Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
» Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-2,12) ,
(2,10) i
(4,33) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczby
1 i
\frac{9}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2+11x-9 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 82/119 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu której funkcji należy punkt o współrzędnych
A=(256, 0) :
Odpowiedzi:
A. y=x^2+512
B. y=(x+256)^2
C. y=x^2-4096
D. y=(x+512)(2x-512)
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -4,-1\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : 2x^2+6x-5 \geqslant 0
T/N : x^2-12x+72\geqslant 0
Zadanie 6. 2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których
prosta
y=m ma dwa punkty wspólne z wykresem
funkcji
f(x)=-4x^2+12x .
Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20402 ⋅ Poprawnie: 14/96 [14%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozwiąż nierówność
-x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle 0,100\rangle spełnia tę nierówność?
Dane
b=14
c=-33
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20074 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
(x-a)^4-5(x-a)^2+4=0
.
Podaj sumę wszystkich rozwiązań tego równania.
Dane
a=-2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20092 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane jest równanie
(m-1)x^2-4(m+4)x+m+2=0 .
Zbadaj liczbę rozwiązań tego równania w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe m , dla którego równanie to ma dokładnie
jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz te wartości
m , dla których równanie to nie ma
rozwiązania.
Rozwiązanie zapisz w postaci przedziału. Podaj środek tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30088 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Zbadaj liczbę rozwiązań równania
\left|x^2+x-30\right|=\left(m-\frac{a}{2}\right)|x-5|
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj najmniejsze możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=-3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
ma dwa rozwiązania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
równanie to ma trzy rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
Podaj największe możliwe
m , dla którego ilość
rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30071 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (4 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} suma
kwadratów dwóch różnych pierwiastków równania
x^2+(m-a)x-4m+4a-16=0 jest cztery razy większa od
sumy tych pierwiastków?
Podaj największe możliwe takie m .
Dane
a=-3
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30855 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
Równanie
x^2+(m-20)x+4m-88=0 ma dwa rozwiązania gdy parametr
m
należy do zbioru postaci
(-\infty, p)\cup(a+b\sqrt{c}, +\infty) , gdzie
a,b,c\in\mathbb{Z} i
c jest liczbą pierwszą.
Podaj liczby a , b i c .
Odpowiedzi:
Podpunkt 12.2 (1 pkt)
Wyznacz te wartości parametru
m , dla których równanie to ma dwa rozwiązania
x_1 i
x_2 takie, które spełniają warunek
x_1^2+x_2^2=400 .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż