Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(-3)=19, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(-1-4x)(x+4).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 268/393 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. y-2=0 B. x=-4
C. x-2=0 D. y=-4
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+3m)^2+9m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
C. największą wartością funkcji jest -9m D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 5.  1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja h(x)=x^2-5x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=12 B. c=13
C. c=10 D. c=9
E. c=11 F. c=4
Zadanie 6.  2 pkt ⋅ Numer: pp-20936 ⋅ Poprawnie: 50/142 [35%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=-2x^2+bx+c jest malejąca wtedy i tylko wtedy, gdy x\in\langle -1,+\infty). Wiedząc, że f(-2)=1, oblicz współczynniki b i c.

Podaj liczbę b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz większe z rozwiązań równania 2x^2-28x+88=0.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż równanie ax^6+bx^3+c=0.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=0.50
b=17.50
c=108.00
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20092 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane jest równanie (m-1)x^2-4(m+4)x+m+2=0. Zbadaj liczbę rozwiązań tego równania w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe m, dla którego równanie to ma dokładnie jedno rozwiązanie.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz te wartości m, dla których równanie to nie ma rozwiązania.

Rozwiązanie zapisz w postaci przedziału. Podaj środek tego przedziału.

Odpowiedź:
m_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30018 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Rozwiązanie układu \begin{cases} x+amy=1 \\ 2x+y=am \end{cases} spełnia warunek |x-y|\leqslant 1. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=-2
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30068 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Zbadaj liczbę pierwiastków równania (m^2-6m)x^2-2(6-m)x+1=0 w zależności od wartości parametru m.

Podaj największe możliwe m, dla którego równanie ma dokładnie jedno rozwiązanie.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj sumę wszystkich wartości m, dla których równanie to ma dokładnie jedno rozwiązanie.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz te wartości m, dla których równanie to ma dwa rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30034 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie 2x^2-(2m+2a-1)x-m-a=0 ma dwa różne pierwiastki spełniające warunek |x_1-x_2|=3.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=-3
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm