« Liczby x_1 i x_2
są miejscami zerowymi funkcji kwadratowej. Liczby te są względem siebie
odwrotne i spełniają warunek x_1+x_2=m, przy czym
x_1 \lessdot x_2.
Podaj x_1.
Dane
m=3
Odpowiedź:
x_{1}=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20082 ⋅ Poprawnie: 0/0
Dla jakich wartości parametru m\in\mathbb{R} suma
kwadratów dwóch różnych pierwiastków równania
x^2+(m-a)x-4m+4a-16=0 jest cztery razy większa od
sumy tych pierwiastków?
Podaj największe możliwe takie m.
Dane
a=2
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30867 ⋅ Poprawnie: 0/1 [0%]
Równanie kwadratowe x^2+(m+3)(m+3-x)=3m+12
ma dwa różne rozwiązania x_1 i x_2 gdy parametr
m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty). Zapisz liczbę q
w najprostszej postaci a+b\sqrt{c}, gdzie
a,b,c\in\mathbb{Z}.
Podaj liczby a, b i c.
Odpowiedź:
q=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
Funkcja f określona wzorem
f(m)=x_1^2+x_2^2
przyjmuje wartość największą dla argumentu m_0.
Podaj liczbę m_0.
Odpowiedź:
m_0=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat