Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/536 [56%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli y=x^2+4x leży na prostej o równaniu:
Odpowiedzi:
A. y=-4x B. y=2x
C. y=-2x D. y=1x
E. y=-1x F. y=4x
Zadanie 2.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/86 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(2, 12). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=-2, a liczba -1 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 290/480 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 43 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/430 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2+\frac{1}{2}x+33} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20939 ⋅ Poprawnie: 6/39 [15%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c dla argumentu 5 przyjmuje wartość najmniejszą, równą -7, a jeden z punktów przecięcia jej wykresu z prostą o równaniu y=-5 ma odciętą 3.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20408 ⋅ Poprawnie: 53/169 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność 2x^2-x > 55.

Ile liczb całkowitych nie należy do rozwiązania?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą z tych liczb.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż równanie ax^6+bx^3+c=0.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=0.50
b=-9.50
c=-108.00
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20098 ⋅ Poprawnie: 21/17 [123%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności x^2+(m+5)x+3m+15 > 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania -\frac{1}{3}x^2+2|x|-3=3m-3a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=2
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Przedział (m_1,m_2) zawiera wszystkie te wartości parametru m, dla których równanie to ma więcej niż trzy rozwiązania.

Podaj m_1^2+m_2^2.

Odpowiedź:
m_1^2+m_2^2= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie pary liczb (p,q) o tej własności, że pierwiastkami równania x^2+px+q=0 są liczby p i q.

Ile jest takich par?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszą możliwą wartość p.
Odpowiedź:
p_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszą możliwą wartość q.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30049 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » Dla jakich wartości parametru m suma kwadratów różnych pierwiastków równania x^2+(m+a)x+m-1+a=0 jest większa od 7?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec liczbowy tych przedziałów.

Dane
a=3
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy z koniec liczbowy tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Podaj największą wartość parametru m, dla której równanie to nie ma dwóch różnych rozwiązań.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm