Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 964/1216 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2-8x-2 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-2)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (p,q)
C. \langle p,q\rangle D. (-\infty,p\rangle
E. (p,+\infty) F. (-\infty,p)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Przesuwając wykres funkcji określonej wzorem h(x)=x^2-2 o k=3 jednostek w prawo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (-8,-3).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20345 ⋅ Poprawnie: 34/57 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-\frac{x^2}{2}+2x+9.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną wszystkich końców liczbowych tych przedziałów.

Dane
a=-3
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20077 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Funkcja f(x)=2x^2+\frac{b-a}{2}x+c+2 jest malejąca wtedy i tylko wtedy, gdy x\in(-\infty,4\rangle. Iloczyn miejsc zerowych tej funkcji jest równy 12.

Oblicz b+c.

Dane
a=-5
Odpowiedź:
b+c= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych tej funkcji.
Odpowiedź:
x_1^2+x_2^2= (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pr-20873 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) Dana jest funkcja określona wzorem y=\frac{25}{x^2}, dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano na rysunku, oraz punkt A=(8, -1):

Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych B=(x_0, y_0) oraz C=(-x_0,y_0) gdzie x_0 > 0 i y_0 > 0.

Znajdź najmniejsze x_0\in(13;+\infty), dla którego P_{\triangle ABC}\geqslant 26.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 (1 pkt) Wyznacz największą liczbę nieujemną m o tej własności, że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność P_{\triangle ABC}\geqslant m.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30088 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj liczbę rozwiązań równania \left|x^2+x-30\right|=\left(m-\frac{a}{2}\right)|x-5| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma trzy rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
 Podaj największe możliwe m, dla którego ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30056 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-x+2m+3-2a=0 ma dwa różne pierwiastki rzeczywiste x_1,x_2 spełniające warunek 3x_1^2x_2+3x_1x_2^2=m^2-2am+4m+a^2-4a-6 ?

Podaj najmniejsze możliwe m.

Dane
a=-3
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30034 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie 2x^2-(2m+2a-1)x-m-a=0 ma dwa różne pierwiastki spełniające warunek |x_1-x_2|=3.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=-5
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm