» Dana jest nierówność x^2-4(m+1)x-32m^2-64m-32 \lessdot 0 z
parametrem m\in\mathbb{N_+} i m\geqslant 10.
Funkcja g określona jest dla liczb naturalnych
m\geqslant 10 i jej wartością dla liczby
m jest największe z całkowitych rozwiązań podanej
nierówności.
Funkcja g jest funkcją liniową określoną wzorem
g(x)=ax+b.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30025 ⋅ Poprawnie: 0/0
« Z punktu A odległego o 136
km od punktu B wyjechał tramwaj. Po godzinie z punktu
B wyjechał inny tramwaj i poruszał się w kierunku
punktu A, po tej samej trasie. Po pewnym
czasie oba tramwaje wyminęły się. Od tego momentu tramwaj jadący z miejscowości
A jechał jeszcze 90 minut
do miejscowości B, a tramwaj drugi jechał jeszcze
przez 150 minut do miasta
A.
Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości
A?
Odpowiedź:
v_A=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości
B?
Odpowiedź:
v_B=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30057 ⋅ Poprawnie: 0/0
« Wyznacz zbiór tych wartości parametru m, dla
których jedno z rozwiązań równania
\frac{a^2}{m^2}x^2-24\cdot\frac{m}{a}x+16\cdot\frac{m^2}{a^2}=0
jest sześcianem drugiego rozwiązania.
Podaj najmniejsze możliwe m.
Dane
a=8
Odpowiedź:
m_{min}=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30026 ⋅ Poprawnie: 0/0
« Dane jest równanie px^2-(p+a)x+p+a=0 z
parametrem p. Funkcja f
liczbie p przypisuje sumę różnych pierwiastków tego
równnia, czyli f(p)=x_1+x_2. Wyznacz dziedzinę
tej funkcji.
Zapisz rozwiązanie w postaci sumy przedziałów. Ile jest tych przedziałów?
Dane
a=6
Odpowiedź:
ile=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1 pkt)
Zapisz wzór funkcji f i naszkicuj jej wykres.
Podaj największą liczbę, która nie należy do zbioru wartosci funkcji
f.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat