Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 609/795 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=11x^2+176x+176 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 461/803 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-102)(x+714), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 241/318 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. A B. B
C. D D. C
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 266/400 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 22\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 178/276 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2+4x-12)\sqrt{9-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+c przyjmuje wartości ujemne tylko wtedy, gdy x\in\left(d, e\right). Wiadomo, że wykres funkcji f przechodzi przez punkt A=(p,q).

Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników a+b+c.

Dane
d=-3
e=0.5
p=0
q=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Zapisz wzór tej funkcji w postaci kanonicznej f(x)=a(x-p)^2+q. Podaj wartość współczynnika p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20422 ⋅ Poprawnie: 67/144 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność (2x-1-2a)x > 6\left(x-\frac{1+2a}{2}\right)\left(x+\frac{1-3a}{3}\right) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20981 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiązaniem równania x^2+6x+9-4\sqrt{x^2+8x+12}=-2x-2 , są liczby postaci a+\sqrt{b+c\sqrt{d}} oraz a-\sqrt{b+c\sqrt{d}}.

Podaj liczbe a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę b+c\sqrt{d}.
Odpowiedź:
b+c\sqrt{d}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20105 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie (x-1)|x-2|=m+1+a ma dwa różne rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=2
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30087 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Zbadaj liczbę rozwiązań równania \left|x^2+x-2\right|=\left(\frac{m}{2}-a\right)|x+2| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=2
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich jest większa od ilości rozwiązań ujemnych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.

Podaj sumę wszystkich wyznaczonych wartości m.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30048 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru p równanie x^2-2(p+a-5)x+p+7+a=0 ma dwa różne pierwiastki o tych samych znakach.

Rowiązanie zapisz w postaci sumy przedziałów. Podaj największy z wszystkich końców liczbowych tych przedziałów.

Dane
a=2
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30841 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Dla jakich wartości parametru m równanie x^2-x+1-m=0 ma dwa różne pierwiastki spełniające warunek \left|x_1\right|+\left|x_2\right| > 2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, p\rangle\cup\langle q, +\infty) B. \langle p, +\infty)
C. \langle p, q) D. (p, +\infty)
E. (-\infty, p)\cup(q, +\infty) F. (-\infty, p\rangle
G. (p, q) H. (-\infty, p)
Podpunkt 12.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm