Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 878/1147 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję kwadratową, której zbiorem wartości jest przedział \langle -5,+\infty):
Odpowiedzi:
A. y=(x-3)^2+5 B. y=-(x-1)^2-5
C. y=-2(x+4)^2+5 D. y=-(x+3)^2-5
E. y=(x+2)^2-5 F. y=(x+5)^2+5
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 516/718 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby 2 oraz 8, a wierzchołek paraboli będącej jej wykresem ma współrzędne (5,-36), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x+2)(x-8) B. f(x)=4(x-2)(x+8)
C. f(x)=4(x-2)(x-8) D. f(x)=4(x+2)(x-8)
Zadanie 3.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-8)(x+8) określonej dla x\in(1,4\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q\rangle B. (p,+\infty)
C. (p,q) D. \langle p,q)
E. (-\infty,p\rangle F. \langle p,q\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -12,-9\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 903 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 164/279 [58%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja f(x)=a(x+1)^2-4, do wykresu której nalezy punkt P=(-3,-16).

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20937 ⋅ Poprawnie: 67/129 [51%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej wzorem f(x)=3x^2+bx+c jest prosta o równaniu x=-9, a najmniejszą wartością tej funkcji jest -8.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20942 ⋅ Poprawnie: 56/140 [40%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest prostokąt o bokach długości 5 i 11. Długość krótszego boku tego prostokąta zwiększono o x, a długość boku dłuższego zmniejszono o x. Funkcja opisana wzorem f(x)=ax^2+bx+c wyraża pole powierzchni zmienionego prostokąta.

Podaj współczynniki tej funkcji.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe pole powierzchi tego prostokąta.
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wyznacz większe z rozwiązań równania 2x^2-52x+334=0.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20408 ⋅ Poprawnie: 53/169 [31%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność 2x^2+x > 28.

Ile liczb całkowitych nie należy do rozwiązania?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą z tych liczb.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30065 ⋅ Poprawnie: 5/40 [12%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Punkt O=(0,0) należy do wykresu funkcji kwadratowej y=g(x). Funkcja h(x)=g(x+1) przyjmuje wartość największą równą m dla x=n. Wyznacz wzory obu funkcji w postaci ogólnej.

Podaj sumę współczynników funkcji g.

Dane
m=1
n=5
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj sumę współczynników h.
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30087 ⋅ Poprawnie: 103/199 [51%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Liczby x i y spełniają warunek x+y=a i są takie, że wyrażenie 2x^2+3y^2 ma najmniejszą możliwą wartość.

Podaj mniejszą z tych liczb.

Dane
a=40
Odpowiedź:
min(x,y)= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max(x,y)= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30093 ⋅ Poprawnie: 16/80 [20%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
»Plac zabaw A ma powierzchnię 336 m2, zaś plac zabaw B powierzchnię 464 m2 i jest o 5 m dłuższy i o 2 m szerszy od placu zabaw A.

Jaki najmniejszy możliwy obwód może mieć plac zabaw A?

Odpowiedź:
L_{min}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
Jaki największy możliwy obwód może mieć plac zabaw A?
Odpowiedź:
L_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm