« Zbiór A jest zbiorem tych wartości parametru m, dla których
dziedziną funkcji określonej wzorem f(x)=\frac{2}{3mx^2+mx+1} jest
zbiór \mathbb{R}. Zapisz zbiór A
w postaci sumy przedziałów.
Zbiór A ma postać:
Odpowiedzi:
A.\langle p,q)
B.\langle p,q\rangle
C.(p,q)
D.(-\infty,p)\cup(q, +\infty)
E.(-\infty,p)
F.(p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20938 ⋅ Poprawnie: 84/111 [75%]
O funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c wiadomo, że
przyjmuje wartości ujemne wtedy i tylko wtedy, gdy
x\in(-\infty, 3)\cup(8,+\infty), a do jej wykresu należy punkt
A=(6,12).
Wyznacz współczynnik a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynniki b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20388 ⋅ Poprawnie: 44/132 [33%]
» Dla jakich wartości parametru m\in\mathbb{R}
iloczyn różnych pierwiastków równania
x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0
jest o jeden mniejszy od sumy tych pierwiastków?
Podaj najmniejsze możliwe m, które spełnia warunki
zadania.
Dane
a=4
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe m, które spełnia warunki
zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30040 ⋅ Poprawnie: 0/0
« Wyznacz te wartości parametru m, dla których
równanie 2x^2-13x+m+a=0 ma dwa pierwiastki
rzeczywiste, z których jeden jest dwa razy większy od drugiego.
Podaj najmniejsze możliwe m, które spełnia warunki
zadania.
Dane
a=4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe m, które spełnia warunki
zadania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat