«« Funkcja określona wzorem f(x)=(-3m+2)x^2+3x-14 osiąga
wartość największą wtedy i tylko wtedy, gdy parametr m należy do
pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A.\langle p,+\infty)
B.(-\infty,p\rangle
C.(p,+\infty)
D.(p,q)
E.\langle p,q\rangle
F.(-\infty,p)
Podpunkt 3.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Funkcja kwadratowa f określona wzorem
f(x)=a(x-p)^2+q dla argumentu
-8 osiąga wartość najmniejszą równą
3. Wiedząc, że do jej wykresu należy punkt
należy punkt A=(-7,8), wyznacz wzór tej funkcji.
Podaj współczynnik a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20423 ⋅ Poprawnie: 71/174 [40%]
» Dla jakich wartości parametru m\in\mathbb{R}
iloczyn różnych pierwiastków równania
x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0
jest o jeden mniejszy od sumy tych pierwiastków?
Podaj najmniejsze możliwe m, które spełnia warunki
zadania.
Dane
a=-1
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe m, które spełnia warunki
zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30032 ⋅ Poprawnie: 34/33 [103%]
Wyznacz te wartości parametru m, dla których
równanie x^2-(m-1)x+m+1=0
ma dwa różne pierwiastki takie, że ich suma czwartych potęg jest równa
4m^3-30m^2+40m+54.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=+\cdot√
(wpisz trzy liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat