» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-\frac{1}{4} ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A.(-\infty,p)
B.\langle p,+\infty)
C.(p,q)
D.(-\infty,p\rangle
E.(p,+\infty)
F.\langle p, q\rangle
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 25/66 [37%]
Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c
jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek
f(-7)=-\frac{3}{2}, a suma
jej miejsc zerowych jest równa -16.
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 7/33 [21%]
» W trójkąt równoramienny o podstawie a i
ramieniu długości b wpisano prostokąt w taki sposób,
że jeden z boków prostokąta zawiera się w podstawie trójkąta i ma długość
2x. Wyznacz x tak,
aby pole wpisanego prostokąta było jak największe.
Ile wynosi to największe pole prostokąta?
Dane
a=24
b=37
Odpowiedź:
P_{max}=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Jaką długość ma dłuższy bok prostokąta o największym polu powierzchni?
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pp-30103 ⋅ Poprawnie: 20/44 [45%]
Na odcinku 287 km pierwszy pociąg Pendolino osiągnął czas o 41 minut krótszy
od pociągu Intercity. Średnia prędkość pociągu Intercity była o 21 km/h
mniejsza od średniej prędkości pociągu Pendolino.
Z jaką średnią prędkością poruszał się na trasie pociąg Intercity?
Odpowiedź:
v_{sr}=(wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
Z jaką średnią prędkością poruszał się na trasie pociąg Pendolino?
Odpowiedź:
v_{sr}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat