Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 606/792 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=-28x^2-1036x-1064 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(1, 10). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=-3, a liczba -2 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. A B. D
C. B D. C
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 11, 15\rangle funkcja kwadratowa f(x)=-\left(x-12\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10110 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zapisz dziedzinę funkcji określonej wzorem f(x)= \sqrt{\frac{x^3}{x^2+x-56}} - \frac{x\sqrt{x}}{\sqrt{x^2+x-56}} w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (-\infty,p)\cup(q, +\infty) B. \langle p,q\rangle
C. (p,q) D. \langle p,+\infty)
E. (p,+\infty) F. (-\infty,p\rangle\cup\langle q, +\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20937 ⋅ Poprawnie: 67/136 [49%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej wzorem f(x)=3x^2+bx+c jest prosta o równaniu x=5, a najmniejszą wartością tej funkcji jest -10.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną wszystkich końców liczbowych tych przedziałów.

Dane
a=-4
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
« Liczby całkowite a, b, c i d spełniają warunki: a \lessdot b < c < d, d-a=3 oraz a^2+b^2+c^2=d.

Podaj najmniejszą z tych liczb.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-1-a=0 ma dwa różne pierwiastki, które są sinusem i cosinusem tego samego kąta ostrego?

Podaj największe takie m.

Dane
a=-5
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30080 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność x^2+(6+2a)x+|x+2+a|+a^2+6a+8\leqslant 0 .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
a=-5
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30048 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru p równanie x^2-2(p+a-5)x+p+7+a=0 ma dwa różne pierwiastki o tych samych znakach.

Rowiązanie zapisz w postaci sumy przedziałów. Podaj największy z wszystkich końców liczbowych tych przedziałów.

Dane
a=-5
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30861 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Równanie kwadratowe x^2+(2m-14)x+4=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest nierówność (x_1-x_2)^2\leqslant 84. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm