Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 605/791 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=-25x^2-975x-975 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1038/1511 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójmian kwadratowy y=-4x^2+4x+168 można zapisać w postaci y=a(x-7)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 268/393 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. y-2=0 B. x-2=0
C. y=-4 D. x=-4
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -12,-9\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10110 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zapisz dziedzinę funkcji określonej wzorem f(x)= \sqrt{\frac{x^3}{x^2-x-56}} - \frac{x\sqrt{x}}{\sqrt{x^2-x-56}} w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (-\infty,p)\cup(q, +\infty) B. (-\infty,p\rangle\cup\langle q, +\infty)
C. (p,q) D. (-\infty,p)
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20900 ⋅ Poprawnie: 51/89 [57%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dana jest funkcja kwadratowa g(x)=ax^2+bx+c, która spełnia warunek g(6)=g(8)=0. Do wykresu funkcji g należy punkt \left(5,\frac{3}{2}\right). Wyznacz współrzędne (x_w,y_w) wierzchołka paraboli będącej wykresem funkcji g.

Podaj x_w.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_w.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20413 ⋅ Poprawnie: 4/25 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « O funkcji kwadratowej f wiadomo, że: f(a)=-\frac{5}{2}, f(b)=0 oraz f(c)=-2\frac{1}{2}. Rozwiąż nierówość f(x)\geqslant 0.

Podaj największą liczbę całkowitą spełniającą tą nierówność.

Dane
a=-10
b=-2
c=9
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20994 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=-(x-p)^2+q jest rosnąca w przedziale (-\infty,8\rangle i malejąca, w przedziale \langle 8,+\infty), a jej miejsca zerowe x_1 i x_2 spełniają warunek x_1\cdot x_2=55. Wiedząc, że do wykresu funkcji f należy punkt o współrzędnych (0,-55), wyznacz liczby p i q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20998 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-2x+m-7=0 ma dwa rozwiązania spełniające warunek 8x_1-3x_2=49?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30077 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2+2ax-3|x+6+a|+a^2 > 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Przedział \langle p, q\rangle jest zbiorem tych wszystkich wartości x, które nie spełniają podanej nierówności.

Podaj środek tego przedziału.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  3 pkt ⋅ Numer: pr-30063 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Dla jakich wartości parametru m równanie (m+8)x^2-(m+11)x-(m+10)=0 ma tylko rozwiązania ujemne?

Podaj największe możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami niecałkowitymi.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30039 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m+4)x^2+(m+7)x+4=0 ma dwa różne pierwiastki rzeczywiste, których suma odwrotności jest mniejsza od 2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm