Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%]
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
« Funkcja
y=-(x+2)^2-7 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p)
C. (p,q)
D. (-\infty,p\rangle
E. (p,+\infty)
F. \langle p,+\infty)
Podpunkt 1.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-4)(x+2) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{7}}{2} i
g(x)=\frac{\sqrt{7}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x)=g(x)
B. f(x)-g(x)=x^2
C. f(x) \lessdot g(x)
D. f(x) > g(x)
Zadanie 4. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
52 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x-3)^2-\frac{7}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20928 ⋅ Poprawnie: 66/116 [56%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy,
gdy
x\in\langle-6,+\infty) , zbiorem jej wartości
jest przedział
\langle-3, +\infty) , a do jej wykresu
należy punkt
A=(-5,-1) . Wyznacz wzór tej funkcji.
Podaj współczynnik a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20396 ⋅ Poprawnie: 41/244 [16%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
(a-x)(bx-1) \geqslant 0 .
Ile liczb całkowitych z przedziału
\langle -20,20\rangle spełnia tę nierówność?
Dane
a=3
b=5
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj długość rozwiązania (długość przedziału).
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20070 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Rozwiąż nierówność
\sqrt{x^2-4ax+7+4a^2} > \sqrt{2}x+\sqrt{2}\left(3-2a\right)
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę kwadratów
wszystkich końców liczbowych tych przedziałów.
Dane
a=-2
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20094 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
x^2+(4m+32)x+4m+32+1\frac{1}{4}=0 ma dwa różne
pierwiastki ujemne?
Podaj największą liczbę, która nie spełnia warunków zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
2x^2-(m+2-a)|x|+m-a=0
ma dwa różne rozwiązania?
Podaj największe możliwe m .
Dane
a=-2
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Dla ilu całkowitych wartości
m\in\langle -10,10 \rangle warunki zadania są
spełnione?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30062 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dla jakich wartości parametru
m równanie
(m-2-a)x^2+4|x|+m-5-a=0 ma dokładnie dwa rozwiązania?
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Dane
a=-2
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych
tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj długość rozwiązania, czyli długość wszystkich przedziałów tworzących rozwiązanie.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30034 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Wyznacz te wartości parametru
m , dla których
równanie
2x^2-(2m+2a-1)x-m-a=0
ma dwa różne pierwiastki spełniające warunek
|x_1-x_2|=3 .
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Dane
a=-2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
m spełniające warunki
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż