Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wierzchołkiem paraboli, która jest wykresem funkcji
f
jest punkt
W=(11,1) .
Wówczas:
Odpowiedzi:
T/N : f(4)=f(17)
T/N : f(2)=f(20)
T/N : f(0)=f(22)
Zadanie 2. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(-2+3x)(x+3) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x+9)^2+1 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=-9
B. x=11
C. y=4
D. y=0
Zadanie 4. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Suma dwóch liczb jest równa
32\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x+9)^2+\frac{13}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20060 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Wyznacz wzór funkcji jaką otrzymamy po przesunięciu wykresu funkcji
f(x)=-2x^2+4x+1 o wektor
\vec{u}=[p,q] . Zapisz wzór w postaci ogólnej
y=ax^2+bx+c .
Podaj b .
Dane
p=6
q=-4
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20390 ⋅ Poprawnie: 77/179 [43%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
y=-x^2+12x+m-a nie ma miejsc zerowych?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=43
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20462 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Liczby
x_1 i
x_2 są
pierwiastkami równania
x^2+bx+c=0 . Liczba
\frac{1}{x_1^2}+\frac{1}{x_2^2} jest liczbą całkowitą.
Wyznacz tę liczbę.
Dane
b=52
c=-2
Odpowiedź:
\frac{1}{x_1^2}+\frac{1}{x_2^2}=
(wpisz liczbę całkowitą)
Zadanie 9. 3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
|16-x^2|=(m-a)^2-9 ma dwa różne
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych
przedziałów, w kolejności od najmiejszego do największego.
Dane
a=6
Odpowiedzi:
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30074 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Rozwiąż nierówność
\sqrt{(2+a-x)^2(6+a-x)^2}-3x+6+3a > 0
.
Podaj największą liczbę, która nie spełnia tej nierówności.
Dane
a=6
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 11. 3 pkt ⋅ Numer: pr-30063 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
«« Dla jakich wartości parametru
m równanie
(m+1)x^2-(m+4)x-(m+3)=0
ma tylko rozwiązania ujemne?
Podaj największe możliwe m , które spełnia
warunki zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami niecałkowitymi.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30031 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Wyznacz te wartości parametru
m , dla których
równanie
(m+a)x^2-(3m+3a-3)x+m+a=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich
przedziałów, który nie jest liczbą całkowitą.
Dane
a=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R} ,
dla których suma dwóch różnych pierwiastków tego równania jest nie większa
od
\frac{5}{2} .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec
liczbowy tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż