Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Parabola o wierzchołku
P=(-2,8) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=(x+2)^2-8
B. y=-2(x-2)^2+8
C. y=3(x-8)^2+8
D. y=-2(x+2)^2+8
Zadanie 2. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-4)(x+8) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w prawo wzdłuż osi Ox
B. 3 jednostki w lewo wzdłuż osi Ox
C. 12 jednostek w dół wzdłuż osi Oy
D. 12 jednostek w górę wzdłuż osi Oy
Zadanie 4. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
55 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
M=(a,-2\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 74/170 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Najmniejszą wartość równą
-11 trójmian
y=x^2+bx+c osiąga dla
x=3 .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20349 ⋅ Poprawnie: 7/37 [18%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
«« Dana jest funkcja
f(x)=
\begin{cases}
(x+4)^2-7 \text{, dla } x\leqslant 0 \\
-(x+4)^2+25 \text{, dla }x > 0
\end{cases}
.
Wyznacz zbiór tych wartości, które funkcja f
przyjmuje trzy razy, dla trzech różnych argumentów.
Zbiór ten zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
x_l=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20359 ⋅ Poprawnie: 51/109 [46%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Wyznacz największą wartość funkcji
f(x)=bx+ax^2 .
Dane
a=-2=-2.00000000000000
b=\frac{3}{4}=0.75000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 84/168 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Rozwiąż równanie
x^2-\frac{1}{\sqrt{2}}x-1=0 .
Podaj najmniejszą z liczb spełniających to równanie.
Odpowiedź:
Podpunkt 9.2 (1 pkt)
Podaj największą z liczb spełniających to równanie.
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20398 ⋅ Poprawnie: 193/403 [47%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
(x-a)(a-x-2) > 3(x-a-2) .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Dane
a=-1
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30068 ⋅ Poprawnie: 32/124 [25%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dana jest funkcja
g(x)=x^2+4px+1 , która
spełnia warunek
ZW_{g}=\langle a,+\infty) .
Wyznacz
p .
Podaj najmniejsze możliwe p .
Dane
a=-12
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
p .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pp-30089 ⋅ Poprawnie: 28/76 [36%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
«« Funkcja liniowa określona jest wzorem
y=x-p .
Na wykresie tej funkcji znajdź taki punkt o współrzędnych
P=(a,b) , aby suma
a^2+b^2 miała najmniejszą możliwą wartość.
Podaj tę najmniejszą możliwą sumę.
Dane
p=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 4 pkt ⋅ Numer: pp-30093 ⋅ Poprawnie: 16/80 [20%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
»Plac zabaw
A ma powierzchnię 336 m
2 ,
zaś plac zabaw
B powierzchnię 464 m
2 i
jest o
5 m dłuższy i o
2 m
szerszy od placu zabaw
A .
Jaki najmniejszy możliwy obwód może mieć plac zabaw
A ?
Odpowiedź:
L_{min}=
(wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
Jaki największy możliwy obwód może mieć plac zabaw
A ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż