Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f(x)=x^2-26x+169 dla argumentu \sqrt{13} przyjmuje wartość \left(......\cdot\sqrt{13}-13\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(1, 10). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=-3, a liczba -2 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9) T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1
T/N : f(-5)=h(8)  
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -13, -9\rangle funkcja kwadratowa f(x)=-\left(x+12\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{100-36x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (p,q) B. \langle p,q\rangle
C. (-\infty,p\rangle D. \langle p,+\infty)
E. (-\infty,p\rangle\cup\langle q,+\infty) F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Parabola ma wierzchołek w punkcie C=(4,338) i przecina oś Ox w punktach A i B.

Wiedząc, że P_{\triangle ABC}=2197. Wyznacz wzór tej paraboli w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20385 ⋅ Poprawnie: 37/79 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż układ równań: \begin{cases} y=-\frac{1}{2}x^2-11x-8 \\ y=-\frac{1}{2}x+2 \end{cases} .

Podaj największe możliwe x.

Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż równanie x^2+4x+2ax+a^2+4a+7=4|x+4+a| .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=5
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20105 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie (x-1)|x-2|=m+1+a ma dwa różne rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=6
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30076 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie x^2+(4-2a)x-4|x+4-a|+a^2-4a+7=0 .

Podaj sumę wszystkich rozwiązań tego równania.

Dane
a=5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj sumę kwadratów wszystkich rozwiązań tego równania.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30065 ⋅ Poprawnie: 33/33 [100%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« Dana jest funkcja f(x)=(m+a+1)x^2+2(m+a-2)x-m+4-a . Wyznacz wszystkie wartości parametru m, dla których funkcja f ma dwa różne miejsca zerowe x_1,x_2 spełniające warunek x_1^2+x_2^4=x_1^4+x_2^2.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=5
Odpowiedź:
m_{min}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30842 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 5x^2-(m+8)x+1=0 ma dwa rozwiązania spełniające warunek \left|x_1-x_2\right|\geqslant 1?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, p) B. (-\infty, p\rangle
C. (-\infty, p\rangle \cup \langle q, +\infty) D. (p, q)
E. (p, q\rangle F. (p, +\infty)
G. (-\infty, +\infty) H. (-\infty, p)\cup(q, +\infty)
Podpunkt 12.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm