» Dana jest funkcja kwadratowa g(x)=ax^2+bx+c, która
spełnia warunek g(2)=g(4)=0. Do wykresu funkcji
g należy punkt \left(-3,-\frac{35}{2}\right).
Wyznacz współrzędne (x_w,y_w) wierzchołka paraboli będącej
wykresem funkcji g.
Podaj x_w.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj y_w.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pr-20976 ⋅ Poprawnie: 0/0
Na bokach o długości a i b (a\leqslant b) prostokąta
ABCD o obwodzie długości 64 zbudowano półkola o średnicach
AB, BC, CD i
DA. Utworzona w ten sposób figura geometryczna ma największe możliwe
pole powierzchni.
Podaj długości boków tego prostokąta.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pr-20990 ⋅ Poprawnie: 0/0
Wyznacz te wartości parametru m, dla których równanie
x^2+(m-a)x+m-1-a=0 ma dwa różne pierwiastki, które są
sinusem i cosinusem tego samego kąta ostrego?
Podaj największe takie m.
Dane
a=2
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30078 ⋅ Poprawnie: 0/0
Wyznacz te wartości parametru m, dla których
równanie x^2-(2m+1+a)x+2m+a=0 ma dwa różne
pierwiastki rzeczywiste spełniające warunek
|x_1-x_2| > 2x_1x_2.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Ile liczb całkowitych z przedziału
\langle -20,20\rangle spełnia warunki zadania.
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat