Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Parabola y=(-7-3x)^2-9 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 371/569 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby 2 oraz -3. Do wykresu tej funkcji należy punkt A=(0,-12). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/160 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ile punktów wspólnych z osią Ox ma wykres funkcji kwadratowej f(x)=2-6(x-3)^2:
Odpowiedzi:
A. 0 B. 3
C. 2 D. 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -4, 0\rangle funkcja kwadratowa f(x)=-\left(x+3\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-5)(x-3)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20345 ⋅ Poprawnie: 34/57 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-\frac{x^2}{2}+2x+4.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną wszystkich końców liczbowych tych przedziałów.

Dane
a=1
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20074 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie (x-a)^4-5(x-a)^2+4=0 .

Podaj sumę wszystkich rozwiązań tego równania.

Dane
a=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie |16-x^2|=(m-a)^2-9 ma dwa różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych przedziałów, w kolejności od najmiejszego do największego.

Dane
a=1
Odpowiedzi:
m_1= (wpisz liczbę całkowitą)
m_2= (wpisz liczbę całkowitą)
m_3= (wpisz liczbę całkowitą)
m_4= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj największe możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż równanie x^2-(a+6)x+\left|x-3-\frac{a}{2}\right|+\frac{1}{4}a^2+3a-3=0 .

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=3
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30059 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-3x-m+2a-1=0 ma dwa rozwiązania spełniające warunek 3x_1-4=2x_2.

Podaj największe możliwe m, które spełnia warunki zadania.

Dane
a=1
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj sumę wszystkich wartości m spełniających warunki zadania.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30862 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Równanie kwadratowe x^2-(m+3)x+m+2=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest równość (x_1+3x_2)(x_2+3x_1)=16.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm