Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (0,1) i (5,-9).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/129 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+7x-10}{\sqrt{5-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 295/454 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=x^2+2x+4 B. y=-x^2-2x+2
C. y=-x^2+2x+2 D. y=x^2-2x+4
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 204/339 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+20m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. największą wartością funkcji jest -20m D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
Zadanie 5.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/186 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x+8)^2+\frac{15}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 36/110 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane jest funkcja f(x)=-x^2+6x+16, gdzie x\in\langle -3,6\rangle. Wyznacz ZW_f.

Zapisz ZW_f w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
y_l= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji w postaci ogólnej.

Podaj współczynnik b występujący we wzorze.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj liczbę a+c.
Odpowiedź:
a+c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/38 [10%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Pewne ciało w czasie t\ [s] przebyło drogę s [m], którą opisuje wzór s(t)=t^2+12t+9, gdzie t\in\langle 2,6\rangle.

Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.

Odpowiedź:
s(t)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 87/171 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż równanie x^2-\frac{7}{\sqrt{2}}x+5=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20404 ⋅ Poprawnie: 61/148 [41%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność 6x^2 > b+cx.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
b=12=12.00000000000000
c=-14=-14.00000000000000
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30067 ⋅ Poprawnie: 43/176 [24%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+15 jest malejąca w przedziale (-\infty,-3\rangle, a rosnąca w przedziale \langle -3,+\infty). Wierzchołek paraboli będącej wykresem tej funkcji należy do prostej o równaniu y=-4x-24.

Zapisz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz miejsca zerowe tej funkcji.

Podaj mniejsze z miejsc zerowych.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30079 ⋅ Poprawnie: 22/92 [23%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Liczba c jest rozwiązaniem równania 8^{p}+2^{q}\cdot x=0, zaś liczba d wynosi \frac{125^{500}}{5^{1500}}. Funkcja kwadratowa g(x)=(x-c)(x-d) określona jest w przedziale \langle x_1,x_2\rangle.

Podaj najmniejszą wartość funkcji g.

Dane
p=27
q=78
x1=-5
x2=-2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największą wartość funkcji g.
Odpowiedź:
g_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30092 ⋅ Poprawnie: 55/133 [41%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 » Pole powierzchni trójkąta prostokątnego wynosi p cm2. Jedna z jego przyprostokątnych jest o d cm dłuższa niż druga.

Podaj długość przeciwprostokątnej tego trójkąta.

Dane
p=6
d=1
Odpowiedź:
c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm