Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 210/336 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2+\frac{1}{2} o p=3 jednostek w lewo i q=8 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+8)^2+\frac{7}{2} B. y=(x-3)^2+\frac{17}{2}
C. y=(x-3)^2-\frac{15}{2} D. y=(x+3)^2-\frac{15}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/93 [53%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-3)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. \langle p,+\infty) D. (-\infty,p\rangle
E. (-\infty,p) F. (p,q)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu y+2m=0 ma dokładnie jeden punkt wspólny z wykresem funkcji kwadratowej określonej wzorem f(x)=-\frac{1}{2}x^2+4x-6.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 265/399 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 22\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 189/261 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 780 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 38/61 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek f(-4)=-\frac{3}{2}, a suma jej miejsc zerowych jest równa -10.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20370 ⋅ Poprawnie: 31/59 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f(x)=32x^2+bx+\frac{9}{2} ma tylko jedno miejsce zerowe. Oblicz b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (1 pkt)
 
Odpowiedź:
b_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20073 ⋅ Poprawnie: 2/13 [15%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie ax^4+bx^2+c=0.

Podaj najmniejsze rozwiązanie tego równnia.

Dane
a=1
b=-54
c=245
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj sumę wszystkich dodatnich rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20998 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-2x+m+2=0 ma dwa rozwiązania spełniające warunek 8x_1-3x_2=49?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30076 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie x^2+(4-2a)x-4|x+4-a|+a^2-4a+7=0 .

Podaj sumę wszystkich rozwiązań tego równania.

Dane
a=2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj sumę kwadratów wszystkich rozwiązań tego równania.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30070 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} suma i iloczyn dwóch różnych pierwiastków równania x^2+(2m-4)x+2m^2-15m+32=0 są liczbami przeciwnymi?

Podaj najmniejsze takie m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe takie m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30029 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których dwa różne pierwiastki x_1 i x_2 równania (2-a-m)x^2+(m+a-2)x+2=0 spełniają nierówność \frac{1}{x_1}+\frac{1}{x_2} > 1.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec liczbowy tych przedziałów.

Dane
a=2
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największy koniec liczbowy tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm