» Prosta x=1 jest osią symetrii paraboli
f(x)=ax^2+bx+1, a najmniejsza wartość funkcji
f jest równa -2.
Wyznacz równanie tej funkcji w postaci ogólnej.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 84/168 [50%]
Funkcja kwadratowa f określona wzorem f(x)=-(x-p)^2+q
jest rosnąca w przedziale (-\infty,8\rangle i malejąca,
w przedziale \langle 8,+\infty), a jej miejsca zerowe
x_1 i x_2 spełniają warunek
x_1\cdot x_2=-36. Wiedząc, że do wykresu funkcji
f należy punkt o współrzędnych (0,36),
wyznacz liczby p i q.
Podaj liczbę p.
Odpowiedź:
p=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj liczbę q.
Odpowiedź:
q=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20998 ⋅ Poprawnie: 0/0
« Wyznacz te wartości parametru m, dla których
równanie (m+a)x^2-(3m+3a-3)x+m+a=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich
przedziałów, który nie jest liczbą całkowitą.
Dane
a=-4
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R},
dla których suma dwóch różnych pierwiastków tego równania jest nie większa
od \frac{5}{2}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec
liczbowy tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat