Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję kwadratową, której zbiorem wartości jest przedział \langle 5,+\infty):
Odpowiedzi:
A. y=(x+4)^2+5 B. y=(x+2)^2-5
C. y=(x-6)^2-5 D. y=-(x+6)^2+5
E. y=-(x-6)^2+5 F. y=-2(x+4)^2-5
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby 4 i \frac{5}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-\frac{39}{2}x+30.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz maksymalny przedział, w którym funkcja określona wzorem f(x)=x^2-22x+\frac{7}{5} jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+25m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. największą wartością funkcji jest -25m B. dla pewnego m funkcja ma jedno miejsce zerowe
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
Zadanie 5.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{1}{2}x+5} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu 7 osiąga wartość największą równą 6. Wiedząc, że do jej wykresu należy punkt należy punkt A=(5,3), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-4x^2-16x.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 128/220 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wiadomo, że x-y=70, a także, że suma x^2+y^2 jest najmniejsza możliwa.

Podaj liczbę x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20381 ⋅ Poprawnie: 144/200 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczba i jej kwadrat dają sumę równą 3660. Jaka to liczba?

Podaj najmniejszą możliwą wartość tej liczby.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość tej liczby.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20407 ⋅ Poprawnie: 25/44 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność -7\cdot f(x)+6\cdot g(x) > 2, gdzie f(x)=x^2-4x+1 i g(x)=x-3.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_L=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30064 ⋅ Poprawnie: 136/360 [37%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji f(x)=-\frac{1}{a}x^2+bx+c wiedząc, że jej jedynym miejscem zerowym jest liczba p.

Podaj b.

Dane
a=5
p=10
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30089 ⋅ Poprawnie: 28/76 [36%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Funkcja liniowa określona jest wzorem y=x-p. Na wykresie tej funkcji znajdź taki punkt o współrzędnych P=(a,b), aby suma a^2+b^2 miała najmniejszą możliwą wartość.

Podaj tę najmniejszą możliwą sumę.

Dane
p=9
Odpowiedź:
min\left(a^2+b^2\right)=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30100 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 » Trasa na szczyt góry ma długość 8.0 km. Pan Nowak pokonał ją tam i z powrotem w czasie 180 minut, przy czym średnia predkość z jaką pan Nowak wchodził na szczyt była o 4 km/h mniejsza od średniej prędkości z jaką schodził z góry.

Oblicz średnią prędkość z jaką pan Nowak podchodził pod górę.

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm