Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m+10
przecina prostą o równaniu y=-3, to parametr
m należy do pewnego przedziału liczbowego nieograniczonego.
Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%]
« Najmniejszą wartość w przedziale
\langle 5, 9\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-8\right)^{2}+5
przyjmuje dla argumentu ......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/108 [55%]
Wyznacz współczynniki b i c
trójmianu kwadratowego y=f(x)=3x^2+bx+c wiedząc, że
funkcja f przyjmuje wartości niedodatnie tylko dla
x\in\langle -6,3\rangle.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pr-20066 ⋅ Poprawnie: 0/0
« Wyznacz te wartości parametru m, dla których
równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki
rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.
Podaj najmniejsze możliwe m, które spełnia warunki
zadania.
Dane
a=4
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat