Większa część zawodników klubu sportowego liczącego 89 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pr-10111 ⋅ Poprawnie: 0/0
« Zbiór A jest zbiorem tych wartości parametru m, dla których
dziedziną funkcji określonej wzorem f(x)=\frac{2}{5mx^2+mx+1} jest
zbiór \mathbb{R}. Zapisz zbiór A
w postaci sumy przedziałów.
Zbiór A ma postać:
Odpowiedzi:
A.\langle p,q\rangle
B.(p,+\infty)
C.(-\infty,p)
D.(-\infty,p\rangle\cup\langle q, +\infty)
E.(-\infty,p)\cup(q, +\infty)
F.\langle p,q)
Podpunkt 5.2 (0.8 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%]
Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c
jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek
f(4)=-\frac{3}{2}, a suma
jej miejsc zerowych jest równa 6.
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20407 ⋅ Poprawnie: 25/44 [56%]
«« Funkcja f(x)=2x^2+\frac{b-a}{2}x+c+2 jest malejąca
wtedy i tylko wtedy, gdy x\in(-\infty,4\rangle.
Iloczyn miejsc zerowych tej funkcji jest równy 12.
Oblicz b+c.
Dane
a=6
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych tej funkcji.
Odpowiedź:
x_1^2+x_2^2=(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pr-20091 ⋅ Poprawnie: 11/14 [78%]
« Wyznacz te wartości parametru m\in\mathbb{R}, dla
których suma kwadratów dwóch różnych pierwiastków równania
x^2+(m-2-a)x+2=0 jest większa od
2m^2+(16-4a)m+2a^2-16a+19.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Dane
a=5
Odpowiedź:
min=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj sumę całkowitych końców tych przedziałów.
Odpowiedź:
suma_Z=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30038 ⋅ Poprawnie: 0/0
Wyznacz te wartości parametru m, dla których
równanie x^2-(2m+1+a)x+2m+a=0 ma dwa różne
pierwiastki rzeczywiste spełniające warunek
|x_1-x_2| > 2x_1x_2.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=6
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Ile liczb całkowitych z przedziału
\langle -20,20\rangle spełnia warunki zadania.
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat