Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 705/1015 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Największą wartością funkcji kwadratowej f(x)=-4(x-4)^2+2 jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x+6)(x+2) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz maksymalny przedział, w którym funkcja określona wzorem f(x)=x^2-6x+\frac{7}{3} jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 41 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 » Równanie (2x-1)(x+2)=(2x-1)(2x-4) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20929 ⋅ Poprawnie: 38/56 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu -4 osiąga wartość najmniejszą równą -1. Wiedząc, że do jej wykresu należy punkt należy punkt A=(-3,4), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20935 ⋅ Poprawnie: 13/22 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Średnia arytmetyczna miejsc zerowych funkcji kwadratowej określonej wzorem f(x)=ax^2+bx jest równa 1. Rzędna wierzchołka paraboli będącej wykresem tej funkcji jest równa 8.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20356 ⋅ Poprawnie: 25/91 [27%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-2
b=-4
c=-\frac{3}{2}=-1.50000000000000
p=-3
q=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 144/200 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczba i jej kwadrat dają sumę równą 1640. Jaka to liczba?

Podaj najmniejszą możliwą wartość tej liczby.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20414 ⋅ Poprawnie: 40/120 [33%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność \left(2x^2+a\right)^2 \lessdot \left(b-2x^2\right)^2.

Podaj najmniejszą dodatnią liczbę, która nie spełnia tej nierówności.

Dane
a=2
b=4
Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30076 ⋅ Poprawnie: 39/79 [49%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Miejscami zerowymi funkcji f(x)=-\frac{1}{2}x^2+bx+c są liczby -4 i 10. Naszkicuj wykres funkcji f.

Oblicz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wykres funkcji f leży powyżej wykresu funkcji g(x)=x+4 wtedy i tylko wtedy, gdy x\in(p, q).

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30082 ⋅ Poprawnie: 29/61 [47%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Wyznacz wartość największą funkcji f(x)=\frac{1}{x^2+12x+31} w przedziale \langle a,b\rangle.

Podaj tę wartość.

Dane
a=-3
b=-1
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30099 ⋅ Poprawnie: 18/44 [40%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dron A pokonał trasę długości 23520 km w czasie o 840.00 godzin krótszym od drona B i leciał ze średnią prędkością o 14 km/h większą od drona B.

Oblicz średnią prędkość drona A.

Odpowiedź:
v_A= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Oblicz średnią prędkość drona B.
Odpowiedź:
v_B= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm