Większa część zawodników klubu sportowego liczącego 75 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
« W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju 1035
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 247/510 [48%]
» Dana jest funkcja kwadratowa g(x)=ax^2+bx+c, która
spełnia warunek g(2)=g(4)=0. Do wykresu funkcji
g należy punkt \left(-4,-24\right).
Wyznacz współrzędne (x_w,y_w) wierzchołka paraboli będącej
wykresem funkcji g.
Podaj x_w.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj y_w.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%]
» Punkt O=(0,0) należy do wykresu funkcji
kwadratowej y=g(x). Funkcja
h(x)=g(x+1) przyjmuje wartość największą równą
m dla x=n.
Wyznacz wzory obu funkcji w postaci ogólnej.
Podaj sumę współczynników funkcji g.
Dane
m=2
n=6
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj sumę współczynników h.
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pp-30089 ⋅ Poprawnie: 28/76 [36%]
«« Funkcja liniowa określona jest wzorem y=x-p.
Na wykresie tej funkcji znajdź taki punkt o współrzędnych
P=(a,b), aby suma
a^2+b^2 miała najmniejszą możliwą wartość.
Podaj tę najmniejszą możliwą sumę.
Dane
p=9
Odpowiedź:
min\left(a^2+b^2\right)=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pp-30105 ⋅ Poprawnie: 18/66 [27%]
Boiska A i B mają
taką samą przekątną o długości 65 m. Boisko B
ma długość o 7 m większą od długości boiska A,
natomiast szerokość o 17 m mniejszą od szerokości boiska
A.
Podaj obwód boiska A.
Odpowiedź:
L_A=(wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
Podaj obwód boiska B.
Odpowiedź:
L_B=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat