Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 815/1146 [71%]
Rozwiąż
Podpunkt 1.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2-2 x-8 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 1.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{3}{4}
B. -\frac{3}{4}
C. \frac{1}{2}
D. -\infty
E. +\infty
F. -\frac{1}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 372/570 [65%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
-7
oraz
-3 . Do wykresu tej funkcji należy punkt
A=(-1,-24) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyznacz największą całkowitą wartość funkcji określonej wzorem
f(x)=-x^2-3x-8 .
Odpowiedź:
max_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 9, 13\rangle funkcja kwadratowa
f(x)=-\left(x-10\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 253/534 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{25-x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,+\infty)
C. \langle p,+\infty)
D. \langle p,q\rangle
E. (-\infty,p\rangle\cup\langle q,+\infty)
F. (p,q)
Podpunkt 5.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji
w postaci ogólnej.
Podaj współczynnik b występujący we wzorze.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj liczbę a+c .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20065 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz te wartości parametru
m , dla których
funkcja
h(x)=(2+a-m)x^2+(m-a)x+m-4-a
ma największą wartość równą
2 .
Podaj najmniejsze takie m .
Dane
a=-4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe takie
m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20099 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
|x^2-16|+|x^2-36|=4x+a .
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=-1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pr-20097 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m rozwiązaniem
nierówności
-x^2+(2+m)x-2m-1\leqslant 0 jest zbiór
\mathbb{R} ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30024 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Wyznacz wszystkie wartości parametru
m , dla których
funkcja
f(x)=(m^2-a)x^2-2(b-m)x+2 przyjmuje
wartości dodatnie dla każdego
x rzeczywistego.
Podaj najmniejsze dodatnie m , które spełnia
warunki zadania.
Dane
a=16
b=4
Odpowiedź:
min_{>0}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejsze ujemne
m , które nie spełnia
warunków zadania.
Odpowiedź:
min_{<0}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Funkcja
f(x)=x^2+(m^2-14m-n^2+46)x+n^2+3m-25 ,
gdzie
m,n\in\mathbb{C} , ma dwa miejsca zerowe
x_1=4-\sqrt{5} oraz
x_2=4+\sqrt{5} .
Ile rozwiązań ma to zadanie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejsze możliwe
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30857 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Funkcja
f dwóm różnym rozwiązaniom
x_1 i
x_2 równania
x^2+(m-7)x-m+6=0
przyporządkowuje sumę ich kwadratów
f(m)=x_1^2+x_2^2 . Funkcja ta określona
jest wzorem postaci
f(m)=am^2+bm+c .
Podaj liczby a , b i c .
Odpowiedzi:
Podpunkt 12.2 (2 pkt)
Wyznacz wartość parametru
m , dla której funkcja
f
przyjmuje wartość najmniejszą.
Odpowiedź:
f_{min}(m)=
(wpisz liczbę całkowitą)
Rozwiąż