Podgląd testu : lo2@sp-13-okr-i-kola-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10546 ⋅ Poprawnie: 629/962 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=44^{\circ} :
Wyznacz miary stopniowe kątów \beta i
\gamma .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10500 ⋅ Poprawnie: 63/87 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dłuższa przekątna sześciokąta foremnego ma długość
2\sqrt{11} .
Oblicz pole powierzchni tego sześciokąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10512 ⋅ Poprawnie: 187/251 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
O na rysunku jest środkiem okręgu, a kąty mają miary
\alpha=100^{\circ} oraz
\beta=118^{\circ} :
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
|\sphericalangle ABC|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10497 ⋅ Poprawnie: 52/88 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W okręgu poprowadzono cięciwę
AB oraz cięciwę
BC (
A\neq C ). Obie
cięciwy mają długość równą promieniowi okręgu.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5. 1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/10 [60%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
\frac{52}{3} .
Stosunek długości promieni tych okręgów jest równy
7 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dany jest okrąg
o_1(S_1, 2024) , przy czym
S_1=(-15,-9) . Okrąg
o_2(S_2,2024) jest obrazem okręgu
o_1 w symetrii względem osi
Oy .
Wyznacz długość odcinka S_1S_2 .
Odpowiedź:
|S_1S_2|=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W okręgu o promieniu
106 narysowano cięciwę,
która znajduje się w odległości
90
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż