Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 705/1015 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Największą wartością funkcji kwadratowej f(x)=-4(x-5)^2-6 jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+4x-3}{\sqrt{3-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/12 [33%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-2)(x+2) określonej dla x\in(3,6\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. \langle p,q)
C. \langle p,q\rangle D. (p,q\rangle
E. (-\infty,p\rangle F. (p,q)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 1, 5\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-4\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2-3x+2)\sqrt{16-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20932 ⋅ Poprawnie: 17/23 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c spełnia warunek f(6)=-6, a jej najmniejszą wartością jest liczba -\frac{301}{2}. Maksymalnym przedziałem, w którym funkcja ta jest rosnąca jest [-11,+\infty).

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20417 ⋅ Poprawnie: 109/211 [51%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x^2+bx+c \leqslant 0.

Ile liczb całkowitych dodatnich spełnia tę nierówność?

Dane
b=2
c=-80
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile liczb całkowitych ujemnych spełnia tę nierówność?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-21061 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie \sqrt{x^2+12x+33}+x^2+12x=-31 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20096 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności (m^2+6m+5)x^2+2(m+3)x-1 \lessdot 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30080 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność x^2+(6+2a)x+|x+2+a|+a^2+6a+8\leqslant 0 .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
a=-12
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30055 ⋅ Poprawnie: 33/33 [100%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} równanie x^2+3x-\frac{m-a}{m-1-a}=0 ma dwa różne pierwiastki rzeczywiste?

Podaj najmniejsze m, które nie spełnia warunku zadania.

Dane
a=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Wyznacz te wartości m, dla których różne pierwiastki tego równania spełniają warunek x_1^3+x_2^3=-9.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30040 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie 2x^2-13x+m+a=0 ma dwa pierwiastki rzeczywiste, z których jeden jest dwa razy większy od drugiego.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=2
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm