Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja y=x^2-3.

Do zbioru ZW_f nie należy liczba:

Odpowiedzi:
A. 6-2\sqrt{10} B. 2-\sqrt{10}
C. 3-3\sqrt{3} D. 9-4\sqrt{10}
Zadanie 2.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójmian kwadratowy y=-3x^2+3x+60 można zapisać w postaci y=a(x-5)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11027 ⋅ Poprawnie: 42/93 [45%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu x=-3 jest osią symetrii wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym rysunku. Zbiór A zawiera wszystkie te wartości rzeczywiste x, dla których f(x)\leqslant 0.

Podaj najmniejszą liczbę należącą do zbioru A.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -7, -3\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+4\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja g określona jest wzorem g(x)=\frac{5}{\sqrt{25-x^2}} . Zapisz dziedzinę funkcji określonej wzorem h(x)=g(x+4) w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (p,q) B. (p,+\infty)
C. (-\infty,p\rangle\cup\langle q, +\infty) D. (p,q\rangle
E. (-\infty,p)\cup(q, +\infty) F. \langlep,+\infty)
Podpunkt 5.2 (1 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20456 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Po przesunięciu wykresu funkcji f(x)=2x^2-x+\frac{23}{8} o wektor \left[-\frac{1}{2},1\right] otrzymano wykres, który ma wierzchołek w punkcie (p,q).

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20395 ⋅ Poprawnie: 22/89 [24%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Rozwiąż nierówność ax^2+bx+c > 0.

Ile liczb całkowitych z przedziału \langle -10, 10\rangle spełnia tę nierówność?

Dane
a=-1
b=\frac{7}{2}=3.50000000000000
c=-\frac{3}{2}=-1.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż równanie x^2+4x+2ax+a^2+4a+7=4|x+4+a| .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=-2
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m stosunek pierwiastków równania 2x^2+(m+a)x+4=0 jest równy 2?

Podaj największą możliwą wartość parametru m.

Dane
a=-2
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż równanie x^2-(a+6)x+\left|x-3-\frac{a}{2}\right|+\frac{1}{4}a^2+3a-3=0 .

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=-3
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30058 ⋅ Poprawnie: 45/33 [136%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz wszystkie wartości parametru m, dla których równanie x^2-6x+2m^2+8am+8a^2=0 ma dwa różne rozwiązania, z których jedno jest kwadratem drugiego.

Podaj najmniejsze możliwe m.

Dane
a=-1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30040 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie 2x^2-13x+m+a=0 ma dwa pierwiastki rzeczywiste, z których jeden jest dwa razy większy od drugiego.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=-2
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm