Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-2(x+6)^2+1 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,+\infty)
C. \langle p,q\rangle
D. (p,q)
E. (-\infty,p)
F. \langle p,+\infty)
Podpunkt 1.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x-1)(x+9) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji określonej wzorem
f(x)=x^2-4
przesunięto o
k=5 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=20t-5t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : x^2+x-6 \geqslant 0
T/N : x^2+\frac{1}{2}x+\frac{1}{16} > 0
Zadanie 6. 2 pkt ⋅ Numer: pp-20345 ⋅ Poprawnie: 34/57 [59%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których
prosta
y=m ma dwa punkty wspólne z wykresem
funkcji
f(x)=-\frac{x^2}{2}+2x+5 .
Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20359 ⋅ Poprawnie: 51/109 [46%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Wyznacz największą wartość funkcji
f(x)=bx+ax^2 .
Dane
a=-\frac{1}{2}=-0.50000000000000
b=\frac{1}{2}=0.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20104 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wyznacz zbiór liczb, które
nie spełniają nierówności
(x+1-a)^2-|x-a|\geqslant 2x-2a+1
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=3
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Jaka jest łączna długość tych przedziałów.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Równanie
|-x^2+2|x|+5|=2p-a ma cztery
rozwiązania. Wyznacz zbiór możliwych wartości parametru
p .
Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.
Dane
a=6
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30087 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Zbadaj liczbę rozwiązań równania
\left|x^2+x-2\right|=\left(\frac{m}{2}-a\right)|x+2|
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj najmniejsze możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=2
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe
m , dla którego
równanie ma dwa rozwiązania.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
ilość rozwiązań dodatnich jest większa od ilości rozwiązań ujemnych.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Podaj sumę wszystkich wyznaczonych wartości m .
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30060 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Dla jakich wartości parametru
m\in\mathbb{R} równanie
(m+3-a)x^2+(m-a)x-m-1+a=0 ma co najmniej jedno
rozwiązanie dodatnie?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów, który jest liczbą.
Dane
a=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Przedział
(a, b) jest zbiorem tych wszystkich
wartości parametru
m , które nie spełniają warunków
zadania.
Podaj środek tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30039 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Wyznacz te wartości parametru
m , dla których
równanie
(m-2)x^2+(m+1)x+4=0 ma dwa różne pierwiastki
rzeczywiste, których suma odwrotności jest mniejsza od
2 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Rozwiąż