Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(11,1). Wówczas:
Odpowiedzi:
T/N : f(4)=f(17) T/N : f(2)=f(20)
T/N : f(0)=f(22)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(-2+3x)(x+3).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x+9)^2+1 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=-9 B. x=11
C. y=4 D. y=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 32\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x+9)^2+\frac{13}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20060 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Wyznacz wzór funkcji jaką otrzymamy po przesunięciu wykresu funkcji f(x)=-2x^2+4x+1 o wektor \vec{u}=[p,q]. Zapisz wzór w postaci ogólnej y=ax^2+bx+c.

Podaj b.

Dane
p=6
q=-4
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20390 ⋅ Poprawnie: 77/179 [43%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Dla jakich wartości parametru m funkcja y=-x^2+12x+m-a nie ma miejsc zerowych?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=43
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20462 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Liczby x_1 i x_2 są pierwiastkami równania x^2+bx+c=0. Liczba \frac{1}{x_1^2}+\frac{1}{x_2^2} jest liczbą całkowitą.

Wyznacz tę liczbę.

Dane
b=52
c=-2
Odpowiedź:
\frac{1}{x_1^2}+\frac{1}{x_2^2}= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie |16-x^2|=(m-a)^2-9 ma dwa różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych przedziałów, w kolejności od najmiejszego do największego.

Dane
a=6
Odpowiedzi:
m_1= (wpisz liczbę całkowitą)
m_2= (wpisz liczbę całkowitą)
m_3= (wpisz liczbę całkowitą)
m_4= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj największe możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30074 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność \sqrt{(2+a-x)^2(6+a-x)^2}-3x+6+3a > 0 .

Podaj największą liczbę, która nie spełnia tej nierówności.

Dane
a=6
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  3 pkt ⋅ Numer: pr-30063 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Dla jakich wartości parametru m równanie (m+1)x^2-(m+4)x-(m+3)=0 ma tylko rozwiązania ujemne?

Podaj największe możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami niecałkowitymi.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30031 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m+a)x^2-(3m+3a-3)x+m+a=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich przedziałów, który nie jest liczbą całkowitą.

Dane
a=5
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których suma dwóch różnych pierwiastków tego równania jest nie większa od \frac{5}{2}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec liczbowy tych przedziałów.

Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm