Do wykresu funkcji kwadratowej określonej wzorem y=f(x)
należy punkt P=(11, 6). Osią symetrii wykresu
tej funkcji jest prosta określona równaniem x=8, a liczba 9
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).
Wyznacz wartość współczynnika a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
« Zbiór A jest zbiorem tych wartości parametru m, dla których
dziedziną funkcji określonej wzorem f(x)=\frac{2}{3mx^2+mx+1} jest
zbiór \mathbb{R}. Zapisz zbiór A
w postaci sumy przedziałów.
Zbiór A ma postać:
Odpowiedzi:
A.(-\infty,p\rangle\cup\langle q, +\infty)
B.\langle p,q\rangle
C.(-\infty,p)
D.(-\infty,p)\cup(q, +\infty)
E.\langle p,q)
F.(p,q)
Podpunkt 5.2 (0.8 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%]
» Dla jakich wartości parametru m\in\mathbb{R}
iloczyn różnych pierwiastków równania
x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0
jest o jeden mniejszy od sumy tych pierwiastków?
Podaj najmniejsze możliwe m, które spełnia warunki
zadania.
Dane
a=4
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe m, które spełnia warunki
zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30038 ⋅ Poprawnie: 0/0
Wyznacz te wartości parametru m, dla których
równanie x^2-(2m+1+a)x+2m+a=0 ma dwa różne
pierwiastki rzeczywiste spełniające warunek
|x_1-x_2| > 2x_1x_2.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Ile liczb całkowitych z przedziału
\langle -20,20\rangle spełnia warunki zadania.
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat