Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/536 [56%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wierzchołek paraboli
y=x^2+4x leży na prostej
o równaniu:
Odpowiedzi:
A. y=-4x
B. y=2x
C. y=-2x
D. y=1x
E. y=-1x
F. y=4x
Zadanie 2. 1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/86 [63%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=f(x)
należy punkt
P=(2, 12) . Osią symetrii wykresu
tej funkcji jest prosta określona równaniem
x=-2 , a liczba
-1
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Wyznacz wartość współczynnika a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 290/480 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
pokazano na rysunku:
Podaj współczynnik a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
43 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/430 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{1}{2}x+33}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20939 ⋅ Poprawnie: 6/39 [15%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa określona wzorem
f(x)=ax^2+bx+c dla argumentu
5 przyjmuje wartość najmniejszą, równą
-7 ,
a jeden z punktów przecięcia jej wykresu z prostą o równaniu
y=-5
ma odciętą
3 .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20408 ⋅ Poprawnie: 53/169 [31%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
2x^2-x > 55 .
Ile liczb całkowitych nie należy do rozwiązania?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Rozwiąż równanie
ax^6+bx^3+c=0 .
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=0.50
b=-9.50
c=-108.00
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20098 ⋅ Poprawnie: 21/17 [123%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m rozwiązaniem
nierówności
x^2+(m+5)x+3m+15 > 0 jest zbiór
\mathbb{R} ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Zbadaj liczbę rozwiązań równania
-\frac{1}{3}x^2+2|x|-3=3m-3a
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=2
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Przedział
(m_1,m_2) zawiera wszystkie te wartości
parametru
m , dla których równanie to ma
więcej niż trzy rozwiązania.
Podaj m_1^2+m_2^2 .
Odpowiedź:
m_1^2+m_2^2=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie pary liczb
(p,q) o tej
własności, że pierwiastkami równania
x^2+px+q=0 są
liczby
p i
q .
Ile jest takich par?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszą możliwą wartość p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszą możliwą wartość q .
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30049 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
» Dla jakich wartości parametru
m suma kwadratów
różnych pierwiastków równania
x^2+(m+a)x+m-1+a=0 jest większa od
7 ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy
koniec liczbowy tych przedziałów.
Dane
a=3
Odpowiedź:
min=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj największy z koniec liczbowy tych przedziałów.
Odpowiedź:
max=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
Podaj największą wartość parametru
m , dla której równanie to
nie ma dwóch różnych rozwiązań.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż