Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(-2)=32, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+2x+15}{\sqrt{5-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 292/446 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=-x^2+2x+2 B. y=x^2-2x+4
C. y=x^2+2x+4 D. y=-x^2-2x+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 75 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 1035 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 247/510 [48%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Największa wartość funkcji f(x)=a(x-3)(x+1) jest równa 8.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20900 ⋅ Poprawnie: 51/89 [57%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dana jest funkcja kwadratowa g(x)=ax^2+bx+c, która spełnia warunek g(2)=g(4)=0. Do wykresu funkcji g należy punkt \left(-4,-24\right). Wyznacz współrzędne (x_w,y_w) wierzchołka paraboli będącej wykresem funkcji g.

Podaj x_w.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_w.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=3
b=6
c=6
p=-3
q=3
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Dla jakiego x funkcja f osiąga minimum?
Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20371 ⋅ Poprawnie: 333/695 [47%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie x^2-3\sqrt{5}x-50=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20415 ⋅ Poprawnie: 34/96 [35%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz dziedzinę funkcji: f(x)=\frac{x^2-6x+5}{\sqrt{x^2+bx+c}} .

Ile liczb całkowitych nie należy do rozwiązania?

Dane
b=-3
c=-18
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą z tych liczb.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30065 ⋅ Poprawnie: 5/40 [12%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Punkt O=(0,0) należy do wykresu funkcji kwadratowej y=g(x). Funkcja h(x)=g(x+1) przyjmuje wartość największą równą m dla x=n. Wyznacz wzory obu funkcji w postaci ogólnej.

Podaj sumę współczynników funkcji g.

Dane
m=2
n=6
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj sumę współczynników h.
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30089 ⋅ Poprawnie: 28/76 [36%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Funkcja liniowa określona jest wzorem y=x-p. Na wykresie tej funkcji znajdź taki punkt o współrzędnych P=(a,b), aby suma a^2+b^2 miała najmniejszą możliwą wartość.

Podaj tę najmniejszą możliwą sumę.

Dane
p=9
Odpowiedź:
min\left(a^2+b^2\right)=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30105 ⋅ Poprawnie: 18/66 [27%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Boiska A i B mają taką samą przekątną o długości 65 m. Boisko B ma długość o 7 m większą od długości boiska A, natomiast szerokość o 17 m mniejszą od szerokości boiska A.

Podaj obwód boiska A.

Odpowiedź:
L_A= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Podaj obwód boiska B.
Odpowiedź:
L_B= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm