Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 94/158 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Różnica iloczynu liczby 8 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/93 [53%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+1)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (p,+\infty)
C. (p,q) D. (-\infty,p)
E. \langle p,+\infty) F. \langle p,q\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11054 ⋅ Poprawnie: 31/57 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Pole powierzchni figury ograniczonej parabolą o równaniu y=x^2-25 i osią Ox jest:
Odpowiedzi:
A. równe 125 B. większe od 125
C. mniejsze od 125 D. większe od 250
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -4, 0\rangle funkcja kwadratowa f(x)=-\left(x+3\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10111 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 « Zbiór A jest zbiorem tych wartości parametru m, dla których dziedziną funkcji określonej wzorem f(x)=\frac{2}{-mx^2+mx+1} jest zbiór \mathbb{R}. Zapisz zbiór A w postaci sumy przedziałów.

Zbiór A ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p,+\infty)
C. (-\infty,p)\cup(q, +\infty) D. (p,q)
E. (-\infty,p\rangle\cup\langle q, +\infty) F. (p,q\rangle
Podpunkt 5.2 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 76/172 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Najmniejszą wartość równą -13 trójmian y=x^2+bx+c osiąga dla x=3.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20382 ⋅ Poprawnie: 16/59 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Iloczyn dwóch liczb ujemnych jest równy 2220, a jedna z nich jest o 7 mniejsza od połowy drugiej liczby.

Podaj większą z tych liczb.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20980 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie \sqrt{x}-\sqrt{10-x}=\sqrt{2x-14} .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Równanie |-x^2+2|x|+5|=2p-a ma cztery rozwiązania. Wyznacz zbiór możliwych wartości parametru p.

Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.

Dane
a=5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30079 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2-2ax+a^2+c \leqslant -b|x-a| .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
b=-1
c=-20
a=3
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  6 pkt ⋅ Numer: pr-30827 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 (2 pkt) Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-(m+3)x+m+2=0 spełnia tylko jedna liczba rzeczywista?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 (2 pkt) Dla jakich wartości parametru m\in\mathbb{R} dwa różne rozwiązania rzeczywiste x_1 i x_2 tego równania spełniają nierówność (x_1+3x_2)(x_2+3x_1)\geqslant 16?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten z tych wszystkich końców tych przedziałów, który jest liczbą całkowitą.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 (2 pkt) Podaj ten z tych wszystkich końców liczbowych tych przedziałów, który należy do zbioru \mathbb{R}-\mathbb{Z} (różnica zbiorów).
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30866 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Równanie kwadratowe x^2-(m-2)x+1=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Wyznacz te wszystkie wartości parametru m, dla których spełniona jest nierówność \frac{1}{x_1^2}+\frac{1}{x_2^2} \geqslant 2m^2-5m-18.

Podaj najmniejsze i największe rozwiązanie tej nierówności.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm