Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 203/352 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa g spełnia warunek g(-12)=g(-1). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x+m=0.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-4(x-3)(x+12). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Prosta o równaniu y+......=0 ma dokładnie jeden punkt wspólny z parabolą określoną równaniem y=2(x+10)^2-8.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (-7-x)(x+2)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 247/510 [48%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Największa wartość funkcji f(x)=a(x-3)(x+1) jest równa 20.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20896 ⋅ Poprawnie: 11/15 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f określona jest dla wszystkich liczb rzeczywistych x wzorem f(x)=ax^2+bx+c. Przedział (p,q) jest rozwiązaniem nierówności f(x) > 0, natomiast liczba t jest największą wartością funkcji f.

Oblicz wartość współczynnika a.

Dane
p=-8
q=-6
t=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz wartość współczynnika b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20362 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Wyznacz zbiór wartości funkcji g(x)=f(x-p)+q.

Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.

Dane
a=-1
b=6
c=-3
p=2
q=-5
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20375 ⋅ Poprawnie: 310/431 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie (1-x)\left(x^2+6x-16\right)=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj iloczyn wszystkich rozwiązań tego równania.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20396 ⋅ Poprawnie: 41/244 [16%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność (a-x)(bx-1) \geqslant 0.

Ile liczb całkowitych z przedziału \langle -20,20\rangle spełnia tę nierówność?

Dane
a=1
b=2
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj długość rozwiązania (długość przedziału).
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30075 ⋅ Poprawnie: 27/111 [24%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dane sa wykresy funkcji f i g. Funkcja f jest określona wzorem f(x)=-2x^2+20x-42, a mniejsze z jej miejsc zerowych jest jednocześnie miejscem zerowym funkcji g. Wierzchołek W paraboli, która jest wykresem funkcji f, leży na wykresie funkcji g, a wierzchołek Z paraboli będącej wykresem funkcji g leży na osi Oy układu współrzędnych. Wyznacz wzór funkcji g(x)=ax^2+bx+c.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj liczbę c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30087 ⋅ Poprawnie: 103/199 [51%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Liczby x i y spełniają warunek x+y=a i są takie, że wyrażenie 2x^2+3y^2 ma najmniejszą możliwą wartość.

Podaj mniejszą z tych liczb.

Dane
a=15
Odpowiedź:
min(x,y)= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max(x,y)= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30103 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Na odcinku 253 km pierwszy pociąg Pendolino osiągnął czas o 27 minut krótszy od pociągu Intercity. Średnia prędkość pociągu Intercity była o 18 km/h mniejsza od średniej prędkości pociągu Pendolino.

Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm