Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt (-5,-6) jest wierzchołkiem paraboli. Punkt o współrzędnych P=(0,3) należy do tej paraboli.

Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:

Odpowiedzi:
A. (-\infty,6\rangle B. \langle -6,+\infty)
C. \langle 6,+\infty) D. (-\infty,-6\rangle
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(-2-x)(3x+6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/610 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Funkcja f, której wykres pokazano na rysunku zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right) B. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
C. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right) D. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -8,-5\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/429 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2+\frac{11}{2}x-\frac{5}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-4x^2+8x.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20399 ⋅ Poprawnie: 83/200 [41%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność ax^2+bx > cx^2+dx.

Podaj długość rozwiązania (długość przedziału).

Dane
a=-2
b=-3
c=1
d=1
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą liczbę całkowitą dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20073 ⋅ Poprawnie: 2/13 [15%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie ax^4+bx^2+c=0.

Podaj najmniejsze rozwiązanie tego równnia.

Dane
a=1
b=-21
c=80
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj sumę wszystkich dodatnich rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20092 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane jest równanie (m-2)x^2-4(m+3)x+m+1=0. Zbadaj liczbę rozwiązań tego równania w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe m, dla którego równanie to ma dokładnie jedno rozwiązanie.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz te wartości m, dla których równanie to nie ma rozwiązania.

Rozwiązanie zapisz w postaci przedziału. Podaj środek tego przedziału.

Odpowiedź:
m_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-(m+2-a)|x|+m-a=0 ma dwa różne rozwiązania?

Podaj największe możliwe m.

Dane
a=-2
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Dla ilu całkowitych wartości m\in\langle -10,10 \rangle warunki zadania są spełnione?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30054 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} iloczyn różnych pierwiastków równania x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0 jest o jeden mniejszy od sumy tych pierwiastków?

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=-2
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30843 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-(2m-5)x+m^2-5m+4=0 ma dwa rozwiązania, z których jedno należy do przedziału (0,2), a drugie do przedziału (3,5)?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. \langle p, +\infty) B. (p, q\rangle
C. (p, q) D. (-\infty, p\rangle
E. (p, +\infty) F. (-\infty, +\infty)
G. (-\infty, p)\cup(q, +\infty) H. (-\infty, p\rangle \cup \langle q, +\infty)
Podpunkt 12.2 (1.5 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm