Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Różnica iloczynu liczby 13 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójmian kwadratowy y=-3x^2-33x-90 można zapisać w postaci y=a(x+5)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 73/224 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej h(x)=a(x+b)^2+c.

Zatem:

Odpowiedzi:
A. c=-5 B. b=5
C. c=5 D. b=-5
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 77 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja g określona jest wzorem g(x)=\frac{8}{\sqrt{64-x^2}} . Zapisz dziedzinę funkcji określonej wzorem h(x)=g(x+3) w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (-\infty,p)\cup(q, +\infty) B. \langlep,+\infty)
C. (p,q\rangle D. (p,q)
E. (p,+\infty) F. (-\infty,p)
Podpunkt 5.2 (1 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/16 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+c przyjmuje wartości ujemne tylko wtedy, gdy x\in\left(d, e\right). Wiadomo, że wykres funkcji f przechodzi przez punkt A=(p,q).

Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników a+b+c.

Dane
d=-6
e=1.5
p=-3
q=-54
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Zapisz wzór tej funkcji w postaci kanonicznej f(x)=a(x-p)^2+q. Podaj wartość współczynnika p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t\ [s] przebyło drogę s [m], którą opisuje wzór s(t)=t^2+11t+10, gdzie t\in\langle 2,6\rangle.

Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.

Odpowiedź:
s(t)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20102 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż nierówność |x^2+3x+2|-|x-a|\leqslant 3.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejsze z rozwiązań tej nierówności.

Dane
a=7
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20092 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane jest równanie (m-10)x^2-4(m-5)x+m-7=0. Zbadaj liczbę rozwiązań tego równania w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe m, dla którego równanie to ma dokładnie jedno rozwiązanie.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz te wartości m, dla których równanie to nie ma rozwiązania.

Rozwiązanie zapisz w postaci przedziału. Podaj środek tego przedziału.

Odpowiedź:
m_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30082 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność \left|x^2+(a+6)x+\frac{a^2}{4}+3a-1\right| \leqslant 6 .

Rozwiązaniem tej nierówności jest zbiór \langle x_1, x_2\rangle\cup\langle x_3, x_4\rangle\, gdzie x_2\lessdot x_3. Podaj x_1+x_2.

Dane
a=7
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj x_3.
Odpowiedź:
x_{3}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie pary liczb (p,q) o tej własności, że pierwiastkami równania x^2+px+q=0 są liczby p i q.

Ile jest takich par?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszą możliwą wartość p.
Odpowiedź:
p_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszą możliwą wartość q.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30027 ⋅ Poprawnie: 34/35 [97%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Suma \frac{1}{x_1^2}+\frac{1}{x_2^2}, gdzie x_1 i x_2 są różnymi rozwiązaniami równania \frac{x^2+(m-5)x-1}{m-b}=0, jest równa a?

Podaj największą możliwą wartość parametru m\in\mathbb{R}.

Dane
a=66
b=-3
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj sumę wszystkich możliwych wartości parametru m\in\mathbb{R}.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm