« W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju 780
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 38/61 [62%]
Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c
jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek
f(-4)=-\frac{3}{2}, a suma
jej miejsc zerowych jest równa -10.
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20370 ⋅ Poprawnie: 31/59 [52%]
«« Wyznacz te wartości parametru m, dla których
dwa różne pierwiastki x_1 i
x_2 równania
(2-a-m)x^2+(m+a-2)x+2=0 spełniają nierówność
\frac{1}{x_1}+\frac{1}{x_2} > 1.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec
liczbowy tych przedziałów.
Dane
a=2
Odpowiedź:
min=(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Podaj największy koniec liczbowy tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat