Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 900/1173 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję kwadratową, której zbiorem wartości jest przedział \langle -3,+\infty):
Odpowiedzi:
A. y=-(x+2)^2-3 B. y=-(x-2)^2-3
C. y=-2(x+5)^2+3 D. y=(x-4)^2+3
E. y=(x+6)^2-3 F. y=(x+2)^2+3
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-2(x-1)(x-4). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/160 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ile punktów wspólnych z osią Ox ma wykres funkcji kwadratowej f(x)=-10-6(x-3)^2:
Odpowiedzi:
A. 2 B. 3
C. 0 D. 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 221/338 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 712/883 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 64x^2+16x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 28/60 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba -3 jest miejscem zerowym funkcji kwadratowej h. Maksymalny przedział, w którym ta funkcja jest malejąca jest równy \langle 1,+\infty). W przedziale \langle -6,-5\rangle największą wartością funkcji h jest -60. Wyznacz wzór funkcji h(x)=ax^2+bx+c.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20386 ⋅ Poprawnie: 30/47 [63%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dana jest funkcja f(x)=a(x+1)^2-14400, której jednym z miejsc zerowych jest liczba 2.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20070 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż nierówność \sqrt{x^2-4ax+7+4a^2} > \sqrt{2}x+\sqrt{2}\left(3-2a\right) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę kwadratów wszystkich końców liczbowych tych przedziałów.

Dane
a=-5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20092 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane jest równanie (m+3)x^2-4(m+8)x+m+6=0. Zbadaj liczbę rozwiązań tego równania w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe m, dla którego równanie to ma dokładnie jedno rozwiązanie.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz te wartości m, dla których równanie to nie ma rozwiązania.

Rozwiązanie zapisz w postaci przedziału. Podaj środek tego przedziału.

Odpowiedź:
m_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30080 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność x^2+(6+2a)x+|x+2+a|+a^2+6a+8\leqslant 0 .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
a=-5
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30068 ⋅ Poprawnie: 14/16 [87%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Zbadaj liczbę pierwiastków równania (m^2-12m+27)x^2-2(9-m)x+1=0 w zależności od wartości parametru m.

Podaj największe możliwe m, dla którego równanie ma dokładnie jedno rozwiązanie.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj sumę wszystkich wartości m, dla których równanie to ma dokładnie jedno rozwiązanie.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz te wartości m, dla których równanie to ma dwa rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30030 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Liczby x_1 i x_2 są różnymi pierwiastkami równania ax^2+4mx+2m=0. Funkcja g liczbie m przyporządkowuje sumę kwadratów pierwiastków tego równania. Wyznacz dziedzinę funkcji g. Wiadomo, że D_g=\mathbb{R}-\langle p, q\rangle.

Podaj p.

Dane
a=2
Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Zapisz wzór funkcji g. Funkcja h określona jest wzorem h(x)=g(x) i jej dziedziną jest zbiór \mathbb{R}.

Podaj miejsca zerowe funkcji h.

Odpowiedzi:
m_{min}=
(wpisz liczbę całkowitą)

m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm