Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 94/158 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Różnica iloczynu liczby 3 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 100/215 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-3(x+1)(x-5) w przedziale \left\langle \frac{3}{2},7\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=x^2-3 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. x=8 B. y=3x
C. y=-3x+1 D. y=3
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 9, 13\rangle funkcja kwadratowa f(x)=-\left(x-10\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/881 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : 2x^2-2x-6 \geqslant 0 T/N : 2x^2+6x+2 \geqslant 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 76/172 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Najmniejszą wartość równą -26 trójmian y=x^2+bx+c osiąga dla x=5.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20937 ⋅ Poprawnie: 68/137 [49%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej wzorem f(x)=3x^2+bx+c jest prosta o równaniu x=6, a najmniejszą wartością tej funkcji jest 3.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20365 ⋅ Poprawnie: 84/186 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p, q\rangle.

Dane
a=-1
b=6
c=-4
p=2
q=6
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 91/213 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż układ równań: \begin{cases} y=x^2+18x-3 \\ y-18x=6 \end{cases} .

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20422 ⋅ Poprawnie: 67/144 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność (2x-1-2a)x > 6\left(x-\frac{1+2a}{2}\right)\left(x+\frac{1-3a}{3}\right) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30062 ⋅ Poprawnie: 27/134 [20%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz współczynniki p i q funkcji g(x)=ax^2+px+q wiedząc, że ZW_f=\langle m,+\infty) oraz g(0)=n.

Podaj p^2.

Dane
a=1
m=6
n=42
Odpowiedź:
p^2= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30088 ⋅ Poprawnie: 9/52 [17%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Punkt A=(x_0, y_0) należy do paraboli y=ax^2+bx+c i różnica x_0-y_0 jest największa możliwa.

Podaj wartość x_0.

Dane
a=2
b=5
c=-23
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj wartość y_0.
Odpowiedź:
y_0= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30096 ⋅ Poprawnie: 22/46 [47%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Zbiornik wody, którego objetość wynosi 3400 m3 można napełnić wodą lecącą z dwóch kranów. Pierwszy kran napełnia zbiornik w czasie t_1=425 godzin, natomiast drugi w czasie t_2=200 godzin. W ciągu jednej godziny przez kran pierwszy przelatuje o 9 m3 wody mniej niż przez kran drugi.

Ile godzin potrwa napełnianianie pustego zbiornika jeśli wodę będą dostarczały obia krany?

Odpowiedź:
ile\ [h]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm