Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 534/899 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,6\rangle:
Odpowiedzi:
A. y=(x+6)^2+2 B. y=-(x-2)^2-1
C. y=-(x+2)^2-6 D. y=(x-6)^2+2
E. y=-(x+2)^2+6 F. y=-(x-6)^2+2
Zadanie 2.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 563/780 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-6)(x+4) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 198/294 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja określona wzorem f(x)=2x^2+......\cdot x+18 jest malejąca w przedziale (-\infty,-2) i rosnąca w przedziale (-2,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 81 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10111 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 « Zbiór A jest zbiorem tych wartości parametru m, dla których dziedziną funkcji określonej wzorem f(x)=\frac{2}{-mx^2+mx+1} jest zbiór \mathbb{R}. Zapisz zbiór A w postaci sumy przedziałów.

Zbiór A ma postać:

Odpowiedzi:
A. (-\infty,p)\cup(q, +\infty) B. (-\infty,p\rangle\cup\langle q, +\infty)
C. \langle p,q\rangle D. (p,q)
E. \langle p,+\infty) F. (p,q\rangle
Podpunkt 5.2 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20935 ⋅ Poprawnie: 14/23 [60%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Średnia arytmetyczna miejsc zerowych funkcji kwadratowej określonej wzorem f(x)=ax^2+bx jest równa 2. Rzędna wierzchołka paraboli będącej wykresem tej funkcji jest równa 12.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20067 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dla jakich wartości parametru m najmniejsza wartość funkcji g(x)=x^2+x+m^2-(2a+1)m+a^2+a+\frac{1}{4} należy do przedziału \langle 2,6\rangle?

Podaj najmniejsze takie m.

Dane
a=-1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20076 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Przyprostokątne trójkąta są pierwiastkami trójmianu y=2x^2+(b+a)x+144. Pole kwadratu zbudowanego na przeciwprostokątnej tego trójkąta wynosi 340.

Wyznacz b.

Dane
a=-1
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20873 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) Dana jest funkcja określona wzorem y=\frac{25}{x^2}, dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano na rysunku, oraz punkt A=(5, -1):

Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych B=(x_0, y_0) oraz C=(-x_0,y_0) gdzie x_0 > 0 i y_0 > 0.

Znajdź najmniejsze x_0\in(13;+\infty), dla którego P_{\triangle ABC}\geqslant 26.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 (1 pkt) Wyznacz największą liczbę nieujemną m o tej własności, że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność P_{\triangle ABC}\geqslant m.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30080 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność x^2+(6+2a)x+|x+2+a|+a^2+6a+8\leqslant 0 .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
a=-10
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  5 pkt ⋅ Numer: pr-30357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie 4x^2+(-4m+4a+2)x+m^2-(2a+1)m+a^2+a-2=0 ma dwa rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-1
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dwa rozwiązania dodatnie.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dwa rozwiązania dodatnie spełniające nierówność x_1^2+x_2^2\leqslant \frac{17}{4}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30859 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Równanie kwadratowe x^2-(m-1)x+m+7=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest nierówność (x_1x_2-1)(x_1+x_2)+6\geqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm