Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/563 [71%] Rozwiąż 
Podpunkt 1.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=x^2-\sqrt{17} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left(-\infty,p\right\rangle B. \left\langle p, q \right\rangle
C. \left\langle p,+\infty\right) D. \left(p, q\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(-6-x)(3x-6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 64/93 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m+10 przecina prostą o równaniu y=-3, to parametr m należy do pewnego przedziału liczbowego nieograniczonego.

Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 5, 9\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-8\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/108 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2-9x+20}{x+8}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f przyjmuje wartości dodatnie T/N : f ma jedno miejsce zerowe
T/N : f ma dwa miejsca zerowe  
Zadanie 6.  2 pkt ⋅ Numer: pp-20898 ⋅ Poprawnie: 26/33 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz współczynniki b i c trójmianu kwadratowego y=f(x)=3x^2+bx+c wiedząc, że funkcja f przyjmuje wartości niedodatnie tylko dla x\in\langle -6,3\rangle.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20066 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wyznacz te wartości parametru m, dla których funkcja f(x)=(m-a)x^2-(m-3-a)x+m-3-a ma najmniejszą wartość równą -3.

Podaj największe takie m.

Dane
a=3
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20102 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż nierówność |x^2+3x+2|-|x-a|\leqslant 3.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejsze z rozwiązań tej nierówności.

Dane
a=7
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m stosunek pierwiastków równania 2x^2+(m+a)x+4=0 jest równy 2?

Podaj największą możliwą wartość parametru m.

Dane
a=4
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania -\frac{1}{3}x^2+2|x|-3=3m-3a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=4
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Przedział (m_1,m_2) zawiera wszystkie te wartości parametru m, dla których równanie to ma więcej niż trzy rozwiązania.

Podaj m_1^2+m_2^2.

Odpowiedź:
m_1^2+m_2^2= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30059 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-3x-m+2a-1=0 ma dwa rozwiązania spełniające warunek 3x_1-4=2x_2.

Podaj największe możliwe m, które spełnia warunki zadania.

Dane
a=4
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj sumę wszystkich wartości m spełniających warunki zadania.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30041 ⋅ Poprawnie: 12/17 [70%] Rozwiąż 
Podpunkt 12.1 (3 pkt)
 « Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=4
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm