Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Parabola o wierzchołku
P=(2,-6) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=-2(x+2)^2-6
B. y=3(x+6)^2-6
C. y=-2(x-2)^2-6
D. y=(x-2)^2+6
Zadanie 2. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m-2)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. \langle p,+\infty)
C. (p,q)
D. (-\infty,p\rangle
E. (-\infty,p)
F. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczba punktów wspólnych wykresu funkcji
h(x)=2x^2+\frac{5}{3}x+\frac{1}{3} z osiami układu
współrzędnych jest równa:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
65 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2+4x-12}{x-4} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f ma zbiór \mathbb{R} za dziedzinę
T/N : f ma jedno miejsce zerowe
T/N : f przyjmuje wartości dodatnie
Zadanie 6. 2 pkt ⋅ Numer: pp-20345 ⋅ Poprawnie: 34/57 [59%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których
prosta
y=m ma dwa punkty wspólne z wykresem
funkcji
f(x)=-\frac{x^2}{2}+2x+5 .
Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20408 ⋅ Poprawnie: 53/169 [31%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
2x^2-x > 55 .
Ile liczb całkowitych nie należy do rozwiązania?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Rozwiąż równanie
ax^6+bx^3+c=0 .
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=0.50
b=3.50
c=-4.00
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
|16-x^2|=(m-a)^2-9 ma dwa różne
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych
przedziałów, w kolejności od najmiejszego do największego.
Dane
a=1
Odpowiedzi:
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30083 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Zbadaj liczbę rozwiązań równania
x^2-4|x|=2m-a w
zależności od wartości parametru
m\in\mathbb{R} .
Podaj najmniejsze możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj długość przedziału tych wartości
m , dla
których równanie ma cztery rozwiązania.
Odpowiedź:
d_4=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30067 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Prosta o równaniu
2x+amy-4=0 ma dokładnie dwa
punkty wspólne z parabolą o równaniu
y=-x^2+4x-4 .
Wyznacz możliwe wartości parametru
m .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=-4
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj ilość tych przedziałów.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30034 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Wyznacz te wartości parametru
m , dla których
równanie
2x^2-(2m+2a-1)x-m-a=0
ma dwa różne pierwiastki spełniające warunek
|x_1-x_2|=3 .
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Dane
a=1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
m spełniające warunki
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż