Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 344/642 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wskaż funkcję, która w przedziale (-\infty,-4) jest malejąca:
Odpowiedzi:
A. y=-(x+4)^2+7 B. y=(x-7)^2-4
C. y=(x-4)^2-7 D. y=(x+7)^2-4
E. y=(x+4)^2-7 F. y=-(x-4)^2-4
Zadanie 2.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-4)(x+2) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem f(x)=-3(x+2018)(x-666).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-701) \lessdot f(-801) T/N : f(-666) > f(-667)
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 45 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k+3)x+4=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. (p,+\infty)
C. (p,q) D. \langle p,q\rangle
E. (-\infty,p) F. (-\infty,p)\cap(q,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek f(6)=-\frac{3}{2}, a suma jej miejsc zerowych jest równa 10.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20417 ⋅ Poprawnie: 109/211 [51%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x^2+bx+c \leqslant 0.

Ile liczb całkowitych dodatnich spełnia tę nierówność?

Dane
b=4
c=-5
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile liczb całkowitych ujemnych spełnia tę nierówność?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20995 ⋅ Poprawnie: 9/14 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa f ma dwa miejsca zerowe x_1 i x_2 takie, że x_1\cdot x_2=0. Wiedząc, że dla argumentu -\frac{3}{2} funkcja ta przyjmuje wartość największą równą \frac{9}{8}, wyznacz wzór funkcji w postaci f(x)=a(x-x_1)(x-x_2).

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj miejsca zerowe tej funkcji.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20079 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dla jakich wartości parametru m rozwiązaniem nierówności (2m)x^2+2x+1\geqslant 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30077 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2+2ax-3|x+6+a|+a^2 > 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-3
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Przedział \langle p, q\rangle jest zbiorem tych wszystkich wartości x, które nie spełniają podanej nierówności.

Podaj środek tego przedziału.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30354 ⋅ Poprawnie: 36/33 [109%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Zbiór M jest zbiorem tych wartości parametru m, dla których równanie x^2+kmx-k^2m^2+2km=0 nie posiada dwóch różnych rozwiązań rzeczywistych.

Podaj największe m\in M.

Dane
k=6
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których rozwiązania x_1 i x_2 podanego równania spełniają warunek x_1^3+7x_1x_2+x_2^3 > 0.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30036 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie 4x^2-(m+a)x+1=0 ma dwa różne pierwiastki takie, że ich różnica jest liczbą z przedziału (0,4).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=-3
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Podaj najmniejszy z końców liczbowych, który jest liczbą całkowitą.
Odpowiedź:
min_Z= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm