Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja y=x^2-2.

Do zbioru ZW_f nie należy liczba:

Odpowiedzi:
A. 6-4\sqrt{3} B. 6-4\sqrt{3}
C. 3-2\sqrt{2} D. 3-4\sqrt{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-6)(x+4) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 63/91 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m-7 przecina prostą o równaniu y=-3, to parametr m należy do pewnego przedziału liczbowego nieograniczonego.

Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -9,-6\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt M=(a,-2\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20459 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakiej wartości parametru m zbiorem wartości funkcji liczbowej g(x)=x^2+3x+m-4 jest przedział \langle -2,+\infty).
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 221/686 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=-1
c=-2
p=-2
q=2
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20461 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Liczba p jest równa kwadratowi różnicy pierwiastków równania x^2+bx+c=0.

Oblicz p.

Dane
b=9
c=2=2.00000000000000
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20097 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności -x^2+(3+m)x-2m-3\leqslant 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30018 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Rozwiązanie układu \begin{cases} x+amy=1 \\ 2x+y=am \end{cases} spełnia warunek |x-y|\leqslant 1. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=-1
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30071 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} suma kwadratów dwóch różnych pierwiastków równania x^2+(m-a)x-4m+4a-16=0 jest cztery razy większa od sumy tych pierwiastków?

Podaj największe możliwe takie m.

Dane
a=1
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30036 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie 4x^2-(m+a)x+1=0 ma dwa różne pierwiastki takie, że ich różnica jest liczbą z przedziału (0,4).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=1
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Podaj najmniejszy z końców liczbowych, który jest liczbą całkowitą.
Odpowiedź:
min_Z= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm