Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(-3,\frac{9\sqrt{3}}{5}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-3(x-3)(x+12). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz maksymalny przedział, w którym funkcja określona wzorem f(x)=x^2-22x+\frac{7}{5} jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+25m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
C. dla pewnego m funkcja ma jedno miejsce zerowe D. największą wartością funkcji jest -25m
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k-5)x+49=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p)\cap(q,+\infty) B. (p,+\infty)
C. \langle p,q\rangle D. (p,q)
E. (-\infty,p)\cup(q,+\infty) F. (-\infty,p)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20338 ⋅ Poprawnie: 93/226 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta x=1 jest osią symetrii paraboli f(x)=ax^2+bx+1, a najmniejsza wartość funkcji f jest równa -2. Wyznacz równanie tej funkcji w postaci ogólnej.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20900 ⋅ Poprawnie: 51/89 [57%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dana jest funkcja kwadratowa g(x)=ax^2+bx+c, która spełnia warunek g(6)=g(8)=0. Do wykresu funkcji g należy punkt \left(-2,-40\right). Wyznacz współrzędne (x_w,y_w) wierzchołka paraboli będącej wykresem funkcji g.

Podaj x_w.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_w.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 202/659 [30%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=3
c=10
p=-4
q=6
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20386 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dana jest funkcja f(x)=a(x+1)^2-14400, której jednym z miejsc zerowych jest liczba 19.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20388 ⋅ Poprawnie: 44/132 [33%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Wyznacz dziedzinę funkcji: f(x)=\frac{\sqrt{ax^2+bx+c}}{x} .

Ile liczb całkowitych należy do dziedziny tej funkcji?

Dane
a=-1
b=1
c=90
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30062 ⋅ Poprawnie: 27/134 [20%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz współczynniki p i q funkcji g(x)=ax^2+px+q wiedząc, że ZW_f=\langle m,+\infty) oraz g(0)=n.

Podaj p^2.

Dane
a=4
m=5
n=149
Odpowiedź:
p^2= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30083 ⋅ Poprawnie: 62/220 [28%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ze sznurka o długości d cm zrobiono dwa prostokąty P_1 i P_2. W prostokącie P_1 jeden z boków jest dwukrotnie dłuższy od drugiego, zaś w prostokącie P_2 jeden bok jest czterokrotnie krótszy od boku drugiego. Wówczas okazało się, że suma pól powierzchni obu prostokątów P_1 i P_2 była najmniejsza z możliwych.

Podaj długość krótszego boku prostokąta P_1.

Dane
d=172
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj długość krótszego boku prostokąta P_2.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30104 ⋅ Poprawnie: 28/96 [29%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 « Obrazek o wymiarach 93\ x\ 124 cm oprawiono w prostokątną ramkę o jednakowej szerokości. Pole powierzchni obrazka wraz z ramką jest równe 19500 cm2.

Oblicz szerokość ramki w centymetrach.

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm