Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (4\sqrt{2},192\sqrt{7}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 522/724 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby 2 oraz 4, a wierzchołek paraboli będącej jej wykresem ma współrzędne (3,-3), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x-2)(x+4) B. f(x)=\frac{9}{4}(x+2)(x-4)
C. f(x)=3(x-2)(x-4) D. f(x)=3(x+2)(x-4)
Zadanie 3.  1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/472 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 61 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k-1)x+25=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (p,q) B. (-\infty,p)
C. (p,+\infty) D. (-\infty,p)\cup(q,+\infty)
E. \langle p,q\rangle F. (-\infty,p)\cap(q,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20348 ⋅ Poprawnie: 23/58 [39%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest funkcja kwadratowa o tej własnosci, że rozwiązaniem nierówności f(x) \lessdot 0 jest przedział (-1,6). Rozwiąż nierówność -f(x+3) \lessdot 0.

Ile liczb całkowitych nie spełnia tej nierówności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 88/184 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wiadomo, że x-y=50, a także, że suma x^2+y^2 jest najmniejsza możliwa.

Podaj liczbę x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20100 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż równanie x^2+2ax+2x+|x+1+a|=11-2a-a^2 .

Podaj największe z rozwiązań tego równania.

Dane
a=3
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20094 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m równanie x^2+(4m-48)x+4m-48+1\frac{1}{4}=0 ma dwa różne pierwiastki ujemne?

Podaj największą liczbę, która nie spełnia warunków zadania.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania -\frac{1}{3}x^2+2|x|-3=3m-3a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=3
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Przedział (m_1,m_2) zawiera wszystkie te wartości parametru m, dla których równanie to ma więcej niż trzy rozwiązania.

Podaj m_1^2+m_2^2.

Odpowiedź:
m_1^2+m_2^2= (wpisz liczbę całkowitą)
Zadanie 11.  6 pkt ⋅ Numer: pr-30827 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 (2 pkt) Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-(m+2)x+m+1=0 spełnia tylko jedna liczba rzeczywista?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 (2 pkt) Dla jakich wartości parametru m\in\mathbb{R} dwa różne rozwiązania rzeczywiste x_1 i x_2 tego równania spełniają nierówność (x_1+3x_2)(x_2+3x_1)\geqslant 16?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten z tych wszystkich końców tych przedziałów, który jest liczbą całkowitą.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 (2 pkt) Podaj ten z tych wszystkich końców liczbowych tych przedziałów, który należy do zbioru \mathbb{R}-\mathbb{Z} (różnica zbiorów).
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30042 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 » Wyznacz te wartości parametru m, dla których równanie x^2+2(m+3)x+m^2+7m+12=0 ma dwa różne pierwiastki rzeczywiste, które spełniają warunek x_1\cdot x_2\leqslant 6(m+3)^2\leqslant x_1^2+x_2^2.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Rozwiązanie zapisz w postaci przedziału. Podaj długość tego przedziału.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm