Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=-2(x+10)^2-8 B. g(x)=8(x+1)^2-\sqrt{3}
C. g(x)=4(x-2)^2+7 D. g(x)=3(x+6)^2+13
Zadanie 2.  1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(-x+12)(x+5). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=14 B. x_1+x_2=-7
C. x_1+x_2=7 D. x_1+x_2=-14
Zadanie 3.  1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz maksymalny przedział, w którym funkcja określona wzorem f(x)=x^2-12x+\frac{7}{5} jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=4t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Iloczyn (x+1)(9-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q spełnia warunek f(4)=f(14)=4, a jej zbiorem wartości jest przedział (-\infty, 9\rangle.

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek f(9)=-\frac{3}{2}, a suma jej miejsc zerowych jest równa 16.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 7/33 [21%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu paraboli y=2x^2-3x-1 należy punkt Q=(2am, y) taki, że różnica 2am-y jest największa z możliwych.

Podaj m.

Dane
a=\frac{1}{3}=0.33333333333333
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20382 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Iloczyn dwóch liczb ujemnych jest równy 3256, a jedna z nich jest o 7 mniejsza od połowy drugiej liczby.

Podaj większą z tych liczb.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną wszystkich końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30076 ⋅ Poprawnie: 39/79 [49%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Miejscami zerowymi funkcji f(x)=-\frac{1}{2}x^2+bx+c są liczby -2 i 3. Naszkicuj wykres funkcji f.

Oblicz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wykres funkcji f leży powyżej wykresu funkcji g(x)=x+2 wtedy i tylko wtedy, gdy x\in(p, q).

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Punkt A=(x_0, y_0) należy do paraboli y=ax^2+bx+c i różnica x_0-y_0 jest największa możliwa.

Podaj wartość x_0.

Dane
a=1
b=-7
c=-10
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj wartość y_0.
Odpowiedź:
y_0= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30095 ⋅ Poprawnie: 13/51 [25%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 « Trasa pomiędzy miastami A i B ma długość 287 km. Pociąg Intercity pokonał tę trasę w czasie o 41 minut dłuższym od pociągu Pendolino. Średnia prędkość pociągu Intercity była o 21 km/h mniejsza od wartości średniej prędkości z jaką jechał pociąg Pendolino.

Podaj średnią prędkośc pociągu Intercity.

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Podaj średnią prędkość pociągu Pendolino.
Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm