Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 876/1145 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję kwadratową, której zbiorem wartości jest przedział \langle -4,+\infty):
Odpowiedzi:
A. y=(x+1)^2-4 B. y=(x-6)^2+4
C. y=-2(x+2)^2+4 D. y=-(x-5)^2-4
E. y=-(x+3)^2-4 F. y=(x+3)^2+4
Zadanie 2.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+7)(x+5) jest przedział liczbowy \langle -4,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-7,-5).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 319/532 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 466/732 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 5, 9\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-8\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k-4)x+9=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p) B. (p,+\infty)
C. (-\infty,p)\cup(q,+\infty) D. (-\infty,p)\cap(q,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 18/53 [33%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Zbiorem wartości funkcji kwadratowej f jest przedział (-\infty,16\rangle oraz f(x) > 0\iff x\in(0,8).

Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj wartość współczynnika a tej funkcji.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
x_w+y_w=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20937 ⋅ Poprawnie: 67/129 [51%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej wzorem f(x)=3x^2+bx+c jest prosta o równaniu x=-7, a najmniejszą wartością tej funkcji jest -11.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20356 ⋅ Poprawnie: 25/91 [27%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=2
b=8
c=\frac{17}{2}=8.50000000000000
p=-3
q=1
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 84/168 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż równanie x^2-\frac{6}{\sqrt{2}}x+4=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20404 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność 6x^2 > b+cx.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
b=8=8.00000000000000
c=-22=-22.00000000000000
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30061 ⋅ Poprawnie: 39/93 [41%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dana jest funkcja kwadratowa f(x)=ax^2+bx+c, która spełnia warunek f(x_1)=f(x_2)=y_1. Najmniejszą wartością funkcji f jest liczba y_2.

Oblicz wartość współczynnika a.

Dane
x_1=0
x_2=4
y_1=-12
y_2=-16
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz wartość współczynnika b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30085 ⋅ Poprawnie: 70/138 [50%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Prostokąt ma obwód o długości d i najkrótszą z możliwych przekątnych.

Podaj pole powierzchni tego prostokąta.

Dane
d=48
Odpowiedź:
P= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaką długość ma dłuższy bok prostokąta?
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30099 ⋅ Poprawnie: 18/44 [40%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dron A pokonał trasę długości 27900 km w czasie o 960.00 godzin krótszym od drona B i leciał ze średnią prędkością o 16 km/h większą od drona B.

Oblicz średnią prędkość drona A.

Odpowiedź:
v_A= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Oblicz średnią prędkość drona B.
Odpowiedź:
v_B= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm