Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 275/488 [56%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
-9 i
-5 oraz
że najmniejszą jej wartością jest liczba
-1 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/560 [65%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
4
oraz
-1 . Do wykresu tej funkcji należy punkt
A=(2,12) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/159 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ile punktów wspólnych z osią
Ox ma wykres funkcji
kwadratowej
f(x)=-2+7(x-3)^2 :
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 235/374 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Suma dwóch liczb jest równa
14\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=x^2+5x-1 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q\rangle
B. (-\infty,p\rangle
C. (p, q)
D. (-\infty,p)
E. (p,+\infty)
F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji
w postaci ogólnej.
Podaj współczynnik b występujący we wzorze.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj liczbę a+c .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20388 ⋅ Poprawnie: 44/132 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Wyznacz dziedzinę funkcji:
f(x)=\frac{\sqrt{ax^2+bx+c}}{x}
.
Ile liczb całkowitych należy do dziedziny tej funkcji?
Dane
a=-1
b=2
c=63
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Rozwiąż równanie
ax^6+bx^3+c=0 .
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=0.50
b=-3.50
c=-4.00
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20997 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (0.4 pkt)
«« Dla jakich wartości parametru
m\in\mathbb{R} równanie
2x^2-4(m+8)x+(m+9)(m+8)=0 ma dwa rozwiązania spełniające warunek
x_1 \lessdot m+2 \lessdot x_2 ?
Rozwiązaniem jest zbiór postaci:
Odpowiedzi:
A. (p, q\rangle
B. \langle p, +\infty)
C. (-\infty, p)\cup(q, +\infty)
D. (-\infty, p\rangle \cup \langle q, +\infty)
E. (-\infty, p\rangle
F. (p, q)
G. (-\infty, p)
H. (-\infty, +\infty)
Podpunkt 9.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (0.8 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Zbadaj liczbę rozwiązań równania
-\frac{1}{3}x^2+2|x|-3=3m-3a
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=-1
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Przedział
(m_1,m_2) zawiera wszystkie te wartości
parametru
m , dla których równanie to ma
więcej niż trzy rozwiązania.
Podaj m_1^2+m_2^2 .
Odpowiedź:
m_1^2+m_2^2=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30061 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dla jakich wartości parametru
m\in\mathbb{R}
dwa różne pierwiastki równania
x^2-2(m-a)x-m+a=0
należą do przedziału
(-2,0) .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
m_P=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30027 ⋅ Poprawnie: 34/35 [97%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
«« Suma
\frac{1}{x_1^2}+\frac{1}{x_2^2} , gdzie
x_1 i
x_2 są różnymi
rozwiązaniami równania
\frac{x^2+(m-5)x-1}{m-b}=0 , jest równa
a ?
Podaj największą możliwą wartość parametru m\in\mathbb{R} .
Dane
a=66
b=-3
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj sumę wszystkich możliwych wartości parametru
m\in\mathbb{R} .
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Rozwiąż