Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 263/409 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f(x)=x^2-14x+49 dla argumentu \sqrt{7} przyjmuje wartość \left(......\cdot\sqrt{7}-7\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 371/569 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby -7 oraz -5. Do wykresu tej funkcji należy punkt A=(0,-70). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 142/184 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji g(x)=ax^2+bc+c.

Które z poniższych zdań jest prawdziwe?

Odpowiedzi:
A. funkcja rośnie w przedziale (-2,4) B. f(x) > 0 \iff x \lessdot 1
C. miejsca zerowe tej funkcji to -2 i 4 D. miejscami zerowymi funkcji to -2 i 6
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 9, 13\rangle funkcja kwadratowa f(x)=-\left(x-10\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10110 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zapisz dziedzinę funkcji określonej wzorem f(x)= \sqrt{\frac{x^3}{x^2+4x-5}} - \frac{x\sqrt{x}}{\sqrt{x^2+4x-5}} w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (-\infty,p)\cup(q, +\infty)
C. (-\infty,p\rangle\cup\langle q, +\infty) D. \langle p,q\rangle
E. (p,+\infty) F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20062 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Naszkicuj wykres funkcji f(x)=x^2-a|x|. Na podstawie wykresu ustal liczbę rozwiązań równania f(x)=m w zalezności od wartości parametru m.

Podaj najmniejsze takie m, dla którego równanie to ma dokładnie dwa rozwiązania.

Dane
a=8
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj najmniejsze takie m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20375 ⋅ Poprawnie: 313/435 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż równanie (2-x)\left(x^2+11x+28\right)=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj iloczyn wszystkich rozwiązań tego równania.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20100 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż równanie x^2+2ax+2x+|x+1+a|=11-2a-a^2 .

Podaj największe z rozwiązań tego równania.

Dane
a=-4
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-20086 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie (m-a-2)x^2+(m-a-3)x-1=0 ma dwa różne pierwiastki ujemne?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (2 pkt)
 Podaj sumę tych wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-(m+2-a)|x|+m-a=0 ma dwa różne rozwiązania?

Podaj największe możliwe m.

Dane
a=-4
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Dla ilu całkowitych wartości m\in\langle -10,10 \rangle warunki zadania są spełnione?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30053 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} suma odwrotności pierwiastków równania 8x^2-4(m-a)x-5m^2+(10a+10)m-5a^2-10a-8=0 wynosi -\frac{12}{23}.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=-4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30041 ⋅ Poprawnie: 12/17 [70%] Rozwiąż 
Podpunkt 12.1 (3 pkt)
 « Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=-5
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm