Prosta o równaniu x=-2 jest osią symetrii
wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym
rysunku. Zbiór A zawiera wszystkie te wartości
rzeczywiste x, dla których
f(x)\leqslant 0.
Podaj najmniejszą liczbę należącą do zbioru A.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Mniejsza część zawodników klubu sportowego liczącego 41 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pr-10111 ⋅ Poprawnie: 0/0
« Zbiór A jest zbiorem tych wartości parametru m, dla których
dziedziną funkcji określonej wzorem f(x)=\frac{2}{-4mx^2+mx+1} jest
zbiór \mathbb{R}. Zapisz zbiór A
w postaci sumy przedziałów.
Zbiór A ma postać:
Odpowiedzi:
A.(p,q\rangle
B.\langle p,+\infty)
C.(-\infty,p)
D.\langle p,q\rangle
E.(-\infty,p)\cup(q, +\infty)
F.(-\infty,p\rangle\cup\langle q, +\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 26/58 [44%]
« Liczba -3 jest miejscem zerowym funkcji kwadratowej
h. Maksymalny przedział, w którym ta funkcja
jest malejąca jest równy \langle 2,+\infty).
W przedziale \langle -6,-5\rangle największą
wartością funkcji h jest
-48. Wyznacz wzór funkcji h(x)=ax^2+bx+c.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20976 ⋅ Poprawnie: 0/0
Na bokach o długości a i b (a\leqslant b) prostokąta
ABCD o obwodzie długości 36 zbudowano półkola o średnicach
AB, BC, CD i
DA. Utworzona w ten sposób figura geometryczna ma największe możliwe
pole powierzchni.
Podaj długości boków tego prostokąta.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pr-20103 ⋅ Poprawnie: 0/0
Równanie kwadratowe x^2-(m-7)x+1=0
ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy,
gdy parametr m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty).
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Wyznacz te wszystkie wartości parametru m, dla których spełniona jest nierówność
\frac{1}{x_1^2}+\frac{1}{x_2^2} \geqslant 2m^2-25m+57.
Podaj najmniejsze i największe rozwiązanie tej nierówności.
Odpowiedzi:
m_{min}
=
(wpisz liczbę całkowitą)
m_{max}
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat