Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (3,10), (5,5) i (9,7).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójmian kwadratowy y=4x^2-36x+56 można zapisać w postaci y=a(x-2)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 79/132 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej y=f(x).

Funkcja g określona jest wzorem g(x)=9\cdot f(x)+2. Wówczas zbiór ZW_g jest pewnym przedziałem liczbowym.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -11, -7\rangle funkcja kwadratowa f(x)=-\left(x+10\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt M=(a,8\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20459 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakiej wartości parametru m zbiorem wartości funkcji liczbowej g(x)=x^2+3x+m-8 jest przedział \langle -2,+\infty).
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20383 ⋅ Poprawnie: 57/107 [53%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Kwadrat liczby jest o 5400 większy od potrojonej wartości tej liczby. Znajdź tę liczbę.

Podaj najmniesze z rozwiązań.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
« Liczby całkowite a, b, c i d spełniają warunki: a \lessdot b < c < d, d-a=3 oraz a^2+b^2+c^2=d.

Podaj najmniejszą z tych liczb.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m+a)|x|+1=0 ma cztery różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30074 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność \sqrt{(2+a-x)^2(6+a-x)^2}-3x+6+3a > 0 .

Podaj największą liczbę, która nie spełnia tej nierówności.

Dane
a=5
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Funkcja f(x)=x^2+(m^2+14m-n^2+46)x+n^2+3m+17, gdzie m,n\in\mathbb{C}, ma dwa miejsca zerowe x_1=4-\sqrt{5} oraz x_2=4+\sqrt{5}.

Ile rozwiązań ma to zadanie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30050 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » Dla jakich wartości parametru m kwadrat sumy dwóch różnych pierwiastków równania (m+a-4)x^2+(m+a)x-m-a=0 jest większy od 1?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmiejszy z końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy koniec liczbowy tch przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm