Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 155/204 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji kwadratowej f:

Zbiór wartości funkcji określonej wzorem y=-f(x) jest równy:

Odpowiedzi:
A. \langle 4,+\infty) B. \langle -4,0\rangle
C. (-\infty, 4\rangle D. (-\infty,+\infty)
Zadanie 2.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/770 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-4)(x+2) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10966 ⋅ Poprawnie: 34/58 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Zbiorem wartości funkcji y=-(x-3)(x+3) określonej dla x\in(1,4\rangle jest pewien przedział liczbowy, którego lewy koniec jest równy p, a prawy koniec jest równy q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 16/42 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=8t-2t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 102/147 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-6)(x-2)^2(x^2-x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 34/62 [54%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=2x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle 2,+\infty), a osią symetrii jej wykresu jest prosta x=-6.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20407 ⋅ Poprawnie: 25/44 [56%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność -5\cdot f(x)-8\cdot g(x) > 2, gdzie f(x)=x^2-4x+1 i g(x)=x-3.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_L=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20069 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż równanie \sqrt{x}+\sqrt{a-x}=\sqrt{x+1} .

Podaj największe z rozwiązań tego równania.

Dane
a=3
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20096 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności (m^2-2m-3)x^2+2(m-1)x-1 \lessdot 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30023 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dla jakich wartości parametru m zbiór wartości funkcji f(x)=\frac{1}{4}(m-6)x^2+(m-7)x+m-7 jest równy \left\langle \frac{2}{3},+\infty\right).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30062 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m równanie (m-2-a)x^2+4|x|+m-5-a=0 ma dokładnie dwa rozwiązania?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=-1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj długość rozwiązania, czyli długość wszystkich przedziałów tworzących rozwiązanie.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30032 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2-(m-1)x+m+1=0 ma dwa różne pierwiastki takie, że ich suma czwartych potęg jest równa 4m^3-30m^2+40m+54.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm