Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(-4)=32, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x+6)(x-2) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x+7)^2+2 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. x=-7 B. y=3
C. x=7 D. y=1
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=12t-2t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k+4)x+25=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p) B. (p,q)
C. (p,+\infty) D. \langle p,q\rangle
E. (-\infty,p)\cap(q,+\infty) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 247/510 [48%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Największa wartość funkcji f(x)=a(x-3)(x+1) jest równa 44.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20900 ⋅ Poprawnie: 51/89 [57%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dana jest funkcja kwadratowa g(x)=ax^2+bx+c, która spełnia warunek g(1)=g(3)=0. Do wykresu funkcji g należy punkt \left(0,\frac{3}{2}\right). Wyznacz współrzędne (x_w,y_w) wierzchołka paraboli będącej wykresem funkcji g.

Podaj x_w.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_w.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20942 ⋅ Poprawnie: 56/140 [40%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest prostokąt o bokach długości 5 i 14. Długość krótszego boku tego prostokąta zwiększono o x, a długość boku dłuższego zmniejszono o x. Funkcja opisana wzorem f(x)=ax^2+bx+c wyraża pole powierzchni zmienionego prostokąta.

Podaj współczynniki tej funkcji.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe pole powierzchi tego prostokąta.
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20382 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Iloczyn dwóch liczb ujemnych jest równy 1836, a jedna z nich jest o 7 mniejsza od połowy drugiej liczby.

Podaj większą z tych liczb.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20392 ⋅ Poprawnie: 15/131 [11%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność ax^2+bx+c \geqslant 0 .

Ile liczb całkowitych z przedziału \langle -10,10\rangle spełnia tę nierówność?

Dane
a=-3
b=\frac{9}{2}=4.50000000000000
c=-\frac{3}{2}=-1.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30075 ⋅ Poprawnie: 27/111 [24%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dane sa wykresy funkcji f i g. Funkcja f jest określona wzorem f(x)=-x^2+10x-21, a mniejsze z jej miejsc zerowych jest jednocześnie miejscem zerowym funkcji g. Wierzchołek W paraboli, która jest wykresem funkcji f, leży na wykresie funkcji g, a wierzchołek Z paraboli będącej wykresem funkcji g leży na osi Oy układu współrzędnych. Wyznacz wzór funkcji g(x)=ax^2+bx+c.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj liczbę c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30084 ⋅ Poprawnie: 16/168 [9%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » W trójkąt równoramienny o podstawie a i ramieniu długości b wpisano prostokąt w taki sposób, że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość 2x. Wyznacz x tak, aby pole wpisanego prostokąta było jak największe.

Ile wynosi to największe pole prostokąta?

Dane
a=24
b=37
Odpowiedź:
P_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30106 ⋅ Poprawnie: 22/40 [55%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Trasę długości 273 km pan Nowak pokonał przechodząc każdego dnia taki sam odcinek drogi. Gdyby jednak na całą wyprawę mógł poświęcić 18 dni więcej, to mógłby dziennie przechodzić o 6 km mniej.

Ile kilometrów dziennie pokonywał pan Nowak?

Odpowiedź:
s= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm