Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 134/185 [72%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x+6)^2+2m+9
należy do prostej o równaniu
y=8 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(-1+2x)(x+2) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x+1)^2+4 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=6
B. x=-1
C. x=3
D. y=3
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -6,-3\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 225/429 [52%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2+\frac{1}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (p,q)
C. (-\infty,p)
D. (p,+\infty)
E. (-\infty,p)\cup\langle q,+\infty)
F. (-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20459 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dla jakiej wartości parametru
m zbiorem wartości
funkcji liczbowej
g(x)=x^2+3x+m-4 jest przedział
\langle -2,+\infty) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20402 ⋅ Poprawnie: 15/99 [15%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozwiąż nierówność
-x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle 0,100\rangle spełnia tę nierówność?
Dane
b=18
c=-56
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20076 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«« Przyprostokątne trójkąta są pierwiastkami trójmianu
y=2x^2+(b+a)x+144 . Pole kwadratu zbudowanego na
przeciwprostokątnej tego trójkąta wynosi
340 .
Wyznacz b .
Dane
a=1
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20080 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest nierówność
x^2-4(m+1)x-32m^2-64m-32 \lessdot 0 z
parametrem
m\in\mathbb{N_+} i
m\geqslant 10 .
Funkcja
g określona jest dla liczb naturalnych
m\geqslant 10 i jej wartością dla liczby
m jest największe z całkowitych rozwiązań podanej
nierówności.
Funkcja
g jest funkcją liniową określoną wzorem
g(x)=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30079 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
x^2-2ax+a^2+c \leqslant -b|x-a|
.
Podaj najmniejsze rozwiązanie tej nierówności.
Dane
b=-2
c=-24
a=1
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30046 ⋅ Poprawnie: 4/17 [23%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Równanie
(m-a)x^2+2x-4m+5+4a=0 ma przynajmniej jedno
rozwiązanie dodatnie. Wyznacz możliwe wartości parametru
m .
Podaj najmniejsze możliwe m , które nie spełnia
warunków tego zadania.
Dane
a=1
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m , które nie spełnia
warunków tego zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30041 ⋅ Poprawnie: 12/17 [70%]
Rozwiąż
Podpunkt 12.1 (3 pkt)
« Wyznacz te wartości parametru
m , dla których
równanie
x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki
rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.
Podaj najmniejsze możliwe m , które spełnia warunki
zadania.
Dane
a=1
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż