będą dostarczały obia krany?

Odpowiedź:
ile\ [h]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm