Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 234/412 [56%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Parabola y=(9-5x)^2+2 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=-4(x-9)(x-2). Wyznacz maksymalny przedział, w którym funkcja f jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Przesuwając wykres funkcji określonej wzorem h(x)=x^2-6 o k=3 jednostek w prawo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 73 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{5}{2}x+9} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 81/234 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkt P=(3,0) jest wierzchołkiem paraboli określonej równaniem y=2x^2+4px+q-2. Oblicz wartości współczynników p i q.

Podaj wartość p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj wartość q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20935 ⋅ Poprawnie: 13/22 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Średnia arytmetyczna miejsc zerowych funkcji kwadratowej określonej wzorem f(x)=ax^2+bx jest równa 2. Rzędna wierzchołka paraboli będącej wykresem tej funkcji jest równa 16.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Pewne ciało w czasie t\ [s] przebyło drogę s [m], którą opisuje wzór s(t)=t^2+10t+12, gdzie t\in\langle 3,7\rangle.

Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.

Odpowiedź:
s(t)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 84/168 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż równanie x^2-\frac{5}{\sqrt{2}}x+3=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20417 ⋅ Poprawnie: 109/211 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność x^2+bx+c \leqslant 0.

Ile liczb całkowitych dodatnich spełnia tę nierówność?

Dane
b=5
c=-14
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Ile liczb całkowitych ujemnych spełnia tę nierówność?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30068 ⋅ Poprawnie: 32/124 [25%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dana jest funkcja g(x)=x^2+4px+1, która spełnia warunek ZW_{g}=\langle a,+\infty). Wyznacz p.

Podaj najmniejsze możliwe p.

Dane
a=-6
Odpowiedź:
p_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe p.
Odpowiedź:
p_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30079 ⋅ Poprawnie: 21/90 [23%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Liczba c jest rozwiązaniem równania 8^{p}+2^{q}\cdot x=0, zaś liczba d wynosi \frac{125^{500}}{5^{1500}}. Funkcja kwadratowa g(x)=(x-c)(x-d) określona jest w przedziale \langle x_1,x_2\rangle.

Podaj najmniejszą wartość funkcji g.

Dane
p=24
q=69
x1=-6
x2=0
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największą wartość funkcji g.
Odpowiedź:
g_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30103 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Na odcinku 276 km pierwszy pociąg Pendolino osiągnął czas o 40 minut krótszy od pociągu Intercity. Średnia prędkość pociągu Intercity była o 25 km/h mniejsza od średniej prędkości pociągu Pendolino.

Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm