Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2+\frac{3}{2} o p=3 jednostek w lewo i q=10 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-3)^2+\frac{23}{2} B. y=(x+10)^2+\frac{9}{2}
C. y=(x+3)^2-\frac{17}{2} D. y=(x-3)^2-\frac{17}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+x+6}{\sqrt{-2-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=x^2-3 przesunięto o k=5 jednostek w prawo. W wyniku tego przesunięcia otrzymano wykres funkcji określonej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 12\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-6)(x-4)^2(x^2-x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20348 ⋅ Poprawnie: 23/58 [39%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest funkcja kwadratowa o tej własnosci, że rozwiązaniem nierówności f(x) \lessdot 0 jest przedział (-3,4). Rozwiąż nierówność -f(x+3) \lessdot 0.

Ile liczb całkowitych nie spełnia tej nierówności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 7.  3 pkt ⋅ Numer: pr-20068 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dla jakich wartości parametru m najmniejsza wartość funkcji h(x)=(m-a)x^2+3(m-1-a)x+2(m-1-a) należy do przedziału (-\infty,0)?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=-1
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
 Podaj sumę wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20991 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Liczby 2-2\sqrt{3} i 2+2\sqrt{3} są miejscami zerowymi funkcji określonej wzorem f(x)=x^2+(p+q)x+p^2-q^2.

Wyznacz liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20093 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie (m+1)x^2-(m+3)x+3=0 ma dokładnie jedno rozwiązanie.

Podaj największe możliwe m spełniające warunki zadania.

Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj sumę wszystkich wyznaczonych wartości parametru m.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Zbadaj liczbę rozwiązań równania -2|x-1|\cdot|3-x|=m+1+a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-2
Odpowiedź:
max_2= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min_3= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Podaj długość przedziału tych wartości m, dla których równanie ma cztery rozwiązania.
Odpowiedź:
d_4= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30052 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Liczba m\in\mathbb{R} w równaniu (x+3)\cdot\left[x^2+(m+4+a)x+(m+1+a)^2\right]=0 jest parametrem. Rozwiąż to równanie dla m=1-a.

Podaj sumę wszystkich rozwiązań.

Dane
a=-2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartości parametru m równanie to ma dokładnie jedno rozwiązanie?

Podaj najmniejszą liczbę, która nie spełnia warunków zadania.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30050 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » Dla jakich wartości parametru m kwadrat sumy dwóch różnych pierwiastków równania (m+a-4)x^2+(m+a)x-m-a=0 jest większy od 1?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmiejszy z końców liczbowych tych przedziałów.

Dane
a=-2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy koniec liczbowy tch przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm