Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{3}{2} o
p=3 jednostek w lewo i
q=10 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-3)^2+\frac{23}{2}
B. y=(x+10)^2+\frac{9}{2}
C. y=(x+3)^2-\frac{17}{2}
D. y=(x-3)^2-\frac{17}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+x+6}{\sqrt{-2-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji określonej wzorem
f(x)=x^2-3
przesunięto o
k=5 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Suma dwóch liczb jest równa
12\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-6)(x-4)^2(x^2-x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20348 ⋅ Poprawnie: 23/58 [39%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dana jest funkcja kwadratowa o tej własnosci, że rozwiązaniem nierówności
f(x) \lessdot 0 jest przedział
(-3,4) . Rozwiąż nierówność
-f(x+3) \lessdot 0 .
Ile liczb całkowitych nie spełnia tej nierówności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 7. 3 pkt ⋅ Numer: pr-20068 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dla jakich wartości parametru
m najmniejsza
wartość funkcji
h(x)=(m-a)x^2+3(m-1-a)x+2(m-1-a)
należy do przedziału
(-\infty,0) ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Dane
a=-1
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
Podaj sumę wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20991 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
2-2\sqrt{3} i
2+2\sqrt{3}
są miejscami zerowymi funkcji określonej wzorem
f(x)=x^2+(p+q)x+p^2-q^2 .
Wyznacz liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20093 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
(m+1)x^2-(m+3)x+3=0 ma
dokładnie jedno rozwiązanie.
Podaj największe możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj sumę wszystkich wyznaczonych wartości parametru
m .
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30084 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Zbadaj liczbę rozwiązań równania
-2|x-1|\cdot|3-x|=m+1+a w zależności od wartości
parametru
m\in\mathbb{R} .
Podaj największe możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=-2
Odpowiedź:
max_2=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
min_3=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Podaj długość przedziału tych wartości
m , dla
których równanie ma cztery rozwiązania.
Odpowiedź:
d_4=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30052 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Liczba
m\in\mathbb{R} w równaniu
(x+3)\cdot\left[x^2+(m+4+a)x+(m+1+a)^2\right]=0 jest
parametrem. Rozwiąż to równanie dla
m=1-a .
Podaj sumę wszystkich rozwiązań.
Dane
a=-2
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Dla jakich wartości parametru
m równanie to ma
dokładnie jedno rozwiązanie?
Podaj najmniejszą liczbę, która nie spełnia warunków zadania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30050 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
» Dla jakich wartości parametru
m kwadrat
sumy dwóch różnych pierwiastków równania
(m+a-4)x^2+(m+a)x-m-a=0 jest większy od
1 ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmiejszy z końców
liczbowych tych przedziałów.
Dane
a=-2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj największy koniec liczbowy tch przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż