Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/897 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-6\rangle:
Odpowiedzi:
A. y=(x-6)^2+2 B. y=-(x+6)^2+2
C. y=-(x-2)^2-1 D. y=(x+6)^2+2
E. y=-(x+2)^2-6 F. y=-(x+2)^2+6
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby 1 i -\frac{7}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-\frac{15}{2}x+\frac{21}{2}.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 480/645 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. A B. C
C. D D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -12, -8\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+9\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2-4\right)\left(x^2+2x-5\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20338 ⋅ Poprawnie: 93/226 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta x=2 jest osią symetrii paraboli f(x)=ax^2+bx+1, a najmniejsza wartość funkcji f jest równa -11. Wyznacz równanie tej funkcji w postaci ogólnej.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20935 ⋅ Poprawnie: 13/22 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Średnia arytmetyczna miejsc zerowych funkcji kwadratowej określonej wzorem f(x)=ax^2+bx jest równa -3. Rzędna wierzchołka paraboli będącej wykresem tej funkcji jest równa -18.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=2
b=8
c=6
p=-3
q=1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Dla jakiego x funkcja f osiąga minimum?
Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wyznacz większe z rozwiązań równania 2x^2-24x+60=0.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 111/228 [48%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność 3x^2+bx+c\leqslant 0.

Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.

Dane
b=\frac{15}{2}=7.50000000000000
c=-18=-18.00000000000000
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30067 ⋅ Poprawnie: 42/175 [24%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+5 jest malejąca w przedziale (-\infty,-3\rangle, a rosnąca w przedziale \langle -3,+\infty). Wierzchołek paraboli będącej wykresem tej funkcji należy do prostej o równaniu y=-4x-16.

Zapisz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz miejsca zerowe tej funkcji.

Podaj mniejsze z miejsc zerowych.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30081 ⋅ Poprawnie: 14/45 [31%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Dana jest funkcja kwadratowa h(x)=-\frac{1}{2}x^2-x+7,5 określona w przedziale w przedziale \langle -2, m+a\rangle. Funkcja h spełnia warunek h_{max}-h_{min}=\frac{9}{2}.

Oblicz m.

Dane
a=2
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30102 ⋅ Poprawnie: 26/38 [68%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 « Grupa miłośników klubu pływackiego wykupiła wspólnie abonament na okres jednego roku. Miesięczna opłata abonamentowa wynosiła 336 zł. Podzielono ją na równe części, tak aby każdy płacił taką samą kwotę. Po upływie miesiąca do grupy dołączyło jeszcze d=2 osób i wówczas miesięczna opłata przypadająca na jedną osobę zmalała o 3 zł.

Ile osób początkowo liczyła grupa miłośników pływania?

Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm