Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Parabola y=(-8+11x)^2-1 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/129 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2-12x-35}{\sqrt{-7-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba punktów wspólnych wykresu funkcji h(x)=2x^2+\frac{2}{3}x+\frac{1}{3} z osiami układu współrzędnych jest równa:
Odpowiedzi:
A. 1 B. 2
C. 3 D. 0
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 712/883 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 49x^2+14x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 59/99 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle -1,+\infty), a osią symetrii jej wykresu jest prosta x=-4.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 88/438 [20%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Osią symetrii wykresu funkcji kwadratowej f(x)=-x^2+bx+2 jest prosta o równaniu x=-\frac{11}{3}.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20358 ⋅ Poprawnie: 32/67 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-2
b=2=2.00000000000000
c=\frac{3}{2}=1.50000000000000
p=-3
q=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20782 ⋅ Poprawnie: 61/83 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane jest równanie (x^3+64)(x^2-3x-40)=0.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20416 ⋅ Poprawnie: 18/80 [22%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność x^2+bx+c > 0.

Ile liczb całkowitych dodatnich, co najwyżej dwucyfrowych spełnia tę nierówność?

Dane
b=-5
c=-50
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Ile liczb całkowitych ujemnych nie spełnia tej nierówności?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30065 ⋅ Poprawnie: 5/40 [12%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Punkt O=(0,0) należy do wykresu funkcji kwadratowej y=g(x). Funkcja h(x)=g(x+1) przyjmuje wartość największą równą m dla x=n. Wyznacz wzory obu funkcji w postaci ogólnej.

Podaj sumę współczynników funkcji g.

Dane
m=2
n=0
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj sumę współczynników h.
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30078 ⋅ Poprawnie: 37/121 [30%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Dana jest funkcja f(x)=(ax+b)(cx+d). Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartość najmniejszą w tym przedziale.

Dane
a=-1
b=4
c=-1
d=-5
p=-7
q=1
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj wartość największą w tym przedziale.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30098 ⋅ Poprawnie: 81/158 [51%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 « W 2009 roku Kamil zapytany ile ma lat odpowiedział, że jeżeli swój wiek sprzed 11 lat pomnoży przez swój wiek za 5 lat, to otrzyma rok swojego urodzenia.

Ile lat miał Kamil w 2009 roku?

Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm