Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=9(x+11)^2+12 B. g(x)=-5(x-9)^2-10
C. g(x)=-11(x-10)^2+\sqrt{14} D. g(x)=9(x+1)^2+14
Zadanie 2.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(1+4x)(x-2).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=-x^2+2x+2 B. y=x^2+2x+4
C. y=x^2-2x+4 D. y=-x^2-2x+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 89 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10111 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 « Zbiór A jest zbiorem tych wartości parametru m, dla których dziedziną funkcji określonej wzorem f(x)=\frac{2}{5mx^2+mx+1} jest zbiór \mathbb{R}. Zapisz zbiór A w postaci sumy przedziałów.

Zbiór A ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. (-\infty,p) D. (-\infty,p\rangle\cup\langle q, +\infty)
E. (-\infty,p)\cup(q, +\infty) F. \langle p,q)
Podpunkt 5.2 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek f(4)=-\frac{3}{2}, a suma jej miejsc zerowych jest równa 6.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20407 ⋅ Poprawnie: 25/44 [56%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność -1\cdot f(x)-1\cdot g(x) > -2, gdzie f(x)=x^2-4x+1 i g(x)=x-3.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_L=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20077 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Funkcja f(x)=2x^2+\frac{b-a}{2}x+c+2 jest malejąca wtedy i tylko wtedy, gdy x\in(-\infty,4\rangle. Iloczyn miejsc zerowych tej funkcji jest równy 12.

Oblicz b+c.

Dane
a=6
Odpowiedź:
b+c= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych tej funkcji.
Odpowiedź:
x_1^2+x_2^2= (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20091 ⋅ Poprawnie: 11/14 [78%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m równanie (m+6)x^2+2x+1=0 ma dwa pierwiastki o przeciwnych znakach.

Podaj najmniejszą liczbę, która nie spełnia warunków zadania.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30088 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj liczbę rozwiązań równania \left|x^2+x-30\right|=\left(m-\frac{a}{2}\right)|x-5| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=5
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma trzy rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
 Podaj największe możliwe m, dla którego ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których suma kwadratów dwóch różnych pierwiastków równania x^2+(m-2-a)x+2=0 jest większa od 2m^2+(16-4a)m+2a^2-16a+19.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj sumę całkowitych końców tych przedziałów.
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30038 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2-(2m+1+a)x+2m+a=0 ma dwa różne pierwiastki rzeczywiste spełniające warunek |x_1-x_2| > 2x_1x_2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=6
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Ile liczb całkowitych z przedziału \langle -20,20\rangle spełnia warunki zadania.
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm