Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2+\frac{1}{2} o p=2 jednostek w lewo i q=7 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-2)^2-\frac{13}{2} B. y=(x-2)^2+\frac{15}{2}
C. y=(x+2)^2-\frac{13}{2} D. y=(x+7)^2+\frac{5}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x+7)(x+9). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-4)(x+4) określonej dla x\in(2,6\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (p,q)
C. \langle p,q\rangle D. (-\infty,p\rangle
E. (p,q\rangle F. \langle p,q)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=x^2+6x+4. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. \langle p,+\infty)
C. (-\infty,p) D. (p,q\rangle
E. (-\infty,p\rangle F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20898 ⋅ Poprawnie: 25/32 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz współczynniki b i c trójmianu kwadratowego y=f(x)=2x^2+bx+c wiedząc, że funkcja f przyjmuje wartości niedodatnie tylko dla x\in\langle -1,1\rangle.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20403 ⋅ Poprawnie: 111/207 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz wszystkie argumenty x, dla których funkcja f(x)=4x^2+bx+c przyjmuje wartości niedodatnie.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
b=3=3.00000000000000
c=\frac{1}{2}=0.50000000000000
Odpowiedź:
l=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20457 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Oblicz sumę czwartych potęg rozwiązań równania x^2+bx+c=0.
Dane
b=6
c=4
Odpowiedź:
x_1^4+x_2^4= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20873 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) Dana jest funkcja określona wzorem y=\frac{36}{x^2}, dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano na rysunku, oraz punkt A=(4, -1):

Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych B=(x_0, y_0) oraz C=(-x_0,y_0) gdzie x_0 > 0 i y_0 > 0.

Znajdź najmniejsze x_0\in(10;+\infty), dla którego P_{\triangle ABC}\geqslant 20.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 (1 pkt) Wyznacz największą liczbę nieujemną m o tej własności, że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność P_{\triangle ABC}\geqslant m.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30087 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Zbadaj liczbę rozwiązań równania \left|x^2+x-2\right|=\left(\frac{m}{2}-a\right)|x+2| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-2
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich jest większa od ilości rozwiązań ujemnych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.

Podaj sumę wszystkich wyznaczonych wartości m.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30055 ⋅ Poprawnie: 33/33 [100%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} równanie x^2+3x-\frac{m-a}{m-1-a}=0 ma dwa różne pierwiastki rzeczywiste?

Podaj najmniejsze m, które nie spełnia warunku zadania.

Dane
a=-2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Wyznacz te wartości m, dla których różne pierwiastki tego równania spełniają warunek x_1^3+x_2^3=-9.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30026 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Dane jest równanie px^2-(p+a)x+p+a=0 z parametrem p. Funkcja f liczbie p przypisuje sumę różnych pierwiastków tego równnia, czyli f(p)=x_1+x_2. Wyznacz dziedzinę tej funkcji.

Zapisz rozwiązanie w postaci sumy przedziałów. Ile jest tych przedziałów?

Dane
a=3
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Zapisz wzór funkcji f i naszkicuj jej wykres.

Podaj największą liczbę, która nie należy do zbioru wartosci funkcji f.

Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm