Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 118/136 [86%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-(x+2)^2-3 zawarty
jest przedział:
Odpowiedzi:
A. (-4,-2)
B. (-3,+\infty)
C. (-3,-2)
D. (-\infty,-3)
Zadanie 2. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 166/295 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(-2-3x)(x-3) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/610 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Funkcja
f , której wykres pokazano na rysunku
zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
B. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
C. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
D. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)
Zadanie 4. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-7)(x-3)^2(x^2+x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/19 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Funkcja kwadratowa
f(x)=ax^2+bx+c przyjmuje
wartości ujemne tylko wtedy, gdy
x\in\left(d, e\right) . Wiadomo, że wykres
funkcji
f przechodzi przez punkt
A=(p,q) .
Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników
a+b+c .
Dane
d=-4
e=0.5
p=4
q=84
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Zapisz wzór tej funkcji w postaci kanonicznej
f(x)=a(x-p)^2+q . Podaj wartość współczynnika
p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 223/691 [32%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Funkcja kwadratowa jest określona wzorem
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f
w przedziale \langle p,q\rangle .
Dane
a=-1
b=-2
c=-8
p=-2
q=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Oblicz największą wartość funkcji
f
w tym przedziale.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20074 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
(x-a)^4-5(x-a)^2+4=0
.
Podaj sumę wszystkich rozwiązań tego równania.
Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20084 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m stosunek pierwiastków
równania
2x^2+(m+a)x+4=0 jest równy
2 ?
Podaj największą możliwą wartość parametru m .
Dane
a=-4
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30018 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Rozwiązanie układu
\begin{cases}
x+amy=1 \\
2x+y=am
\end{cases}
spełnia warunek
|x-y|\leqslant 1 . Wyznacz
m .
Podaj najmniejsze możliwe m .
Dane
a=-3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Funkcja
f(x)=x^2+(m^2-14m-n^2+46)x+n^2+3m-25 ,
gdzie
m,n\in\mathbb{C} , ma dwa miejsca zerowe
x_1=4-\sqrt{5} oraz
x_2=4+\sqrt{5} .
Ile rozwiązań ma to zadanie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejsze możliwe
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30034 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Wyznacz te wartości parametru
m , dla których
równanie
2x^2-(2m+2a-1)x-m-a=0
ma dwa różne pierwiastki spełniające warunek
|x_1-x_2|=3 .
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Dane
a=-5
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
m spełniające warunki
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż