Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10488 ⋅ Poprawnie: 200/278 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu o średnicy AB, w którym \alpha=114^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10539 ⋅ Poprawnie: 266/387 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym \alpha=58^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10522 ⋅ Poprawnie: 236/330 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O jest środkiem okręgu, a prosta jest styczną do tego okręgu, przy czym \beta=64^{\circ}:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10533 ⋅ Poprawnie: 119/147 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Punkt O jest środkiem okręgu:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/10 [60%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa 8. Stosunek długości promieni tych okręgów jest równy 7.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/393 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są okręgi o_1\left(A, \frac{17}{2}\right) i o_2\left(B, 2\right), przy czym |AB|=\frac{19}{2}.

Okręgi te:

Odpowiedzi:
A. są rozłączne zewnętrznie B. są styczne zewnętrznie
C. są styczne wewnętrznie D. mają dwa punkty wspólne
Zadanie 7.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 89/140 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Odcinek AB ma długość 40 i jest cięciwą okręgu o promieniu \frac{41}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm