Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-5(x-2)^2+7 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (p,+\infty)
C. \langle p,q\rangle D. (-\infty,p\rangle
E. \langle p,+\infty) F. (p,q)
Podpunkt 1.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/560 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby -3 oraz 4. Do wykresu tej funkcji należy punkt A=(0,24). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x-3)^2+8 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. y=10 B. x=3
C. y=5 D. x=-3
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+20m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. największą wartością funkcji jest -20m
Zadanie 5.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=6 jest równa:
Odpowiedzi:
A. 0 B. 2
C. 1 D. 3
Zadanie 6.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek f(-6)=-\frac{3}{2}, a suma jej miejsc zerowych jest równa -14.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20383 ⋅ Poprawnie: 57/107 [53%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Kwadrat liczby jest o 4420 większy od potrojonej wartości tej liczby. Znajdź tę liczbę.

Podaj najmniesze z rozwiązań.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20458 ⋅ Poprawnie: 49/89 [55%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Liczby x_1 i x_2 są miejscami zerowymi funkcji kwadratowej. Liczby te są względem siebie odwrotne i spełniają warunek x_1+x_2=m, przy czym x_1 \lessdot x_2.

Podaj x_1.

Dane
m=7
Odpowiedź:
x_{1}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 5/32 [15%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Równanie |-x^2+2|x|+5|=2p-a ma cztery rozwiązania. Wyznacz zbiór możliwych wartości parametru p.

Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.

Dane
a=7
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30080 ⋅ Poprawnie: 7/13 [53%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność x^2+(6+2a)x+|x+2+a|+a^2+6a+8\leqslant 0 .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
a=-11
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30064 ⋅ Poprawnie: 18/45 [40%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m równanie x^2+2(7-m+a)x+m^2-(13+2a)m+a^2+13a+42=0 ma dwa różne rozwiązania rzeczywiste x_1,x_2 spełniające warunek x_1\cdot x_2\leqslant 6m-6a-18\leqslant x_1^2+x_2^2?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=1
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj sumę kwadratów wszystkich końców całkowitych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30031 ⋅ Poprawnie: 5/14 [35%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m+a)x^2-(3m+3a-3)x+m+a=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich przedziałów, który nie jest liczbą całkowitą.

Dane
a=1
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których suma dwóch różnych pierwiastków tego równania jest nie większa od \frac{5}{2}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec liczbowy tych przedziałów.

Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm