Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja y=x^2-7.

Do zbioru ZW_f nie należy liczba:

Odpowiedzi:
A. 6-8\sqrt{2} B. 5-8\sqrt{3}
C. 5-8\sqrt{2} D. 10-5\sqrt{10}
Zadanie 2.  1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(-1+2x)(x-2) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x+9)^2-4 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. x=9 B. y=-6
C. x=-9 D. y=-3
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 51 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10110 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zapisz dziedzinę funkcji określonej wzorem f(x)= \sqrt{\frac{x^3}{x^2+3x-10}} - \frac{x\sqrt{x}}{\sqrt{x^2+3x-10}} w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (p,+\infty) B. \langle p,q\rangle
C. (-\infty,p) D. (p,q)
E. \langle p,+\infty) F. (-\infty,p\rangle\cup\langle q, +\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20899 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Miejscem zerowym funkcji kwadratowej f jest liczba 1. Funkcja f rośnie wtedy i tylko wtedy gdy x\in(-\infty, 0\rangle. Najmniejsza wartość funkcji f w przedziale \langle 0,5\rangle jest równa -48. Zapisz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20378 ⋅ Poprawnie: 20/61 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz punkty przecięcia paraboli o równaniu y=2x^2+21x+43 z prostą określoną wzorem y=x-1.

Podaj sumę współrzędnych tego z punktów przecięcia, który w układzie współrzędnych położony jest najbardziej na lewo.

Odpowiedź:
x_L+y_L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj sumę współrzędnych tego z punktów przecięcia, który w układzie współrzędnych położony jest najbardziej na prawo.
Odpowiedź:
x_P+y_P= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20995 ⋅ Poprawnie: 9/14 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa f ma dwa miejsca zerowe x_1 i x_2 takie, że x_1\cdot x_2=-10. Wiedząc, że dla argumentu -\frac{3}{2} funkcja ta przyjmuje wartość największą równą \frac{49}{16}, wyznacz wzór funkcji w postaci f(x)=a(x-x_1)(x-x_2).

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj miejsca zerowe tej funkcji.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-1-a=0 ma dwa różne pierwiastki, które są sinusem i cosinusem tego samego kąta ostrego?

Podaj największe takie m.

Dane
a=-5
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30023 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dla jakich wartości parametru m zbiór wartości funkcji f(x)=\frac{1}{4}(m-6)x^2+(m-7)x+m-7 jest równy \left\langle \frac{2}{3},+\infty\right).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  3 pkt ⋅ Numer: pr-30063 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Dla jakich wartości parametru m równanie (m-3)x^2-(m)x-(m-1)=0 ma tylko rozwiązania ujemne?

Podaj największe możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami niecałkowitymi.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30049 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » Dla jakich wartości parametru m suma kwadratów różnych pierwiastków równania x^2+(m+a)x+m-1+a=0 jest większa od 7?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec liczbowy tych przedziałów.

Dane
a=-6
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy z koniec liczbowy tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Podaj największą wartość parametru m, dla której równanie to nie ma dwóch różnych rozwiązań.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm