Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(10,2). Wówczas:
Odpowiedzi:
T/N : f(3)=f(18) T/N : f(4)=f(16)
T/N : f(3)=f(16)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+1)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,+\infty)
C. (-\infty,p) D. \langle p,q\rangle
E. (-\infty,p\rangle F. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -11, -7\rangle funkcja kwadratowa f(x)=-\left(x+10\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Iloczyn (x-7)(1-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu 3 osiąga wartość największą równą 10. Wiedząc, że do jej wykresu należy punkt należy punkt A=(1,7), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 113/259 [43%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz najmniejszą wartość funkcji h(x)=ax^2+bx+c w przedziale \langle p,q\rangle.
Dane
a=-1
b=4
c=-3
p=1
q=5
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20981 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiązaniem równania x^2+14x+49-4\sqrt{x^2+16x+60}=-2x-10 , są liczby postaci a+\sqrt{b+c\sqrt{d}} oraz a-\sqrt{b+c\sqrt{d}}.

Podaj liczbe a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę b+c\sqrt{d}.
Odpowiedź:
b+c\sqrt{d}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20997 ⋅ Poprawnie: 11/20 [55%] Rozwiąż 
Podpunkt 9.1 (0.4 pkt)
 «« Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-4(m+9)x+(m+10)(m+9)=0 ma dwa rozwiązania spełniające warunek x_1 \lessdot m+3 \lessdot x_2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (p, q\rangle B. \langle p, q)
C. (p, +\infty) D. (-\infty, p\rangle
E. (-\infty, p) F. (-\infty, p)\cup(q, +\infty)
G. (p, q) H. (-\infty, +\infty)
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30077 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2+2ax-3|x+6+a|+a^2 > 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Przedział \langle p, q\rangle jest zbiorem tych wszystkich wartości x, które nie spełniają podanej nierówności.

Podaj środek tego przedziału.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30354 ⋅ Poprawnie: 36/33 [109%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Zbiór M jest zbiorem tych wartości parametru m, dla których równanie x^2+kmx-k^2m^2+2km=0 nie posiada dwóch różnych rozwiązań rzeczywistych.

Podaj największe m\in M.

Dane
k=16
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których rozwiązania x_1 i x_2 podanego równania spełniają warunek x_1^3+7x_1x_2+x_2^3 > 0.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30039 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m-8)x^2+(m-5)x+4=0 ma dwa różne pierwiastki rzeczywiste, których suma odwrotności jest mniejsza od 2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm