Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 82/186 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Dla
x=-6 funkcja
f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą
2 .
Wyznacz wartość współczynnika c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-2(x-1)(x+5) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Dana są funkcje
h(x)=2-x
oraz
g(x)=x+4 .
Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Suma dwóch liczb jest równa
28\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x+7)^2+\frac{11}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20459 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dla jakiej wartości parametru
m zbiorem wartości
funkcji liczbowej
g(x)=x^2+3x+m-7 jest przedział
\langle -2,+\infty) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 3 pkt ⋅ Numer: pr-20068 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dla jakich wartości parametru
m najmniejsza
wartość funkcji
h(x)=(m-a)x^2+3(m-1-a)x+2(m-1-a)
należy do przedziału
(-\infty,0) ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Dane
a=3
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
Podaj sumę wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20458 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Liczby
x_1 i
x_2
są miejscami zerowymi funkcji kwadratowej. Liczby te są względem siebie
odwrotne i spełniają warunek
x_1+x_2=m , przy czym
x_1 \lessdot x_2 .
Podaj x_1 .
Dane
m=6
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pr-20081 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m funkcja
f(x)=(-5-m)x^2+(m+8)x-m-8 przyjmuje wartości ujemne
dla każdego
x\in\mathbb{R} .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy
z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30086 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Zbadaj liczbę rozwiązań równania
(x+2)^2-4|x+1|=2m-a
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj najmniejsze możliwe m , dla którego równanie
ma trzy rozwiązania.
Dane
a=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
ma dokładnie jedno rozwiązanie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Funkcja
f(x)=x^2+(m^2+12m-n^2+33)x+n^2+3m+14 ,
gdzie
m,n\in\mathbb{C} , ma dwa miejsca zerowe
x_1=4-\sqrt{5} oraz
x_2=4+\sqrt{5} .
Ile rozwiązań ma to zadanie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj najmniejsze możliwe
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30862 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
Równanie kwadratowe
x^2-(m+7)x+m+6=0
ma dwa różne rozwiązania
x_1 i
x_2 , wtedy i tylko wtedy,
gdy parametr
m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty) .
Podaj liczby p i q .
Odpowiedzi:
Podpunkt 12.2 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których prawdziwa jest równość
(x_1+3x_2)(x_2+3x_1)=16 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż