Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11073 ⋅ Poprawnie: 183/338 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja kwadratowa f(x)=x^2+bx+c, przy czym f(3)=f(4)=3.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+2)(x-4) jest przedział liczbowy \langle -27,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-2,4).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=x^2-11 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=-11x+1 B. y=11x
C. x=4 D. y=11
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 0, 4\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-3\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt M=(a,3\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20895 ⋅ Poprawnie: 18/34 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=ax^2+bx+c. Funkcja ta przyjmuje wartości dodatnie tylko w przedziale (0, k), a jej największa wartość wartość wynosi q.

Wyznacz a.

Dane
k=44
q=3872
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20372 ⋅ Poprawnie: 84/168 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż równanie x^2-\frac{4}{\sqrt{2}}x+2=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20996 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (0.6 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1 i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=3 oraz x_1\cdot x_2=2. Wiedząc, że f(1)=14 i a\in\mathbb{N_+}, wyznacz wzór tej funkcji w postaci ogólnej.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1.4 pkt)
 Podaj liczby b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Równanie |-x^2+2|x|+5|=2p-a ma cztery rozwiązania. Wyznacz zbiór możliwych wartości parametru p.

Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.

Dane
a=7
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-(m+2-a)|x|+m-a=0 ma dwa różne rozwiązania?

Podaj największe możliwe m.

Dane
a=2
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Dla ilu całkowitych wartości m\in\langle -10,10 \rangle warunki zadania są spełnione?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30057 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których jedno z rozwiązań równania \frac{a^2}{m^2}x^2-24\cdot\frac{m}{a}x+16\cdot\frac{m^2}{a^2}=0 jest sześcianem drugiego rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=8
Odpowiedź:
m_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30842 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 5x^2-(m+2)x+1=0 ma dwa rozwiązania spełniające warunek \left|x_1-x_2\right|\geqslant 1?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, +\infty) B. (p, q)
C. (-\infty, p)\cup(q, +\infty) D. (-\infty, p)
E. \langle p, +\infty) F. (-\infty, p\rangle \cup \langle q, +\infty)
G. (p, q\rangle H. (p, +\infty)
Podpunkt 12.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm