Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-8(x+2)^2-1 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-3)-6 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=f(x)
należy punkt
P=(6, -15) . Osią symetrii wykresu
tej funkcji jest prosta określona równaniem
x=2 , a liczba
8
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Wyznacz wartość współczynnika a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej
f(x)=-4(x+2)^2-7 ma dwa
punkty wspólne z prostą:
Odpowiedzi:
A. y=-10
B. x=2
C. y=-6
D. x=-2
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 476/937 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 2, 6\rangle funkcja kwadratowa
f(x)=-\left(x-3\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+5x+4)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 33/105 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane jest funkcja
f(x)=-x^2+6x+16 , gdzie
x\in\langle -3,3\rangle . Wyznacz
ZW_f .
Zapisz ZW_f w postaci przedziału. Podaj lewy koniec
tego przedziału.
Odpowiedź:
y_l=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20422 ⋅ Poprawnie: 67/143 [46%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż nierówność
(2x-1-2a)x >
6\left(x-\frac{1+2a}{2}\right)\left(x+\frac{1-3a}{3}\right)
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20993 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa określona wzorem
f(x)=ax^2+bx+c
ma dwa miejsca zerowe, których suma jest równa
\frac{1}{2} ,
a ich iloczyn jest równy
-\frac{15}{2} . Wyznacz współczynniki
b i
c wiedząc, że do wykresu funkcji
f należy
punkt
A=\left(-3,6\right) .
Podaj współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 9. 3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
|16-x^2|=(m-a)^2-9 ma dwa różne
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych
przedziałów, w kolejności od najmiejszego do największego.
Dane
a=-1
Odpowiedzi:
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30024 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Wyznacz wszystkie wartości parametru
m , dla których
funkcja
f(x)=(m^2-a)x^2-2(b-m)x+2 przyjmuje
wartości dodatnie dla każdego
x rzeczywistego.
Podaj najmniejsze dodatnie m , które spełnia
warunki zadania.
Dane
a=9
b=3
Odpowiedź:
min_{>0}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejsze ujemne
m , które nie spełnia
warunków zadania.
Odpowiedź:
min_{<0}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30070 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dla jakich wartości parametru
m\in\mathbb{R}
suma i iloczyn dwóch różnych pierwiastków równania
x^2+(2m-4)x+2m^2-15m+32=0
są liczbami przeciwnymi?
Podaj najmniejsze takie m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe takie
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30841 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Dla jakich wartości parametru
m równanie
x^2-x+6-m=0 ma dwa różne
pierwiastki spełniające warunek
\left|x_1\right|+\left|x_2\right| > 2 ?
Rozwiązaniem jest zbiór postaci:
Odpowiedzi:
A. (p, q\rangle
B. \langle p, q)
C. (-\infty, p)\cup(q, +\infty)
D. (p, q)
E. (-\infty, p)
F. (-\infty, +\infty)
G. (p, +\infty)
H. \langle p, +\infty)
Podpunkt 12.2 (1.5 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż