Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%] Rozwiąż 
Podpunkt 1.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2-8 x-21 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 1.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{2} B. -\frac{3}{4}
C. -\frac{1}{2} D. -\infty
E. \frac{3}{4} F. +\infty
Zadanie 2.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-2(x+1)(x-5) w przedziale \left\langle \frac{3}{2},6\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=-x^2-2x+2 B. y=x^2+2x+4
C. y=-x^2+2x+2 D. y=x^2-2x+4
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 6\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x-7)^2-\frac{3}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20347 ⋅ Poprawnie: 87/435 [20%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Osią symetrii wykresu funkcji kwadratowej f(x)=-x^2+bx+2 jest prosta o równaniu x=-\frac{8}{3}.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20064 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Ze sznurka o długości a [m] zrobiono dwie ramki, jedną w kształcie kwadratu, drugą w kształcie prostokąta, którego stosunek długości boków wynosi 1:3. Wówczas okazało się, że suma pól powierzchni obu figur jest najmniejsza możliwa.

Podaj obwód ramki w kształcie kwadratu.

Dane
a=8
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj pole powierzchni prostokąta.
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20982 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie \sqrt{3x-11}-\sqrt{x-5}=2 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m stosunek pierwiastków równania 2x^2+(m+a)x+4=0 jest równy 2?

Podaj największą możliwą wartość parametru m.

Dane
a=-4
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30076 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie x^2+(4-2a)x-4|x+4-a|+a^2-4a+7=0 .

Podaj sumę wszystkich rozwiązań tego równania.

Dane
a=-4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj sumę kwadratów wszystkich rozwiązań tego równania.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie pary liczb (p,q) o tej własności, że pierwiastkami równania x^2+px+q=0 są liczby p i q.

Ile jest takich par?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszą możliwą wartość p.
Odpowiedź:
p_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszą możliwą wartość q.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30031 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m+a)x^2-(3m+3a-3)x+m+a=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich przedziałów, który nie jest liczbą całkowitą.

Dane
a=-4
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których suma dwóch różnych pierwiastków tego równania jest nie większa od \frac{5}{2}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec liczbowy tych przedziałów.

Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm