«« Funkcja f(x)=2x^2+\frac{b-a}{2}x+c+2 jest malejąca
wtedy i tylko wtedy, gdy x\in(-\infty,4\rangle.
Iloczyn miejsc zerowych tej funkcji jest równy 12.
Oblicz b+c.
Dane
a=-5
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych tej funkcji.
Odpowiedź:
x_1^2+x_2^2=(liczba zapisana dziesiętnie)
Zadanie 9.3 pkt ⋅ Numer: pr-20873 ⋅ Poprawnie: 0/0
(2 pkt)
Dana jest funkcja określona wzorem y=\frac{25}{x^2},
dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano
na rysunku, oraz punkt A=(8, -1):
Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych
B=(x_0, y_0) oraz C=(-x_0,y_0)
gdzie x_0 > 0 i y_0 > 0.
Znajdź najmniejsze x_0\in(13;+\infty), dla którego
P_{\triangle ABC}\geqslant 26.
Odpowiedź:
x_0=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
(1 pkt)
Wyznacz największą liczbę nieujemną m o tej własności,
że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność
P_{\triangle ABC}\geqslant m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30088 ⋅ Poprawnie: 0/0
» Dla jakich wartości parametru m\in\mathbb{R}
równanie
x^2-x+2m+3-2a=0
ma dwa różne pierwiastki rzeczywiste x_1,x_2
spełniające warunek
3x_1^2x_2+3x_1x_2^2=m^2-2am+4m+a^2-4a-6
?
Podaj najmniejsze możliwe m.
Dane
a=-3
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30034 ⋅ Poprawnie: 0/0