Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10496  
Podpunkt 1.1 (1 pkt)
 «« Na okręgu o promieniu długości r zaznaczono punkty A i B, które wyznaczyły łuk o długości \frac{\pi}{18}\cdot r.

Wyznacz miarę stopniową kąta wpisanego w ten okrąg opartego na tym łuku.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10497  
Podpunkt 2.1 (1 pkt)
W okręgu poprowadzono cięciwę AB oraz cięciwę BC (A\neq C). Obie cięciwy mają długość równą promieniowi okręgu.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10560  
Podpunkt 3.1 (1 pkt)
 « W trójkąt równoramienny ABC o podstawie AB wpisano okrąg o środku O. Wiadomo, że |\sphericalangle BOA|=122^{\circ}. Oblicz miarę stopniową kąta BCA.
Odpowiedź:
|\sphericalangle BCA|= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10565  
Podpunkt 4.1 (1 pkt)
 Dany jest okrąg o_1(S_1, 2020), przy czym S_1=(-11,-7). Okrąg o_2(S_2,2020) jest obrazem okręgu o_1 w symetrii względem osi Oy.

Wyznacz długość odcinka S_1S_2.

Odpowiedź:
|S_1S_2|= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11740  
Podpunkt 5.1 (1 pkt)
 Jaką część okręgu o promieniu 13\pi stanowi jego łuk o długości 13\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20950  
Podpunkt 6.1 (2 pkt)
 W trójkąt równoramienny o podstawie |AB|=3 i ramionach |AC|=|BC|=2 wpisano okrąg, który jest styczny do boków BC i AC odpowiednio w punktach E i F.

Oblicz stosunek |AF|:|FC|.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20208  
Podpunkt 7.1 (2 pkt)
 Punkt O jest środkiem okręgu. Oblicz miarę stopniową kąta \alpha zaznaczonego na rysunku.
Dane
\beta=41^{\circ}
\gamma=134^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20959  
Podpunkt 8.1 (2 pkt)
 Symetralne boków trójkąta równoramiennego ABC o podstawie AB, przecinają się w punkcie S. Punkt S jest odległy do wierzchołka A o \frac{49}{12}, a od boku BC o \frac{7\sqrt{13}}{12}.

Oblicz długość boku AB tego trójkąta.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20963  
Podpunkt 9.1 (1 pkt)
 W trójkąt prostokątny o przyprostokątnych długości 20 i 48 wpisano okrąg.

Oblicz długości odcinków, na które punkt styczności podzielił przeciwprostokątną tego trójkąta.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Dwusieczna kąta prostego przecina przeciwprostokątną tego trójkąta w punkcie P.

Oblicz długości odcinków, na które dzieli przeciwprostokątną punkt P.

Odpowiedź:
d_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.3 (0.5 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
d_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20219  
Podpunkt 10.1 (2 pkt)
 » Dany jest kwadrat o boku a. W kwadrat ten wpisano okrąg i na kwadracie tym opisano okrąg. Oblicz pole powierzchni powstałego pierścienia kołowego.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30013  
Podpunkt 11.1 (4 pkt)
 » Prosta k jest styczną do dwóch rozłącznych zewnętrznie okręgów o promieniach r_1 i r_2 i poprowadzona jest w taki sposób, że środki okręgów znajdują sie po różnych stronach prostej k.

Wiedząc, że odległość między środkami okręgów wynosi d oblicz odległość pomiędzy punktami styczności.

Dane
r_1=3
r_2=18
d=39
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


Masz pytania? Napisz: k42195@poczta.fm