Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 85/118 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=\frac{1}{3}(x+2)^2+1 otrzymano przesuwając wykres funkcji y=\frac{1}{3}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-2(x-7)(x-8). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu y+2m=0 ma dokładnie jeden punkt wspólny z wykresem funkcji kwadratowej określonej wzorem f(x)=-\frac{1}{2}x^2-8x+6.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -12, -8\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+9\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 538/882 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : 2x^2+3x-6 \geqslant 0 T/N : x^2+\frac{1}{2}x+\frac{1}{16} > 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 36/110 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane jest funkcja f(x)=-x^2+6x+16, gdzie x\in\langle 2,7\rangle. Wyznacz ZW_f.

Zapisz ZW_f w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
y_l= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20411 ⋅ Poprawnie: 51/187 [27%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność 2x^2+b+cx\leqslant 0.

Ile liczb całkowitych spełnia tę nierówność?

Dane
b=-25=-25.00000000000000
c=5=5.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20099 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie |x^2-16|+|x^2-36|=4x+a.

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=2
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20082 ⋅ Poprawnie: 3/16 [18%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dla jakich wartości parametru m zbiór wartości funkcji g(x)=(m-8)x^2+(m-14)x+16-m jest równy (-\infty,18\rangle?

Podaj najmniejsze takie m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30087 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Zbadaj liczbę rozwiązań równania \left|x^2+x-2\right|=\left(\frac{m}{2}-a\right)|x+2| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-4
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich jest większa od ilości rozwiązań ujemnych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.

Podaj sumę wszystkich wyznaczonych wartości m.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30047 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Pierwiastkami równania x^2-(m+a)x-\frac{(m+a)^2}{4}-m+4-a=0 są dwie różne liczby ujemne spełniające warunek |x_1-x_2|=4\sqrt{2}. Wyznacz możliwe wartości parametru m.

Podaj najmniejsze możliwe m.

Dane
a=-2
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30862 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Równanie kwadratowe x^2-(m-5)x+m-6=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest równość (x_1+3x_2)(x_2+3x_1)=16.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm