« Najmniejszą wartość w przedziale
\langle -15, -11\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+12\right)^{2}+5
przyjmuje dla argumentu ......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c
jest przedział \left[-8, +\infty\right). Funkcja ta spełnia warunek
f(5)=-\frac{15}{2}, a suma
jej miejsc zerowych jest równa 8.
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20390 ⋅ Poprawnie: 77/179 [43%]
«« Dana jest funkcja
f(x)=(m+a+1)x^2+2(m+a-2)x-m+4-a
.
Wyznacz wszystkie wartości parametru m, dla których
funkcja f ma dwa różne miejsca zerowe
x_1,x_2 spełniające warunek
x_1^2+x_2^4=x_1^4+x_2^2.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Dane
a=-5
Odpowiedź:
m_{min}=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30855 ⋅ Poprawnie: 0/0
Równanie x^2+(m-40)x+4m-168=0 ma dwa rozwiązania gdy parametr m
należy do zbioru postaci (-\infty, p)\cup(a+b\sqrt{c}, +\infty), gdzie
a,b,c\in\mathbb{Z} i c jest liczbą pierwszą.
Podaj liczby a, b i c.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Wyznacz te wartości parametru m, dla których równanie to ma dwa rozwiązania
x_1 i x_2 takie, które spełniają warunek
x_1^2+x_2^2=400.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat