Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 « Funkcja y=-(x+4)^2+6 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (p,+\infty)
C. \langle p,q\rangle D. \langle p,+\infty)
E. (-\infty,p\rangle F. (p,q)
Podpunkt 1.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby 4 i \frac{11}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2+19x-44.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10994 ⋅ Poprawnie: 87/175 [49%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Zbiorem wartości funkcji f(x)=6x^2-12x+m-2 jest przedział liczbowy zawarty w przedziale \langle 0,+\infty), wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Przedział, do którego należy parametr m ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,q\rangle
C. \langle p,+\infty) D. (p,+\infty)
E. (-\infty,p\rangle F. (-\infty,p)
Podpunkt 3.2 (0.8 pkt)
 Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -8, -4\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+5\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{9-81x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty) B. (-\infty,p\rangle
C. \langle p,q\rangle D. (p,q)
E. (p,+\infty) F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20936 ⋅ Poprawnie: 50/142 [35%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=-5x^2+bx+c jest malejąca wtedy i tylko wtedy, gdy x\in\langle 1,+\infty). Wiedząc, że f(2)=-3, oblicz współczynniki b i c.

Podaj liczbę b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 221/686 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=-5
c=7
p=-7
q=2
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20994 ⋅ Poprawnie: 13/16 [81%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=-(x-p)^2+q jest rosnąca w przedziale (-\infty,6\rangle i malejąca, w przedziale \langle 6,+\infty), a jej miejsca zerowe x_1 i x_2 spełniają warunek x_1\cdot x_2=-108. Wiedząc, że do wykresu funkcji f należy punkt o współrzędnych (0,108), wyznacz liczby p i q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20096 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności (m^2-8m+12)x^2+2(m-4)x-1 \lessdot 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30025 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Z punktu A odległego o 56 km od punktu B wyjechał tramwaj. Po godzinie z punktu B wyjechał inny tramwaj i poruszał się w kierunku punktu A, po tej samej trasie. Po pewnym czasie oba tramwaje wyminęły się. Od tego momentu tramwaj jadący z miejscowości A jechał jeszcze 180 minut do miejscowości B, a tramwaj drugi jechał jeszcze przez 240 minut do miasta A.

Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości A?

Odpowiedź:
v_A= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości B?
Odpowiedź:
v_B= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30046 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Równanie (m-a)x^2+2x-4m+5+4a=0 ma przynajmniej jedno rozwiązanie dodatnie. Wyznacz możliwe wartości parametru m.

Podaj najmniejsze możliwe m, które nie spełnia warunków tego zadania.

Dane
a=-2
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m, które nie spełnia warunków tego zadania.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30050 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » Dla jakich wartości parametru m kwadrat sumy dwóch różnych pierwiastków równania (m+a-4)x^2+(m+a)x-m-a=0 jest większy od 1?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmiejszy z końców liczbowych tych przedziałów.

Dane
a=-2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy koniec liczbowy tch przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm