» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-\frac{7}{3} ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A.\langle p,+\infty)
B.\langle p, q\rangle
C.(-\infty,p)
D.(p,q)
E.(p,+\infty)
F.(-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 25/66 [37%]
Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1
i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=47
oraz x_1\cdot x_2=1. Wiedząc, że
f(2)=19 i a\in\mathbb{N_+}, wyznacz
wzór tej funkcji w postaci ogólnej.
Podaj liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1.4 pkt)
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%]
« Suma dwóch różnych miejsc zerowych funkcji
f(x)=(a-m)x^2+(2b+n)x+c jest równa
4, a suma ich odwrotności jest równa
-\frac{1}{3}. Wiedząc, że
f(0)=-12 wyznacz a i
b.
Podaj a.
Dane
m=2 n=-1
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30050 ⋅ Poprawnie: 0/0