Prosta o równaniu x=-8 jest osią symetrii
wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym
rysunku. Zbiór A zawiera wszystkie te wartości
rzeczywiste x, dla których
f(x)\leqslant 0.
Podaj najmniejszą liczbę należącą do zbioru A.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej wzorem
f(x)=3x^2+bx+c jest prosta o równaniu x=-10,
a najmniejszą wartością tej funkcji jest 1.
Wyznacz współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20358 ⋅ Poprawnie: 32/66 [48%]
« Wykres funkcji kwadratowej f przecina oś
Ox w punktach o odciętych
x=4 oraz x=6 i przechodzi
przez punkt (3,6). Wykres ten przesunięto i
otrzymano wykres funkcji kwadratowej określonej wzorem g(x)=f(x-p).
Wierzchołek wykresu funkcji g leży na osi
Oy. Wyznacz wzór funkcji
g(x)=ax^2+bx+c.
Podaj liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj liczbę c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30079 ⋅ Poprawnie: 21/90 [23%]
« Liczba c jest rozwiązaniem równania
8^{p}+2^{q}\cdot x=0, zaś liczba
d wynosi
\frac{125^{500}}{5^{1500}}.
Funkcja kwadratowa g(x)=(x-c)(x-d) określona jest
w przedziale \langle x_1,x_2\rangle.
Podaj najmniejszą wartość funkcji g.
Dane
p=29
q=84
x1=-4
x2=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największą wartość funkcji g.
Odpowiedź:
g_{max}(x)=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pp-30093 ⋅ Poprawnie: 16/80 [20%]