Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 813/1144 [71%] Rozwiąż 
Podpunkt 1.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2-12 x-44 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 1.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{3}{4} B. \frac{3}{4}
C. -\frac{1}{2} D. -\infty
E. +\infty F. \frac{1}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -7 oraz -3, a wierzchołek paraboli będącej jej wykresem ma współrzędne (-5,-16), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=4(x+7)(x+3) B. f(x)=4(x+7)(x-3)
C. f(x)=3(x-7)(x+3) D. f(x)=4(x-7)(x+3)
Zadanie 3.  1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/609 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Funkcja f, której wykres pokazano na rysunku zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right) B. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
C. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right) D. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 10, 14\rangle funkcja kwadratowa f(x)=-\left(x-11\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (-9-x)(x+4)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20928 ⋅ Poprawnie: 66/116 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy, gdy x\in\langle-7,+\infty), zbiorem jej wartości jest przedział \langle-4, +\infty), a do jej wykresu należy punkt A=(-6,-2). Wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20979 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Na przeciwprostokątnej BC trójkąta prostokątnego równoramiennego ABC zbudowano prostokąt BMNC. Obwód powstałego pięciokąta ABMNC ma długość 8, a jego powierzchnia jest największa możliwa.

Podaj długość boku MN tego pięciokąta.

Odpowiedź:
|MN|= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20099 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie |x^2-16|+|x^2-36|=4x+a.

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=-2
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20997 ⋅ Poprawnie: 11/20 [55%] Rozwiąż 
Podpunkt 9.1 (0.4 pkt)
 «« Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-4(m-6)x+(m-5)(m-6)=0 ma dwa rozwiązania spełniające warunek x_1 \lessdot m-12 \lessdot x_2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, p) B. (p, +\infty)
C. (p, q) D. (-\infty, p)\cup(q, +\infty)
E. (-\infty, p\rangle F. \langle p, q)
G. (-\infty, +\infty) H. (p, q\rangle
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-(m+2-a)|x|+m-a=0 ma dwa różne rozwiązania?

Podaj największe możliwe m.

Dane
a=-5
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Dla ilu całkowitych wartości m\in\langle -10,10 \rangle warunki zadania są spełnione?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30069 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Zbadaj liczbę pierwiastków równania (m^2-2m-2am+a^2+2a)x^2-(m-a)x-\frac{1}{2}=0 w zależności od wartości parametru m\in\mathbb{R}.

Podaj sumę tych wartości m, dla których równanie ma dokładnie jedno rozwiązanie.

Dane
a=-6
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie nie ma rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz te wartości m, dla których równanie ma dwa rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów, które są liczbami całkowitymi.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30862 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Równanie kwadratowe x^2-(m-7)x+m-8=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest równość (x_1+3x_2)(x_2+3x_1)=16.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm