Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 170/221 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji kwadratowej f:

Zbiór wartości funkcji określonej wzorem y=-f(x) jest równy:

Odpowiedzi:
A. \langle -4,0\rangle B. \langle 4,+\infty)
C. (-\infty,+\infty) D. (-\infty, 4\rangle
Zadanie 2.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-3(x+5)(x+2).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-6)(x+6) określonej dla x\in(1,5\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (p,q)
C. \langle p,q) D. \langle p,q\rangle
E. (p,q\rangle F. (-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 5\pi\cdot x > 3x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 50/82 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=2x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle -1,+\infty), a osią symetrii jej wykresu jest prosta x=-4.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji w postaci ogólnej.

Podaj współczynnik b występujący we wzorze.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj liczbę a+c.
Odpowiedź:
a+c=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 173/368 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dana jest funkcja f(x)=x^2+bx+c, gdzie x\in\langle p, q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
b=2
c=0
p=-2
q=-2
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20382 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Iloczyn dwóch liczb ujemnych jest równy 1836, a jedna z nich jest o 7 mniejsza od połowy drugiej liczby.

Podaj większą z tych liczb.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20397 ⋅ Poprawnie: 42/119 [35%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność -x^2+bx+c \lessdot 0.

Ile liczb całkowitych z przedziału \langle -20,20\rangle nie spełnia tej nierówności?

Dane
b=-1
c=-2
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30062 ⋅ Poprawnie: 27/134 [20%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz współczynniki p i q funkcji g(x)=ax^2+px+q wiedząc, że ZW_f=\langle m,+\infty) oraz g(0)=n.

Podaj p^2.

Dane
a=2
m=-1
n=31
Odpowiedź:
p^2= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30083 ⋅ Poprawnie: 62/220 [28%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ze sznurka o długości d cm zrobiono dwa prostokąty P_1 i P_2. W prostokącie P_1 jeden z boków jest dwukrotnie dłuższy od drugiego, zaś w prostokącie P_2 jeden bok jest czterokrotnie krótszy od boku drugiego. Wówczas okazało się, że suma pól powierzchni obu prostokątów P_1 i P_2 była najmniejsza z możliwych.

Podaj długość krótszego boku prostokąta P_1.

Dane
d=86
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj długość krótszego boku prostokąta P_2.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30106 ⋅ Poprawnie: 22/40 [55%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Trasę długości 234 km pan Nowak pokonał przechodząc każdego dnia taki sam odcinek drogi. Gdyby jednak na całą wyprawę mógł poświęcić 5 dni więcej, to mógłby dziennie przechodzić o 5 km mniej.

Ile kilometrów dziennie pokonywał pan Nowak?

Odpowiedź:
s= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm