Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
(-5,-6) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,3) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. (-\infty,6\rangle
B. \langle -6,+\infty)
C. \langle 6,+\infty)
D. (-\infty,-6\rangle
Zadanie 2. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(-2-x)(3x+6) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/610 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Funkcja
f , której wykres pokazano na rysunku
zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)
B. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
C. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
D. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -8,-5\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/429 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{11}{2}x-\frac{5}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których
prosta
y=m ma dwa punkty wspólne z wykresem
funkcji
f(x)=-4x^2+8x .
Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20399 ⋅ Poprawnie: 83/200 [41%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
ax^2+bx > cx^2+dx .
Podaj długość rozwiązania (długość przedziału).
Dane
a=-2
b=-3
c=1
d=1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszą liczbę całkowitą dodatnią, która nie spełnia tej
nierówności.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20073 ⋅ Poprawnie: 2/13 [15%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
ax^4+bx^2+c=0 .
Podaj najmniejsze rozwiązanie tego równnia.
Dane
a=1
b=-21
c=80
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj sumę wszystkich dodatnich rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20092 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane jest równanie
(m-2)x^2-4(m+3)x+m+1=0 .
Zbadaj liczbę rozwiązań tego równania w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe m , dla którego równanie to ma dokładnie
jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz te wartości
m , dla których równanie to nie ma
rozwiązania.
Rozwiązanie zapisz w postaci przedziału. Podaj środek tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
2x^2-(m+2-a)|x|+m-a=0
ma dwa różne rozwiązania?
Podaj największe możliwe m .
Dane
a=-2
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Dla ilu całkowitych wartości
m\in\langle -10,10 \rangle warunki zadania są
spełnione?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30054 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Dla jakich wartości parametru
m\in\mathbb{R}
iloczyn różnych pierwiastków równania
x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0
jest o jeden mniejszy od sumy tych pierwiastków?
Podaj najmniejsze możliwe m , które spełnia warunki
zadania.
Dane
a=-2
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m , które spełnia warunki
zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30843 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
x^2-(2m-5)x+m^2-5m+4=0 ma dwa rozwiązania, z których jedno
należy do przedziału
(0,2) , a drugie do przedziału
(3,5) ?
Rozwiązaniem jest zbiór postaci:
Odpowiedzi:
A. \langle p, +\infty)
B. (p, q\rangle
C. (p, q)
D. (-\infty, p\rangle
E. (p, +\infty)
F. (-\infty, +\infty)
G. (-\infty, p)\cup(q, +\infty)
H. (-\infty, p\rangle \cup \langle q, +\infty)
Podpunkt 12.2 (1.5 pkt)
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż