Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa
określona wzorem f(x)=x^2+7x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A.(-\infty, p)
B.(p, q)
C.(p, +\infty)
D.\langle p, +\infty)
E.\langle p, q\rangle
F.(-\infty, p\rangle
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 479/645 [74%]
« Najmniejszą wartość w przedziale
\langle 7, 11\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-10\right)^{2}+5
przyjmuje dla argumentu ......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Równanie kwadratowe x^2-(m+8)x+m+7=0
ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy,
gdy parametr m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty).
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest równość
(x_1+3x_2)(x_2+3x_1)=16.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat