Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 « O funkcji kwadratowej opisanej wzorem f(x)=a(x-p)^2+q wiadomo, że ma dwa miejsca zerowe -9 i 7 oraz że najmniejszą jej wartością jest liczba -48.

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz wartość parametru p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-3(x+5)(x-1) w przedziale \left\langle -\frac{5}{2},2\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 108. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-98=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 25/66 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Zbiorem wartości funkcji kwadratowej f jest przedział (-\infty,8\rangle oraz f(x) > 0\iff x\in(-7,-3).

Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj wartość współczynnika a tej funkcji.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
x_w+y_w=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20899 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Miejscem zerowym funkcji kwadratowej f jest liczba 1. Funkcja f rośnie wtedy i tylko wtedy gdy x\in(-\infty, -1\rangle. Najmniejsza wartość funkcji f w przedziale \langle 0,5\rangle jest równa -32. Zapisz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20358 ⋅ Poprawnie: 32/66 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=2
b=2=2.00000000000000
c=\frac{7}{2}=3.50000000000000
p=-2
q=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20382 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Iloczyn dwóch liczb ujemnych jest równy 2940, a jedna z nich jest o 7 mniejsza od połowy drugiej liczby.

Podaj większą z tych liczb.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20419 ⋅ Poprawnie: 366/862 [42%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność 7x+2+14a-16a^2\geqslant 4x^2+16ax .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Dane
a=3
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30077 ⋅ Poprawnie: 20/88 [22%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wykres funkcji kwadratowej f przecina oś Ox w punktach o odciętych x=4 oraz x=6 i przechodzi przez punkt (3,3). Wykres ten przesunięto i otrzymano wykres funkcji kwadratowej określonej wzorem g(x)=f(x-p). Wierzchołek wykresu funkcji g leży na osi Oy. Wyznacz wzór funkcji g(x)=ax^2+bx+c.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30090 ⋅ Poprawnie: 51/122 [41%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 » Funkcja liniowa określona jest wzorem y=ax+b. Na wykresie tej funkcji znajdź taki punkt o współrzędnych P=(x_0,y_0), aby iloczyn x_0\cdot y_0 był największy możliwy.

Podaj ten największy możliwy iloczyn.

Dane
a=-3
b=-2
Odpowiedź:
x_0\cdot y_0=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30097 ⋅ Poprawnie: 13/34 [38%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 » Średni czas drukowania n stron wyraża się wzorem P(n)=an^2+bn. Zauważono, że drukowanie 12 stron trwa średnio t_1=22 sekund, a drukowanie 24 stron średnio t_2=80 sekund.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Ile kartek można wydrukować średnio w ciągu 175 sekund? Wynik zaokrąglij w dół.
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm