Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(-5)=51, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-3)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. (-\infty,p)
C. \langle p,q\rangle D. (p,+\infty)
E. (-\infty,p\rangle F. \langle p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11027 ⋅ Poprawnie: 42/93 [45%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu x=-5 jest osią symetrii wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym rysunku. Zbiór A zawiera wszystkie te wartości rzeczywiste x, dla których f(x)\leqslant 0.

Podaj najmniejszą liczbę należącą do zbioru A.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/325 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{5}{2}x+\frac{7}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 167/282 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja f(x)=a(x+1)^2-4, do wykresu której nalezy punkt P=(-3,-20).

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-20943 ⋅ Poprawnie: 21/46 [45%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Sprzedawca miesięcznie sprzedaje k=54 laptopów w cenie 3600 złotych sztuka. Zauważył, że każda obniżka ceny laptopa o 10 złotych zwiększa sprzedaż o jedną sztukę miesięcznie.

Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20993 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe, których suma jest równa -\frac{13}{2}, a ich iloczyn jest równy 10. Wyznacz współczynniki b i c wiedząc, że do wykresu funkcji f należy punkt A=\left(-4,0\right).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj współczynnik c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20080 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest nierówność x^2-4(m-2)x-32m^2+128m-128 \lessdot 0 z parametrem m\in\mathbb{N_+} i m\geqslant 10. Funkcja g określona jest dla liczb naturalnych m\geqslant 10 i jej wartością dla liczby m jest największe z całkowitych rozwiązań podanej nierówności.
Funkcja g jest funkcją liniową określoną wzorem g(x)=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30081 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność |x^2-2ax| \lessdot b .

Rozwiązanie zapisz w postaci sumy predziałów. Podaj sumę wszystkich końców tych przedziałów, które są liczbami całkowitymi.

Dane
a=8
b=64
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30062 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m równanie (m-2-a)x^2+4|x|+m-5-a=0 ma dokładnie dwa rozwiązania?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj długość rozwiązania, czyli długość wszystkich przedziałów tworzących rozwiązanie.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30038 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2-(2m+1+a)x+2m+a=0 ma dwa różne pierwiastki rzeczywiste spełniające warunek |x_1-x_2| > 2x_1x_2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=1
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Ile liczb całkowitych z przedziału \langle -20,20\rangle spełnia warunki zadania.
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm