Do wykresu funkcji kwadratowej określonej wzorem y=f(x)
należy punkt P=(-3, -16). Osią symetrii wykresu
tej funkcji jest prosta określona równaniem x=-4, a liczba 1
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).
Wyznacz wartość współczynnika a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 481/648 [74%]
Równanie x^2-(k-6)x+36=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru A. Zapisz zbiór
Aw postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A.(-\infty,p)\cap(q,+\infty)
B.(p,+\infty)
C.(p,q)
D.(-\infty,p)
E.(-\infty,p)\cup(q,+\infty)
F.\langle p,q\rangle
Podpunkt 5.2 (0.8 pkt)
Liczba p jest najmniejszym, a liczba q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pr-20456 ⋅ Poprawnie: 0/0
« Po przesunięciu wykresu funkcji
f(x)=2x^2-x+\frac{23}{8} o wektor
\left[\frac{5}{4},\frac{3}{4}\right]
otrzymano wykres, który ma wierzchołek w punkcie
(p,q).
Podaj p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20407 ⋅ Poprawnie: 25/46 [54%]
« Wyznacz te wartości parametru m, dla których
równanie (m-9)x^2+(m-6)x+4=0 ma dwa różne pierwiastki
rzeczywiste, których suma odwrotności jest mniejsza od
2.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat