Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 606/792 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=-15x^2-300x-360 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -4 oraz 2, a wierzchołek paraboli będącej jej wykresem ma współrzędne (-1,-18), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=2(x-4)(x-2) B. f(x)=2(x+4)(x-2)
C. f(x)=2(x+4)(x+2) D. f(x)=\frac{3}{2}(x-4)(x-2)
Zadanie 3.  1 pkt ⋅ Numer: pp-11036 ⋅ Poprawnie: 53/70 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja g określona jest wzorem g(x)=x^2-25. Funkcja f określona jest wzorem f(x)=(5-x)(5+x). Wykres funkcji f można otrzymać z wykresu funkcji g:
Odpowiedzi:
A. poprzez symetrię względem osi Ox B. przesuwając go w górę wzdłuż osi Oy
C. poprzez symetrię względem osi Oy D. przesuwając go w lewo wzdłuż osi Ox
E. przesuwając go w prawo wzdłuż osi Ox F. przesuwając go w dół wzdłuż osi Oy
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 45 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja h(x)=x^2-2x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=-2 B. c=5
C. c=3 D. c=8
E. c=4 F. c=7
Zadanie 6.  2 pkt ⋅ Numer: pp-20936 ⋅ Poprawnie: 50/142 [35%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=-x^2+bx+c jest malejąca wtedy i tylko wtedy, gdy x\in\langle -3,+\infty). Wiedząc, że f(-3)=11, oblicz współczynniki b i c.

Podaj liczbę b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20378 ⋅ Poprawnie: 20/61 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz punkty przecięcia paraboli o równaniu y=2x^2-3x-15 z prostą określoną wzorem y=x-1.

Podaj sumę współrzędnych tego z punktów przecięcia, który w układzie współrzędnych położony jest najbardziej na lewo.

Odpowiedź:
x_L+y_L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj sumę współrzędnych tego z punktów przecięcia, który w układzie współrzędnych położony jest najbardziej na prawo.
Odpowiedź:
x_P+y_P= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20996 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (0.6 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1 i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=2 oraz x_1\cdot x_2=-2. Wiedząc, że f(-1)=-6 i a\in\mathbb{N_+}, wyznacz wzór tej funkcji w postaci ogólnej.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1.4 pkt)
 Podaj liczby b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20083 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m równanie x^2+8x+m-a=0 ma dwa różne pierwiastki jednakowych znaków?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30083 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania x^2-4|x|=2m-a w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-1
Odpowiedź:
min_2=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min_3=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Podaj długość przedziału tych wartości m, dla których równanie ma cztery rozwiązania.
Odpowiedź:
d_4= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30067 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Prosta o równaniu 2x+amy-4=0 ma dokładnie dwa punkty wspólne z parabolą o równaniu y=-x^2+4x-4. Wyznacz możliwe wartości parametru m.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj ilość tych przedziałów.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30032 ⋅ Poprawnie: 34/33 [103%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2-(m-1)x+m+1=0 ma dwa różne pierwiastki takie, że ich suma czwartych potęg jest równa 4m^3-30m^2+40m+54.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm