Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11074  
Podpunkt 1.1 (1 pkt)
 « Różnica iloczynu liczby 13 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11078  
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=-5(x+12)(x-5). Wyznacz maksymalny przedział, w którym funkcja f jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11410  
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. y=-4 B. x=-4
C. y-2=0 D. x-2=0
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11730  
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 71 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10111  
Podpunkt 5.1 (0.2 pkt)
 « Zbiór A jest zbiorem tych wartości parametru m, dla których dziedziną funkcji określonej wzorem f(x)=\frac{2}{3mx^2+mx+1} jest zbiór \mathbb{R}. Zapisz zbiór A w postaci sumy przedziałów.

Zbiór A ma postać:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q, +\infty) B. \langle p,q)
C. (-\infty,p)\cup(q, +\infty) D. \langle p,q\rangle
E. (p,q) F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20896  
Podpunkt 6.1 (1 pkt)
 » Funkcja kwadratowa f określona jest dla wszystkich liczb rzeczywistych x wzorem f(x)=ax^2+bx+c. Przedział (p,q) jest rozwiązaniem nierówności f(x) > 0, natomiast liczba t jest największą wartością funkcji f.

Oblicz wartość współczynnika a.

Dane
p=-8
q=6
t=49
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Oblicz wartość współczynnika b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20382  
Podpunkt 7.1 (2 pkt)
 » Iloczyn dwóch liczb ujemnych jest równy 1600, a jedna z nich jest o 7 mniejsza od połowy drugiej liczby.

Podaj większą z tych liczb.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20982  
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie \sqrt{3x+19}-\sqrt{x+5}=2 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20097  
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności -x^2+(6+m)x-2m-9\leqslant 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30077  
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2+2ax-3|x+6+a|+a^2 > 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Przedział \langle p, q\rangle jest zbiorem tych wszystkich wartości x, które nie spełniają podanej nierówności.

Podaj środek tego przedziału.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30054  
Podpunkt 11.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} iloczyn różnych pierwiastków równania x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0 jest o jeden mniejszy od sumy tych pierwiastków?

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=3
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30842  
Podpunkt 12.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 5x^2-(m+4)x+1=0 ma dwa rozwiązania spełniające warunek \left|x_1-x_2\right|\geqslant 1?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (p, +\infty) B. \langle p, +\infty)
C. (-\infty, +\infty) D. (-\infty, p\rangle \cup \langle q, +\infty)
E. (-\infty, p) F. (-\infty, p\rangle
G. \langle p, q) H. (p, q\rangle
Podpunkt 12.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)


Masz pytania? Napisz: k42195@poczta.fm