Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,4\rangle, a zbiorem jej wartości jest przedział \langle 6,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+6x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p, +\infty) B. (p, q)
C. \langle p, q\rangle D. (p, +\infty)
E. (-\infty, p) F. (-\infty, p\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=x^2-12 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=12x B. y=12
C. x=6 D. y=-12x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 2, 6\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-5\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : x^2+10x+50\geqslant 0 T/N : 2x^2+6x+2 \geqslant 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 176/295 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja f(x)=a(x+1)^2-4, do wykresu której nalezy punkt P=(-2,-5).

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20899 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Miejscem zerowym funkcji kwadratowej f jest liczba 3. Funkcja f rośnie wtedy i tylko wtedy gdy x\in(-\infty, 0\rangle. Najmniejsza wartość funkcji f w przedziale \langle 2,10\rangle jest równa -91. Zapisz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 128/220 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wiadomo, że x-y=62, a także, że suma x^2+y^2 jest najmniejsza możliwa.

Podaj liczbę x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 90/212 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż układ równań: \begin{cases} y=x^2+20x-3 \\ y-20x=6 \end{cases} .

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 111/228 [48%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność 3x^2+bx+c\leqslant 0.

Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.

Dane
b=-\frac{39}{2}=-19.50000000000000
c=\frac{63}{2}=31.50000000000000
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30075 ⋅ Poprawnie: 27/111 [24%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dane sa wykresy funkcji f i g. Funkcja f jest określona wzorem f(x)=-2x^2+28x-80, a mniejsze z jej miejsc zerowych jest jednocześnie miejscem zerowym funkcji g. Wierzchołek W paraboli, która jest wykresem funkcji f, leży na wykresie funkcji g, a wierzchołek Z paraboli będącej wykresem funkcji g leży na osi Oy układu współrzędnych. Wyznacz wzór funkcji g(x)=ax^2+bx+c.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj liczbę c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30090 ⋅ Poprawnie: 51/122 [41%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 » Funkcja liniowa określona jest wzorem y=ax+b. Na wykresie tej funkcji znajdź taki punkt o współrzędnych P=(x_0,y_0), aby iloczyn x_0\cdot y_0 był największy możliwy.

Podaj ten największy możliwy iloczyn.

Dane
a=-3
b=2
Odpowiedź:
x_0\cdot y_0=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30104 ⋅ Poprawnie: 28/96 [29%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 « Obrazek o wymiarach 81\ x\ 108 cm oprawiono w prostokątną ramkę o jednakowej szerokości. Pole powierzchni obrazka wraz z ramką jest równe 14824 cm2.

Oblicz szerokość ramki w centymetrach.

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm