Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
(-4,-8) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,-1) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. \langle -8,+\infty)
B. \langle 8,+\infty)
C. (-\infty,-8\rangle
D. (-\infty,8\rangle
Zadanie 2. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 116/229 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-3)(x-1) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 480/647 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji
f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/745 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -7, -3\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+4\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/968 [66%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2+10x+24}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. (p,q)
B. (-\infty,p)\cup(q,+\infty)
C. \mathbb{R}-(p,q)
D. \mathbb{R}-\{p\}
E. \langle p,q\rangle
F. \mathbb{R}-\{p, q\}
Podpunkt 5.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 41/76 [53%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Parabola ma wierzchołek w punkcie
C=(2,81) i przecina
oś
Ox w punktach
A i
B .
Wiedząc, że P_{\triangle ABC}=\frac{729}{2} . Wyznacz wzór tej
paraboli w postaci kanonicznej f(x)=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20065 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz te wartości parametru
m , dla których
funkcja
h(x)=(2+a-m)x^2+(m-a)x+m-4-a
ma największą wartość równą
2 .
Podaj najmniejsze takie m .
Dane
a=-2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe takie
m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-21061 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
\sqrt{x^2-2x-2}+x^2-2x=4
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
|16-x^2|=(m-a)^2-9 ma dwa różne
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych
przedziałów, w kolejności od najmiejszego do największego.
Dane
a=-2
Odpowiedzi:
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30018 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Rozwiązanie układu
\begin{cases}
x+amy=1 \\
2x+y=am
\end{cases}
spełnia warunek
|x-y|\leqslant 1 . Wyznacz
m .
Podaj najmniejsze możliwe m .
Dane
a=-1
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 5 pkt ⋅ Numer: pr-30357 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
«« Wyznacz te wartości parametru
m , dla których
równanie
4x^2+(-4m+4a+2)x+m^2-(2a+1)m+a^2+a-2=0
ma dwa rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=-1
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
równanie to ma dwa rozwiązania dodatnie.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
równanie to ma dwa rozwiązania dodatnie spełniające nierówność
x_1^2+x_2^2\leqslant \frac{17}{4} .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30036 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których
równanie
4x^2-(m+a)x+1=0 ma dwa różne pierwiastki
takie, że ich różnica jest liczbą z przedziału
(0,4) .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=-2
Odpowiedź:
min=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
Podaj najmniejszy z końców liczbowych, który jest liczbą całkowitą.
Odpowiedź:
min_Z=
(wpisz liczbę całkowitą)
Rozwiąż