Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 173/317 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-7(x+1)^2-1 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-2)+5 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(-1-3x)(x+3) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyznacz największą całkowitą wartość funkcji określonej wzorem
f(x)=-x^2-7x+6 .
Odpowiedź:
max_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=x^2-5x+3 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. (p,q\rangle
C. (-\infty,p\rangle
D. \langle p,+\infty)
E. (p,q)
F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/206 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Współrzędna
y wierzchołka wykresu funkcji
f(x)=ax^2+2x-1 jest równa
-3 .
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20417 ⋅ Poprawnie: 109/211 [51%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż nierówność
x^2+bx+c \leqslant 0 .
Ile liczb całkowitych dodatnich spełnia tę nierówność?
Dane
b=2
c=-99
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile liczb całkowitych ujemnych spełnia tę nierówność?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20457 ⋅ Poprawnie: 1/2 [50%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Oblicz sumę czwartych potęg rozwiązań równania
x^2+bx+c=0 .
Dane
b=5
c=-6
Odpowiedź:
x_1^4+x_2^4=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20083 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
x^2+8x+m-a=0 ma dwa różne pierwiastki jednakowych
znaków?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=8
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30076 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
x^2+(4-2a)x-4|x+4-a|+a^2-4a+7=0
.
Podaj sumę wszystkich rozwiązań tego równania.
Dane
a=4
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj sumę kwadratów wszystkich rozwiązań tego równania.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30028 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Suma dwóch różnych miejsc zerowych funkcji
f(x)=(a-m)x^2+(2b+n)x+c jest równa
4 , a suma ich odwrotności jest równa
-\frac{1}{3} . Wiedząc, że
f(0)=-12 wyznacz
a i
b .
Podaj a .
Dane
m=2
n=-3
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30029 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których
dwa różne pierwiastki
x_1 i
x_2 równania
(2-a-m)x^2+(m+a-2)x+2=0 spełniają nierówność
\frac{1}{x_1}+\frac{1}{x_2} > 1 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec
liczbowy tych przedziałów.
Dane
a=4
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Podaj największy koniec liczbowy tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż