Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 « Funkcja y=-(x+8)^2-1 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (-\infty,p)
C. \langle p,+\infty) D. (p,q)
E. (p,+\infty) F. \langle p,q\rangle
Podpunkt 1.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+5)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (p,q)
C. (p,+\infty) D. (-\infty,p)
E. \langle p,q\rangle F. (-\infty,p\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 89/138 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Układ równań \begin{cases} y=m \\ y=-3x^2+6x-10 \end{cases} ma dokładnie jedno rozwiązanie.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -15, -11\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+12\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (-10,9).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-8, +\infty\right). Funkcja ta spełnia warunek f(5)=-\frac{15}{2}, a suma jej miejsc zerowych jest równa 8.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20390 ⋅ Poprawnie: 77/179 [43%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Dla jakich wartości parametru m funkcja y=-x^2+12x+m-a nie ma miejsc zerowych?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=-3
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20076 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Przyprostokątne trójkąta są pierwiastkami trójmianu y=2x^2+(b+a)x+144. Pole kwadratu zbudowanego na przeciwprostokątnej tego trójkąta wynosi 340.

Wyznacz b.

Dane
a=-5
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m+a)|x|+1=0 ma cztery różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-6
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż równanie x^2-(a+6)x+\left|x-3-\frac{a}{2}\right|+\frac{1}{4}a^2+3a-3=0 .

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=-9
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30065 ⋅ Poprawnie: 33/33 [100%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« Dana jest funkcja f(x)=(m+a+1)x^2+2(m+a-2)x-m+4-a . Wyznacz wszystkie wartości parametru m, dla których funkcja f ma dwa różne miejsca zerowe x_1,x_2 spełniające warunek x_1^2+x_2^4=x_1^4+x_2^2.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=-5
Odpowiedź:
m_{min}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30855 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Równanie x^2+(m-40)x+4m-168=0 ma dwa rozwiązania gdy parametr m należy do zbioru postaci (-\infty, p)\cup(a+b\sqrt{c}, +\infty), gdzie a,b,c\in\mathbb{Z} i c jest liczbą pierwszą.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Wyznacz te wartości parametru m, dla których równanie to ma dwa rozwiązania x_1 i x_2 takie, które spełniają warunek x_1^2+x_2^2=400.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm