Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Różnica iloczynu liczby
13 oraz liczby
x i kwadratu liczby
x jest największa dla liczby
x równej:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójmian kwadratowy
y=-3x^2-33x-90 można zapisać w postaci
y=a(x+5)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 73/224 [32%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej
h(x)=a(x+b)^2+c .
Zatem:
Odpowiedzi:
A. c=-5
B. b=5
C. c=5
D. b=-5
Zadanie 4. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
77 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja
g określona jest wzorem
g(x)=\frac{8}{\sqrt{64-x^2}}
.
Zapisz dziedzinę funkcji określonej wzorem
h(x)=g(x+3)
w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (-\infty,p)\cup(q, +\infty)
B. \langlep,+\infty)
C. (p,q\rangle
D. (p,q)
E. (p,+\infty)
F. (-\infty,p)
Podpunkt 5.2 (1 pkt)
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/16 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Funkcja kwadratowa
f(x)=ax^2+bx+c przyjmuje
wartości ujemne tylko wtedy, gdy
x\in\left(d, e\right) . Wiadomo, że wykres
funkcji
f przechodzi przez punkt
A=(p,q) .
Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników
a+b+c .
Dane
d=-6
e=1.5
p=-3
q=-54
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Zapisz wzór tej funkcji w postaci kanonicznej
f(x)=a(x-p)^2+q . Podaj wartość współczynnika
p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t\ [s] przebyło drogę
s [m] ,
którą opisuje wzór
s(t)=t^2+11t+10 , gdzie
t\in\langle 2,6\rangle .
Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.
Odpowiedź:
s(t)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20102 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż nierówność
|x^2+3x+2|-|x-a|\leqslant 3 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejsze z rozwiązań
tej nierówności.
Dane
a=7
Odpowiedź:
x_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20092 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane jest równanie
(m-10)x^2-4(m-5)x+m-7=0 .
Zbadaj liczbę rozwiązań tego równania w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe m , dla którego równanie to ma dokładnie
jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz te wartości
m , dla których równanie to nie ma
rozwiązania.
Rozwiązanie zapisz w postaci przedziału. Podaj środek tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30082 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż nierówność
\left|x^2+(a+6)x+\frac{a^2}{4}+3a-1\right| \leqslant 6
.
Rozwiązaniem tej nierówności jest zbiór
\langle x_1, x_2\rangle\cup\langle x_3, x_4\rangle\ ,
gdzie x_2\lessdot x_3 .
Podaj x_1+x_2 .
Dane
a=7
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie pary liczb
(p,q) o tej
własności, że pierwiastkami równania
x^2+px+q=0 są
liczby
p i
q .
Ile jest takich par?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejszą możliwą wartość p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszą możliwą wartość q .
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30027 ⋅ Poprawnie: 34/35 [97%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
«« Suma
\frac{1}{x_1^2}+\frac{1}{x_2^2} , gdzie
x_1 i
x_2 są różnymi
rozwiązaniami równania
\frac{x^2+(m-5)x-1}{m-b}=0 , jest równa
a ?
Podaj największą możliwą wartość parametru m\in\mathbb{R} .
Dane
a=66
b=-3
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj sumę wszystkich możliwych wartości parametru
m\in\mathbb{R} .
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Rozwiąż