«« Funkcja określona wzorem f(x)=(-8m-6)x^2+3x-14 osiąga
wartość największą wtedy i tylko wtedy, gdy parametr m należy do
pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A.(-\infty,p)
B.(p,q)
C.\langle p,+\infty)
D.\langle p,q\rangle
E.(p,+\infty)
F.(-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%]
Funkcja kwadratowa f określona wzorem
f(x)=a(x-p)^2+q dla argumentu
-2 osiąga wartość największą równą
1. Wiedząc, że do jej wykresu należy punkt
należy punkt A=(-4,-2), wyznacz wzór tej funkcji.
Podaj współczynnik a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20782 ⋅ Poprawnie: 61/83 [73%]
« Wyznacz te wartości parametru m, dla których
równanie (m+a)x^2-(3m+3a-3)x+m+a=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich
przedziałów, który nie jest liczbą całkowitą.
Dane
a=-5
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R},
dla których suma dwóch różnych pierwiastków tego równania jest nie większa
od \frac{5}{2}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec
liczbowy tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat