Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 700/1010 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Największą wartością funkcji kwadratowej f(x)=-4(x+4)^2-1 jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+6)(x+2) jest przedział liczbowy \langle -12,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-6,-2).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/472 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 108. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 692/866 [79%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 36x^2-12x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20895 ⋅ Poprawnie: 18/34 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=ax^2+bx+c. Funkcja ta przyjmuje wartości dodatnie tylko w przedziale (0, k), a jej największa wartość wartość wynosi q.

Wyznacz a.

Dane
k=36
q=3240
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20782 ⋅ Poprawnie: 43/65 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dane jest równanie (x^3+125)(x^2+x-12)=0.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20104 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz zbiór liczb, które nie spełniają nierówności (x+1-a)^2-|x-a|\geqslant 2x-2a+1 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=6
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Jaka jest łączna długość tych przedziałów.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20094 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m równanie x^2+(4m-64)x+4m-64+1\frac{1}{4}=0 ma dwa różne pierwiastki ujemne?

Podaj największą liczbę, która nie spełnia warunków zadania.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30079 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2-2ax+a^2+c \leqslant -b|x-a| .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
b=1
c=-30
a=-1
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30048 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru p równanie x^2-2(p+a-5)x+p+7+a=0 ma dwa różne pierwiastki o tych samych znakach.

Rowiązanie zapisz w postaci sumy przedziałów. Podaj największy z wszystkich końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30029 ⋅ Poprawnie: 1/6 [16%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których dwa różne pierwiastki x_1 i x_2 równania (2-a-m)x^2+(m+a-2)x+2=0 spełniają nierówność \frac{1}{x_1}+\frac{1}{x_2} > 1.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec liczbowy tych przedziałów.

Dane
a=4
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największy koniec liczbowy tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm