Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 534/899 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-8\rangle:
Odpowiedzi:
A. y=(x+8)^2+2 B. y=-(x+2)^2+8
C. y=-(x-2)^2-1 D. y=-(x+2)^2-8
E. y=(x-8)^2+2 F. y=-(x+8)^2+2
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/93 [53%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+2)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (-\infty,p\rangle
C. (-\infty,p) D. \langle p,q\rangle
E. (p,+\infty) F. (p,q)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 83/120 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu której funkcji należy punkt o współrzędnych A=(128, 0):
Odpowiedzi:
A. y=(x+256)(2x-256) B. y=x^2-2048
C. y=(x+128)^2 D. y=x^2+256
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -6,-3\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 666/873 [76%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 » Równanie (2x-1)(x+2)=(2x-1)(2x-6) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/206 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Współrzędna y wierzchołka wykresu funkcji f(x)=ax^2+2x-1 jest równa -3.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20066 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wyznacz te wartości parametru m, dla których funkcja f(x)=(m-a)x^2-(m-3-a)x+m-3-a ma najmniejszą wartość równą -3.

Podaj największe takie m.

Dane
a=-4
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20458 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Liczby x_1 i x_2 są miejscami zerowymi funkcji kwadratowej. Liczby te są względem siebie odwrotne i spełniają warunek x_1+x_2=m, przy czym x_1 \lessdot x_2.

Podaj x_1.

Dane
m=-8
Odpowiedź:
x_{1}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20079 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dla jakich wartości parametru m rozwiązaniem nierówności (2m-4)x^2+2x+1\geqslant 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30074 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność \sqrt{(2+a-x)^2(6+a-x)^2}-3x+6+3a > 0 .

Podaj największą liczbę, która nie spełnia tej nierówności.

Dane
a=-6
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30066 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Dana jest funkcja f(x)=x^2+2(m-a)x+6m-5-6a . Dla jakich wartości parametru m funkcja ma dwa różne miejsca zerowe o takich samych znakach?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych końców przedziałów, które są liczbami całkowitymi.

Dane
a=-5
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Dla jakich wartości parametru m te miejsca zerowe spełniają warunek |x_2-x_1| \lessdot 3?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30033 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie x^2-(m+a)x+3=0 ma dwa różne pierwiastki takie, że ich suma czwartych potęg jest równa 46.

Podaj najmniejsze możliwe m.

Dane
a=-6
Odpowiedź:
m_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm