Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 217/336 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Prosta o równaniu
2x-3=0 jest osią symetrii
paraboli:
Odpowiedzi:
A. y=4x^2+4x-4
B. y=4x^2-4x-4
C. y=2x^2-9x-4
D. y=4x^2-12x-4
E. y=2x^2+9x-4
F. y=4x^2-6x-4
Zadanie 2. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczby
1 i
\frac{3}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-5x+3 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji
g(x)=ax^2+bc+c .
Które z poniższych zdań jest prawdziwe?
Odpowiedzi:
A. miejscami zerowymi funkcji to -2 i 6
B. miejsca zerowe tej funkcji to -2 i 4
C. funkcja rośnie w przedziale (-2,4)
D. f(x) > 0 \iff x \lessdot 1
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -9,-6\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
h(x)=x^2+4x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=2
B. c=7
C. c=8
D. c=9
E. c=6
F. c=11
Zadanie 6. 2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 229/490 [46%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Największa wartość funkcji
f(x)=a(x-3)(x+1) jest równa
16 .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20375 ⋅ Poprawnie: 290/410 [70%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż równanie
(2-x)\left(x^2-9x+18\right)=0 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj iloczyn wszystkich rozwiązań tego równania.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20992 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
\frac{1}{4-\sqrt{3}} i
\frac{1}{4+\sqrt{3}}
są miejscami zerowymi funkcji określonej wzorem
f(x)=x^2-(p+q)x+q-p .
Wyznacz liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20083 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
x^2+8x+m-a=0 ma dwa różne pierwiastki jednakowych
znaków?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=7
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30076 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
x^2+(4-2a)x-4|x+4-a|+a^2-4a+7=0
.
Podaj sumę wszystkich rozwiązań tego równania.
Dane
a=2
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj sumę kwadratów wszystkich rozwiązań tego równania.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30070 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dla jakich wartości parametru
m\in\mathbb{R}
suma i iloczyn dwóch różnych pierwiastków równania
x^2+(2m+8)x+2m^2+9m+14=0
są liczbami przeciwnymi?
Podaj najmniejsze takie m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe takie
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30862 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
Równanie kwadratowe
x^2-(m+5)x+m+4=0
ma dwa różne rozwiązania
x_1 i
x_2 , wtedy i tylko wtedy,
gdy parametr
m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty) .
Podaj liczby p i q .
Odpowiedzi:
Podpunkt 12.2 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których prawdziwa jest równość
(x_1+3x_2)(x_2+3x_1)=16 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż