Jeżeli miejscami zerowymi funkcji kwadratowej są liczby
2 oraz 8, a
wierzchołek paraboli będącej jej wykresem ma współrzędne
(5,-36), to wzór tej funkcji można zapisać
w postaci:
Odpowiedzi:
A.f(x)=3(x+2)(x-8)
B.f(x)=4(x-2)(x+8)
C.f(x)=4(x-2)(x-8)
D.f(x)=4(x+2)(x-8)
Zadanie 3.1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
« W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju 903
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 164/279 [58%]
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej wzorem
f(x)=3x^2+bx+c jest prosta o równaniu x=-9,
a najmniejszą wartością tej funkcji jest -8.
Wyznacz współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20942 ⋅ Poprawnie: 56/140 [40%]
Dany jest prostokąt o bokach długości 5 i 11. Długość krótszego boku tego prostokąta zwiększono o x, a długość
boku dłuższego zmniejszono o x. Funkcja opisana wzorem
f(x)=ax^2+bx+c wyraża pole powierzchni zmienionego prostokąta.
Podaj współczynniki tej funkcji.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe pole powierzchi tego prostokąta.
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 111/144 [77%]
» Punkt O=(0,0) należy do wykresu funkcji
kwadratowej y=g(x). Funkcja
h(x)=g(x+1) przyjmuje wartość największą równą
m dla x=n.
Wyznacz wzory obu funkcji w postaci ogólnej.
Podaj sumę współczynników funkcji g.
Dane
m=1
n=5
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj sumę współczynników h.
Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pp-30087 ⋅ Poprawnie: 103/199 [51%]