Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 170/221 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Zbiór wartości funkcji określonej wzorem y=-f(x)+1 jest równy:
Odpowiedzi:
A. (-\infty, 5\rangle
B. \langle -3,+\infty)
C. (-\infty,3\rangle
D. (-\infty,-3\rangle
Zadanie 2. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(-1+2x)(x-4) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 79/132 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji
kwadratowej
y=f(x) .
Funkcja g określona jest wzorem
g(x)=8\cdot f(x)-7 . Wówczas zbiór
ZW_g jest pewnym przedziałem liczbowym.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
20 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2+x-90}{x-1} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f ma dwa miejsca zerowe
T/N : f przyjmuje wartości dodatnie
T/N : f ma jedno miejsce zerowe
Zadanie 6. 2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 247/510 [48%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Największa wartość funkcji
f(x)=a(x-3)(x+1) jest równa
8 .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/16 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Funkcja kwadratowa
f(x)=ax^2+bx+c przyjmuje
wartości ujemne tylko wtedy, gdy
x\in\left(d, e\right) . Wiadomo, że wykres
funkcji
f przechodzi przez punkt
A=(p,q) .
Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników
a+b+c .
Dane
d=-1
e=1.5
p=3
q=24
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Zapisz wzór tej funkcji w postaci kanonicznej
f(x)=a(x-p)^2+q . Podaj wartość współczynnika
p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f
w przedziale \langle p,q\rangle .
Dane
a=1
b=2
c=-3
p=-2
q=2
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Dla jakiego
x funkcja
f
osiąga minimum?
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 90/212 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż układ równań:
\begin{cases}
y=x^2+17x-3 \\
y-17x=6
\end{cases}
.
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
y_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20422 ⋅ Poprawnie: 67/143 [46%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
(2x-1-2a)x >
6\left(x-\frac{1+2a}{2}\right)\left(x+\frac{1-3a}{3}\right)
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=6
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30068 ⋅ Poprawnie: 32/124 [25%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dana jest funkcja
g(x)=x^2+4px+1 , która
spełnia warunek
ZW_{g}=\langle a,+\infty) .
Wyznacz
p .
Podaj najmniejsze możliwe p .
Dane
a=-3
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
p .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pp-30082 ⋅ Poprawnie: 29/61 [47%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
«« Wyznacz wartość największą funkcji
f(x)=\frac{1}{x^2+12x+31} w przedziale
\langle a,b\rangle .
Podaj tę wartość.
Dane
a=0
b=1
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 4 pkt ⋅ Numer: pp-30092 ⋅ Poprawnie: 52/130 [40%]
Rozwiąż
Podpunkt 13.1 (4 pkt)
» Pole powierzchni trójkąta prostokątnego wynosi
p cm
2 . Jedna z jego przyprostokątnych
jest o
d cm dłuższa niż druga.
Podaj długość przeciwprostokątnej tego trójkąta.
Dane
p=2574
d=73
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Rozwiąż