Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 706/1015 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Największą wartością funkcji kwadratowej
f(x)=-4(x-3)^2+7 jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x+7)(x+9) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 389/559 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wyznacz maksymalny przedział, w którym funkcja określona wzorem
f(x)=x^2-6x+\frac{7}{2}
jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 204/339 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+2m)^2+4m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca
B. największą wartością funkcji jest -4m
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x
D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 5. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/186 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x-5)^2-\frac{7}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 76/172 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Najmniejszą wartość równą
-26 trójmian
y=x^2+bx+c osiąga dla
x=4 .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20396 ⋅ Poprawnie: 41/244 [16%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
(a-x)(bx-1) \geqslant 0 .
Ile liczb całkowitych z przedziału
\langle -20,20\rangle spełnia tę nierówność?
Dane
a=3
b=6
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj długość rozwiązania (długość przedziału).
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20103 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż nierówność
(x+6-a)^2-3|x-a| > 0
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Dane
a=-4
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 9. 4 pkt ⋅ Numer: pr-20086 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których równanie
(m-a-2)x^2+(m-a-3)x-1=0 ma dwa różne pierwiastki
ujemne?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=3
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (2 pkt)
Podaj sumę tych wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Zbadaj liczbę rozwiązań równania
-\frac{1}{3}x^2+2|x|-3=3m-3a
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=-3
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Przedział
(m_1,m_2) zawiera wszystkie te wartości
parametru
m , dla których równanie to ma
więcej niż trzy rozwiązania.
Podaj m_1^2+m_2^2 .
Odpowiedź:
m_1^2+m_2^2=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30057 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wyznacz zbiór tych wartości parametru
m , dla
których jedno z rozwiązań równania
\frac{a^2}{m^2}x^2-24\cdot\frac{m}{a}x+16\cdot\frac{m^2}{a^2}=0
jest sześcianem drugiego rozwiązania.
Podaj najmniejsze możliwe m .
Dane
a=4
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pr-30049 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
» Dla jakich wartości parametru
m suma kwadratów
różnych pierwiastków równania
x^2+(m+a)x+m-1+a=0 jest większa od
7 ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy
koniec liczbowy tych przedziałów.
Dane
a=-3
Odpowiedź:
min=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj największy z koniec liczbowy tych przedziałów.
Odpowiedź:
max=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
Podaj największą wartość parametru
m , dla której równanie to
nie ma dwóch różnych rozwiązań.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż