Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 191/260 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=(x+1)^2-8 B. y=(5-x)^2+1
C. y=-7(x+6)^2-4 D. y=7(x-7)^2-5
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2-x+6}{\sqrt{-3-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{6}}{2} i g(x)=\frac{\sqrt{6}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x) > g(x) B. f(x)=g(x)
C. f(x)-g(x)=x^2 D. f(x) \lessdot g(x)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 33/63 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=18t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2-\frac{3}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (p,q) B. (-\infty,p\rangle
C. (-\infty,p) D. (-\infty,p)\cup\langle q,+\infty)
E. (p,+\infty) F. \langle p,q\rangle
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 46/78 [58%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wyznacz współczynniki b i c funkcji określonej wzorem f(x)=2x^2+bx+c wiedząc, że zbiorem jej wartości jest przedział \langle -6,+\infty), a osią symetrii jej wykresu jest prosta x=1.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20403 ⋅ Poprawnie: 111/207 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz wszystkie argumenty x, dla których funkcja f(x)=4x^2+bx+c przyjmuje wartości niedodatnie.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
b=3=3.00000000000000
c=\frac{1}{2}=0.50000000000000
Odpowiedź:
l=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20982 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie \sqrt{3x-2}-\sqrt{x-2}=2 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m+a)|x|+1=0 ma cztery różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania -\frac{1}{3}x^2+2|x|-3=3m-3a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-2
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Przedział (m_1,m_2) zawiera wszystkie te wartości parametru m, dla których równanie to ma więcej niż trzy rozwiązania.

Podaj m_1^2+m_2^2.

Odpowiedź:
m_1^2+m_2^2= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30066 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Dana jest funkcja f(x)=x^2+2(m-a)x+6m-5-6a . Dla jakich wartości parametru m funkcja ma dwa różne miejsca zerowe o takich samych znakach?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych końców przedziałów, które są liczbami całkowitymi.

Dane
a=-2
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Dla jakich wartości parametru m te miejsca zerowe spełniają warunek |x_2-x_1| \lessdot 3?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30042 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » Wyznacz te wartości parametru m, dla których równanie x^2+2(m-2)x+m^2-3m+2=0 ma dwa różne pierwiastki rzeczywiste, które spełniają warunek x_1\cdot x_2\leqslant 6(m-2)^2\leqslant x_1^2+x_2^2.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Rozwiązanie zapisz w postaci przedziału. Podaj długość tego przedziału.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm