Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10979  
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-6(x+1)^2-3.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-2)+2.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11019  
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-2)(x+6) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11064  
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11465  
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 3, 7\rangle funkcja kwadratowa f(x)=-\left(x-4\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  (1.2 pkt) [ Dodaj do testu ]  Numer zadania: pr-10109  
Podpunkt 5.1 (0.2 pkt)
 Funkcja g określona jest wzorem g(x)=\frac{4}{\sqrt{16-x^2}} . Zapisz dziedzinę funkcji określonej wzorem h(x)=g(x-2) w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p\rangle\cup\langle q, +\infty)
C. \langlep,+\infty) D. (p,q)
E. (p,q\rangle F. (p,+\infty)
Podpunkt 5.2 (1 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20936  
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=-4x^2+bx+c jest malejąca wtedy i tylko wtedy, gdy x\in\langle 1,+\infty). Wiedząc, że f(3)=-17, oblicz współczynniki b i c.

Podaj liczbę b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20394  
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność x^2+bx+c \lessdot 0.

Ile liczb całkowitych z przedziału \langle -10, 10\rangle spełnia tę nierówność?

Dane
b=\frac{5}{2}=2.50000000000000
c=-\frac{3}{2}=-1.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20996  
Podpunkt 8.1 (0.6 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1 i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=3 oraz x_1\cdot x_2=2. Wiedząc, że f(1)=7 i a\in\mathbb{N_+}, wyznacz wzór tej funkcji w postaci ogólnej.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1.4 pkt)
 Podaj liczby b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20095  
Podpunkt 9.1 (1 pkt)
 Wyznacz wartości parametru m, dla których dziedziną funkcji f(x)=\sqrt{(m-4)x^2+x(m-4)+1} jest zbiór \mathbb{R}.

Podaj najmniejsze takie m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30839  
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie \sqrt{2+x-4\sqrt{x-2}}+\sqrt{7+x-6\sqrt{x-2}}=1 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30057  
Podpunkt 11.1 (2 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których jedno z rozwiązań równania \frac{a^2}{m^2}x^2-24\cdot\frac{m}{a}x+16\cdot\frac{m^2}{a^2}=0 jest sześcianem drugiego rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=4
Odpowiedź:
m_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30027  
Podpunkt 12.1 (2 pkt)
 «« Suma \frac{1}{x_1^2}+\frac{1}{x_2^2}, gdzie x_1 i x_2 są różnymi rozwiązaniami równania \frac{x^2+(m-5)x-1}{m-b}=0, jest równa a?

Podaj największą możliwą wartość parametru m\in\mathbb{R}.

Dane
a=18
b=1
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj sumę wszystkich możliwych wartości parametru m\in\mathbb{R}.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm