Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 606/792 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=9x^2+333x+387 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -5 oraz 7, a wierzchołek paraboli będącej jej wykresem ma współrzędne (1,-144), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=4(x+5)(x+7) B. f(x)=3(x-5)(x-7)
C. f(x)=4(x-5)(x-7) D. f(x)=4(x+5)(x-7)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=x^2+2x+4 B. y=-x^2+2x+2
C. y=x^2-2x+4 D. y=-x^2-2x+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 52. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja h(x)=x^2-2x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=6 B. c=7
C. c=4 D. c=-1
E. c=5 F. c=9
Zadanie 6.  2 pkt ⋅ Numer: pr-20061 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie |ax^2+bx+c|=m ma dokładnie trzy rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=1
b=4
c=-3
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20067 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dla jakich wartości parametru m najmniejsza wartość funkcji g(x)=x^2+x+m^2-(2a+1)m+a^2+a+\frac{1}{4} należy do przedziału \langle 2,6\rangle?

Podaj najmniejsze takie m.

Dane
a=-1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż równanie x^2+4x+2ax+a^2+4a+7=4|x+4+a| .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=-1
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-20086 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie (m-a-2)x^2+(m-a-3)x-1=0 ma dwa różne pierwiastki ujemne?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (2 pkt)
 Podaj sumę tych wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania -\frac{1}{3}x^2+2|x|-3=3m-3a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-1
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Przedział (m_1,m_2) zawiera wszystkie te wartości parametru m, dla których równanie to ma więcej niż trzy rozwiązania.

Podaj m_1^2+m_2^2.

Odpowiedź:
m_1^2+m_2^2= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30058 ⋅ Poprawnie: 45/33 [136%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz wszystkie wartości parametru m, dla których równanie x^2-6x+2m^2+8am+8a^2=0 ma dwa różne rozwiązania, z których jedno jest kwadratem drugiego.

Podaj najmniejsze możliwe m.

Dane
a=-1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30841 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Dla jakich wartości parametru m równanie x^2-x+6-m=0 ma dwa różne pierwiastki spełniające warunek \left|x_1\right|+\left|x_2\right| > 2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. \langle p, +\infty) B. (-\infty, p)
C. \langle p, q) D. (-\infty, p\rangle\cup\langle q, +\infty)
E. (p, q\rangle F. (-\infty, p\rangle
G. (-\infty, p)\cup(q, +\infty) H. (p, +\infty)
Podpunkt 12.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm