Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/563 [71%] Rozwiąż 
Podpunkt 1.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=x^2-\sqrt{19} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left\langle p, q \right\rangle B. \left(-\infty,p\right\rangle
C. \left\langle p,+\infty\right) D. \left(p, q\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 196/346 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=-5(x-5)(x+8). Wyznacz maksymalny przedział, w którym funkcja f jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/160 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ile punktów wspólnych z osią Ox ma wykres funkcji kwadratowej f(x)=6+4(x-3)^2:
Odpowiedzi:
A. 1 B. 2
C. 0 D. 3
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 41 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10110 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zapisz dziedzinę funkcji określonej wzorem f(x)= \sqrt{\frac{x^3}{x^2-2x-3}} - \frac{x\sqrt{x}}{\sqrt{x^2-2x-3}} w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. (-\infty,p)\cup(q, +\infty) D. \langle p,+\infty)
E. (-\infty,p) F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji w postaci ogólnej.

Podaj współczynnik b występujący we wzorze.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj liczbę a+c.
Odpowiedź:
a+c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/430 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=1
b=-8
c=2
p=-1
q=9
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20996 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (0.6 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1 i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=7 oraz x_1\cdot x_2=1. Wiedząc, że f(2)=-2 i a\in\mathbb{N_+}, wyznacz wzór tej funkcji w postaci ogólnej.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1.4 pkt)
 Podaj liczby b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20998 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-2x+m+5=0 ma dwa rozwiązania spełniające warunek 8x_1-3x_2=49?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30079 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2-2ax+a^2+c \leqslant -b|x-a| .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
b=-1
c=-30
a=-2
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których suma kwadratów dwóch różnych pierwiastków równania x^2+(m-2-a)x+2=0 jest większa od 2m^2+(16-4a)m+2a^2-16a+19.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj sumę całkowitych końców tych przedziałów.
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30841 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Dla jakich wartości parametru m równanie x^2-x-1-m=0 ma dwa różne pierwiastki spełniające warunek \left|x_1\right|+\left|x_2\right| > 2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. \langle p, +\infty) B. (-\infty, p)\cup(q, +\infty)
C. (p, +\infty) D. (p, q\rangle
E. (-\infty, p) F. (-\infty, p\rangle
G. (-\infty, +\infty) H. (p, q)
Podpunkt 12.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm