Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 205/328 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2-\frac{1}{2} o p=2 jednostek w lewo i q=7 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-2)^2-\frac{15}{2} B. y=(x+7)^2+\frac{3}{2}
C. y=(x+2)^2-\frac{15}{2} D. y=(x-2)^2+\frac{13}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+3x}{\sqrt{3-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x-3)^2+4 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. y=2 B. x=3
C. y=5 D. x=-3
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 242/380 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 24\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-\frac{3}{2} ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,+\infty)
C. (-\infty,p) D. (p,+\infty)
E. \langle p, q\rangle F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 65/111 [58%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wykres funkcji f(x)=x^2+10x+c-15 jest styczny do osi Ox.

Wyznacz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20935 ⋅ Poprawnie: 13/22 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Średnia arytmetyczna miejsc zerowych funkcji kwadratowej określonej wzorem f(x)=ax^2+bx jest równa -2. Rzędna wierzchołka paraboli będącej wykresem tej funkcji jest równa -16.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20360 ⋅ Poprawnie: 20/51 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Wyznacz najmniejszą wartość funkcji f(x)=bx+ax^2.
Dane
a=2=2.00000000000000
b=-1=-1.00000000000000
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20370 ⋅ Poprawnie: 30/58 [51%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Funkcja kwadratowa f(x)=18x^2+bx+\frac{9}{2} ma tylko jedno miejsce zerowe. Oblicz b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 
Odpowiedź:
b_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20421 ⋅ Poprawnie: 15/48 [31%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność 5(2x+3-4a)-2x^2+8ax-8a^2\geqslant 3(x-2a)^2 .

Rozwiązanie zapisz w postaci przedziału i podaj jego środek.

Dane
a=2
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30060 ⋅ Poprawnie: 31/65 [47%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Zbiorem wartości funkcji kwadratowej jest przedział (-\infty,c\rangle oraz f(x_1)=f(x_2)=d.

Zapisz wzór tej funkcji w postaci ogólnej. Podaj najmniejszy współczynnik występujący w tym wzorze.

Dane
c=-6
x1=-5
x2=1
d=-42
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największy współczynnik występujący w tym wzorze.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30089 ⋅ Poprawnie: 28/76 [36%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 «« Funkcja liniowa określona jest wzorem y=x-p. Na wykresie tej funkcji znajdź taki punkt o współrzędnych P=(a,b), aby suma a^2+b^2 miała najmniejszą możliwą wartość.

Podaj tę najmniejszą możliwą sumę.

Dane
p=8
Odpowiedź:
min\left(a^2+b^2\right)=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pp-30102 ⋅ Poprawnie: 26/38 [68%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 « Grupa miłośników klubu pływackiego wykupiła wspólnie abonament na okres jednego roku. Miesięczna opłata abonamentowa wynosiła 651 zł. Podzielono ją na równe części, tak aby każdy płacił taką samą kwotę. Po upływie miesiąca do grupy dołączyło jeszcze d=62 osób i wówczas miesięczna opłata przypadająca na jedną osobę zmalała o 14 zł.

Ile osób początkowo liczyła grupa miłośników pływania?

Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm