Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-7(x+1)^2+7
B. y=(x+4)^2-8
C. y=4(x-5)^2-8
D. y=4+(-7-x)^2
Zadanie 2. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m-1)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,q)
C. \langle p,q\rangle
D. \langle p,+\infty)
E. (p,+\infty)
F. (-\infty,p)
Podpunkt 2.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem
g(x)=ax^2+bx+c . Postać iloczynowa
funkcji
g opisana jest wzorem
g(x)=a(x+3)(x-1) .
Wyznacz współczynnik c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle 9, 13\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-12\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile rozwiązań całkowitych ma równanie
\left(x^2+4\right)\left(x^2-4x+8\right)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20933 ⋅ Poprawnie: 4/12 [33%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prosta o równaniu
y=90 przecina wykres funkcji określonej wzorem
f(x)=a(x-x_1)(x-x_2) ,
gdzie
x_1\lessdot x_2 , w punktach o odciętych równych
-7 oraz
-3 , a największą wartością
tej funkcji jest liczba
98 .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz miejsca zerowe
x_1 i
x_2 tej funkcji.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20377 ⋅ Poprawnie: 66/112 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz punkty przecięcia paraboli określonej wzorem
y=2x^2+45x+20
z prostą o równaniu
y=-2 .
Podaj najmniejszą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20071 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Rozwiąż nierówność
\sqrt{-x^2-4ax} > x+4a .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę kwadratów
wszystkich końców liczbowych tych przedziałów.
Dane
a=7
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 9. 3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
|16-x^2|=(m-a)^2-9 ma dwa różne
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych
przedziałów, w kolejności od najmiejszego do największego.
Dane
a=6
Odpowiedzi:
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Zbadaj liczbę rozwiązań równania
-\frac{1}{3}x^2+2|x|-3=3m-3a
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=5
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Przedział
(m_1,m_2) zawiera wszystkie te wartości
parametru
m , dla których równanie to ma
więcej niż trzy rozwiązania.
Podaj m_1^2+m_2^2 .
Odpowiedź:
m_1^2+m_2^2=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30072 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} , dla
których suma kwadratów dwóch różnych pierwiastków równania
x^2+(m-2-a)x+2=0 jest większa od
2m^2+(16-4a)m+2a^2-16a+19 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Dane
a=5
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj sumę całkowitych końców tych przedziałów.
Odpowiedź:
suma_Z=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30856 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
(m+6)x^2-(m+7)x-2m-9=0 ma dwa rozwiązania?
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
Wyznacz te wartości parametru
m , dla których różne rozwiązania
x_1 i
x_2 tego równania spełniają warunek
\frac{1}{x_1}+\frac{1}{x_2}=m+9 .
Podaj najmniejsze i największe możliwe m .
Odpowiedzi:
Rozwiąż