Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 441/844 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-2(x+2031)^2+m+10 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 1991 B. 2031
C. 2011 D. 2041
Zadanie 2.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 166/295 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(-1+4x)(x-4).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=x^2-10 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=10x B. y=10
C. y=-10x+1 D. x=-6
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 28. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=x^2-5x+3. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p\rangle
C. (p,+\infty) D. (p,q)
E. \langle p,+\infty) F. (p,q\rangle
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 32/73 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q spełnia warunek f(-7)=f(3)=3, a jej zbiorem wartości jest przedział (-\infty, 8\rangle.

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20933 ⋅ Poprawnie: 4/15 [26%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta o równaniu y=90 przecina wykres funkcji określonej wzorem f(x)=a(x-x_1)(x-x_2), gdzie x_1\lessdot x_2, w punktach o odciętych równych -11 oraz -7, a największą wartością tej funkcji jest liczba 98.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz miejsca zerowe x_1 i x_2 tej funkcji.
Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20368 ⋅ Poprawnie: 47/107 [43%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz najmniejszą wartość funkcji g(x)=ax^2+bx+c w przedziale \langle p,q\rangle.
Dane
a=-1
b=4
c=-6
p=-3
q=1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20383 ⋅ Poprawnie: 59/109 [54%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Kwadrat liczby jest o 4288 większy od potrojonej wartości tej liczby. Znajdź tę liczbę.

Podaj najmniesze z rozwiązań.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20399 ⋅ Poprawnie: 83/200 [41%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność ax^2+bx > cx^2+dx.

Podaj długość rozwiązania (długość przedziału).

Dane
a=1
b=-4
c=3
d=-2
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą liczbę całkowitą dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30062 ⋅ Poprawnie: 27/134 [20%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz współczynniki p i q funkcji g(x)=ax^2+px+q wiedząc, że ZW_f=\langle m,+\infty) oraz g(0)=n.

Podaj p^2.

Dane
a=3
m=4
n=79
Odpowiedź:
p^2= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30086 ⋅ Poprawnie: 98/306 [32%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Pan Nowak ma d metrów bieżących siatki i zamierza ogrodzić ogródek w kształcie prostokąta o możliwie największej powierzchni, przy czym na jednym z boków tego prostokąta musi zostawić 4 m na bramę wjazdową. Jakie wymiary powinien mieć prostokątny ogródek, aby jego pole powierzchni było jak największe?

Podaj krótszy bok tego prostokąta.

Dane
d=56
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj pole powierzchni tego prostokąta.
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30100 ⋅ Poprawnie: 10/57 [17%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 » Trasa na szczyt góry ma długość 9.0 km. Pan Nowak pokonał ją tam i z powrotem w czasie 198 minut, przy czym średnia predkość z jaką pan Nowak wchodził na szczyt była o 1 km/h mniejsza od średniej prędkości z jaką schodził z góry.

Oblicz średnią prędkość z jaką pan Nowak podchodził pod górę.

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm