Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11430  
Podpunkt 1.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2+6x+2 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11506  
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-144)(x+432), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11026  
Podpunkt 3.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. B B. D
C. A D. C
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11409  
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10110  
Podpunkt 5.1 (0.2 pkt)
 Zapisz dziedzinę funkcji określonej wzorem f(x)= \sqrt{\frac{x^3}{x^2-4x-21}} - \frac{x\sqrt{x}}{\sqrt{x^2-4x-21}} w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p\rangle\cup\langle q, +\infty)
C. (-\infty,p)\cup(q, +\infty) D. \langle p,q\rangle
E. (p,q) F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20061  
Podpunkt 6.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie |ax^2+bx+c|=m ma dokładnie trzy rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=1
b=-6
c=0
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20379  
Podpunkt 7.1 (1 pkt)
 Równanie x^2+(m-2)x+121=0 ma dokładnie jedno rozwiązanie. Wyznacz m.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20990  
Podpunkt 8.1 (2 pkt)
 Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji określonej wzorem f(x)=-\frac{1}{4}x^2+5x-2.

Oblicz sumę x_1^4+x_2^4.

Odpowiedź:
x_1^4+x_2^4=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20098  
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności x^2+(m+5)x+3m+15 > 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30085  
Podpunkt 10.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania -\frac{1}{3}x^2+2|x|-3=3m-3a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=3
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Przedział (m_1,m_2) zawiera wszystkie te wartości parametru m, dla których równanie to ma więcej niż trzy rozwiązania.

Podaj m_1^2+m_2^2.

Odpowiedź:
m_1^2+m_2^2= (wpisz liczbę całkowitą)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30045  
Podpunkt 11.1 (2 pkt)
« Dana jest funkcja f(x)=\frac{m^2-11m+24}{m}x^2-(m+3)x+m, gdzie m\neq 0. Wyznacz te wartości parametru m, dla których funkcja ta przyjmuje wartość największą.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Dla jakich wartości parametru m funkcja f ma dwa różne miejsca zerowe?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Dla jakich wartości parametru m funkcja przyjmuje wartość największą i różne miejsca zerowe funkcji f mają różne znaki.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców tych przedziałów, które są liczbami całkowitymi.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30856  
Podpunkt 12.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie (m+2)x^2-(m+3)x-2m-1=0 ma dwa rozwiązania? Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Wyznacz te wartości parametru m, dla których różne rozwiązania x_1 i x_2 tego równania spełniają warunek \frac{1}{x_1}+\frac{1}{x_2}=m+5.

Podaj najmniejsze i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm