Do wykresu funkcji kwadratowej określonej wzorem y=f(x)
należy punkt P=(1, 12). Osią symetrii wykresu
tej funkcji jest prosta określona równaniem x=-4, a liczba -1
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).
Wyznacz wartość współczynnika a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 215/313 [68%]
Większa część zawodników klubu sportowego liczącego 45 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 131/196 [66%]
Równanie x^2-(k+2)x+9=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru A. Zapisz zbiór
Aw postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A.(-\infty,p)
B.(-\infty,p)\cap(q,+\infty)
C.(p,q)
D.\langle p,q\rangle
E.(-\infty,p)\cup(q,+\infty)
F.(p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Liczba p jest najmniejszym, a liczba q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 76/172 [44%]
« Wykres funkcji kwadratowej f przecina oś
Ox w punktach o odciętych
x=2 oraz x=4 i przechodzi
przez punkt (1,-6). Wykres ten przesunięto i
otrzymano wykres funkcji kwadratowej określonej wzorem g(x)=f(x-p).
Wierzchołek wykresu funkcji g leży na osi
Oy. Wyznacz wzór funkcji
g(x)=ax^2+bx+c.
Podaj liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj liczbę c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30079 ⋅ Poprawnie: 22/92 [23%]
« Liczba c jest rozwiązaniem równania
8^{p}+2^{q}\cdot x=0, zaś liczba
d wynosi
\frac{125^{500}}{5^{1500}}.
Funkcja kwadratowa g(x)=(x-c)(x-d) określona jest
w przedziale \langle x_1,x_2\rangle.
Podaj najmniejszą wartość funkcji g.
Dane
p=16
q=45
x1=-4
x2=-1
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największą wartość funkcji g.
Odpowiedź:
g_{max}(x)=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pp-30097 ⋅ Poprawnie: 13/34 [38%]
» Średni czas drukowania n stron wyraża się
wzorem P(n)=an^2+bn. Zauważono, że drukowanie
6 stron trwa średnio t_1=11
sekund, a drukowanie 12 stron średnio
t_2=40 sekund.
Podaj a+b.
Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Ile kartek można wydrukować średnio w ciągu 88
sekund? Wynik zaokrąglij w dół.
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat