Mniejsza część zawodników klubu sportowego liczącego 45 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%]
Równanie x^2-(k+3)x+4=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru A. Zapisz zbiór
Aw postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A.(-\infty,p)\cup(q,+\infty)
B.(p,+\infty)
C.(p,q)
D.\langle p,q\rangle
E.(-\infty,p)
F.(-\infty,p)\cap(q,+\infty)
Podpunkt 5.2 (0.8 pkt)
Liczba p jest najmniejszym, a liczba q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%]
Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c
jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek
f(6)=-\frac{3}{2}, a suma
jej miejsc zerowych jest równa 10.
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20417 ⋅ Poprawnie: 109/211 [51%]
Funkcja kwadratowa f ma dwa miejsca zerowe x_1
i x_2 takie, że x_1\cdot x_2=0.
Wiedząc, że dla argumentu -\frac{3}{2} funkcja ta przyjmuje wartość
największą równą \frac{9}{8}, wyznacz wzór funkcji
w postaci f(x)=a(x-x_1)(x-x_2).
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj miejsca zerowe tej funkcji.
Odpowiedzi:
x_{min}
=
(wpisz liczbę całkowitą)
x_{max}
=
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20079 ⋅ Poprawnie: 0/1 [0%]
«« Wyznacz te wartości parametru m, dla których
równanie 4x^2-(m+a)x+1=0 ma dwa różne pierwiastki
takie, że ich różnica jest liczbą z przedziału (0,4).
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=-3
Odpowiedź:
min=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
Podaj najmniejszy z końców liczbowych, który jest liczbą całkowitą.
Odpowiedź:
min_Z=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat