Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(7,2). Wówczas:
Odpowiedzi:
T/N : f(2)=f(12) T/N : f(0)=f(13)
T/N : f(1)=f(12)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(3-x)(2x+6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji g(x)=ax^2+bc+c.

Które z poniższych zdań jest prawdziwe?

Odpowiedzi:
A. funkcja rośnie w przedziale (-2,4) B. f(x) > 0 \iff x \lessdot 1
C. miejscami zerowymi funkcji to -2 i 6 D. miejsca zerowe tej funkcji to -2 i 4
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 26\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{64-36x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. \langle p,q\rangle B. \langle p,+\infty)
C. (-\infty,p\rangle D. (-\infty,p\rangle\cup\langle q,+\infty)
E. (p,+\infty) F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu 3 osiąga wartość największą równą 7. Wiedząc, że do jej wykresu należy punkt należy punkt A=(1,4), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20932 ⋅ Poprawnie: 17/23 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c spełnia warunek f(5)=-3, a jej najmniejszą wartością jest liczba -\frac{295}{2}. Maksymalnym przedziałem, w którym funkcja ta jest rosnąca jest [-12,+\infty).

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 173/368 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=x^2+bx+c, gdzie x\in\langle p, q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
b=-4
c=5
p=-1
q=3
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20378 ⋅ Poprawnie: 20/61 [32%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wyznacz punkty przecięcia paraboli o równaniu y=2x^2-11x+11 z prostą określoną wzorem y=x-1.

Podaj sumę współrzędnych tego z punktów przecięcia, który w układzie współrzędnych położony jest najbardziej na lewo.

Odpowiedź:
x_L+y_L= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj sumę współrzędnych tego z punktów przecięcia, który w układzie współrzędnych położony jest najbardziej na prawo.
Odpowiedź:
x_P+y_P= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20414 ⋅ Poprawnie: 40/120 [33%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność \left(2x^2+a\right)^2 \lessdot \left(b-2x^2\right)^2.

Podaj najmniejszą dodatnią liczbę, która nie spełnia tej nierówności.

Dane
a=2
b=3
Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30066 ⋅ Poprawnie: 45/104 [43%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wierzchołek wykresu funkcji kwadratowej f(x)=ax^2-8x+6, gdzie a > 0, należy do prostej o równaniu y=2. Oblicz współrzędne tego wierzchołka.

Podaj odciętą wierzchołka paraboli.

Odpowiedź:
x_w= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj a.
Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Punkt A=(x_0, y_0) należy do paraboli y=ax^2+bx+c i różnica x_0-y_0 jest największa możliwa.

Podaj wartość x_0.

Dane
a=1
b=7
c=-12
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj wartość y_0.
Odpowiedź:
y_0= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30103 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Na odcinku 245 km pierwszy pociąg Pendolino osiągnął czas o 10 minut krótszy od pociągu Intercity. Średnia prędkość pociągu Intercity była o 7 km/h mniejsza od średniej prędkości pociągu Pendolino.

Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm