Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-9\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójmian kwadratowy y=3x^2+30x+72 można zapisać w postaci y=a(x+4)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. A B. C
C. D D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+10m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. dla pewnego m funkcja ma jedno miejsce zerowe D. największą wartością funkcji jest -10m
Zadanie 5.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-\frac{7}{5} ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (p,+\infty)
C. \langle p, q\rangle D. (-\infty,p)
E. (p,q) F. (-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 33/105 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane jest funkcja f(x)=-x^2+6x+16, gdzie x\in\langle -2,4\rangle. Wyznacz ZW_f.

Zapisz ZW_f w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
y_l= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek f(2)=-\frac{3}{2}, a suma jej miejsc zerowych jest równa 2.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 7/33 [21%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu paraboli y=2x^2-3x-1 należy punkt Q=(2am, y) taki, że różnica 2am-y jest największa z możliwych.

Podaj m.

Dane
a=5
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 84/168 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż równanie x^2-\frac{6}{\sqrt{2}}x+4=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20394 ⋅ Poprawnie: 14/175 [8%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność x^2+bx+c \lessdot 0.

Ile liczb całkowitych z przedziału \langle -10, 10\rangle spełnia tę nierówność?

Dane
b=-\frac{11}{2}=-5.50000000000000
c=\frac{5}{2}=2.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30066 ⋅ Poprawnie: 45/104 [43%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wierzchołek wykresu funkcji kwadratowej f(x)=ax^2+32x+60, gdzie a > 0, należy do prostej o równaniu y=-4. Oblicz współrzędne tego wierzchołka.

Podaj odciętą wierzchołka paraboli.

Odpowiedź:
x_w= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj a.
Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30084 ⋅ Poprawnie: 16/168 [9%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » W trójkąt równoramienny o podstawie a i ramieniu długości b wpisano prostokąt w taki sposób, że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość 2x. Wyznacz x tak, aby pole wpisanego prostokąta było jak największe.

Ile wynosi to największe pole prostokąta?

Dane
a=56
b=53
Odpowiedź:
P_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30101 ⋅ Poprawnie: 24/59 [40%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
» Powierzchnia prostokąta P wynosi 6000 m2. Prostokąt Q ma wymiary o 10 m i 15 m większe od wymiarów prostokąta P oraz pole powierzchni większe o 2250 m2.

Podaj najmniejszą możliwą długość boku prostokąta P.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
Podaj największą możliwą długość boku prostokąta P.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Podpunkt 13.3 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm