Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 134/245 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » W przedziale \langle -1,2\rangle funkcja y=2x^2+x+2 osiąga wartość najmniejszą równą ......... .

Podaj brakującą liczbę.

Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-798)(x+114), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{3}}{2} i g(x)=\frac{\sqrt{3}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x)-g(x)=x^2 B. f(x) > g(x)
C. f(x)=g(x) D. f(x) \lessdot g(x)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -13, -9\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+10\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=x^2+5x+4. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (p,q\rangle
C. (-\infty,p) D. \langle p,+\infty)
E. (p, q) F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 175/294 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja f(x)=a(x+1)^2-4, do wykresu której nalezy punkt P=(-2,-12).

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20408 ⋅ Poprawnie: 53/169 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność 2x^2+13x > 7.

Ile liczb całkowitych nie należy do rozwiązania?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą z tych liczb.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20073 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie ax^4+bx^2+c=0.

Podaj najmniejsze rozwiązanie tego równnia.

Dane
a=1
b=-12
c=32
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj sumę wszystkich dodatnich rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-1-a=0 ma dwa różne pierwiastki, które są sinusem i cosinusem tego samego kąta ostrego?

Podaj największe takie m.

Dane
a=-5
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30018 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Rozwiązanie układu \begin{cases} x+amy=1 \\ 2x+y=am \end{cases} spełnia warunek |x-y|\leqslant 1. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=-3
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30053 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} suma odwrotności pierwiastków równania 8x^2-4(m-a)x-5m^2+(10a+10)m-5a^2-10a-8=0 wynosi -\frac{12}{23}.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=-4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30867 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Równanie kwadratowe x^2+(m-7)(m-7-x)=3m-18 ma dwa różne rozwiązania x_1 i x_2 gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty). Zapisz liczbę q w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedź:
q= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Funkcja f określona wzorem f(m)=x_1^2+x_2^2 przyjmuje wartość największą dla argumentu m_0.

Podaj liczbę m_0.

Odpowiedź:
m_0= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm