» W okręgu o środku O poprowadzono cięciwę
AB nie przechodzącą przez środek okręgu.
Na cięciwie wybrano punkt C w taki sposób, że
AB nie jest prostopadłe do
CO:
Oblicz długość promienia tego okręgu.
Dane
|CO|=26 |AC|=8 |CB|=28
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6.2 pkt ⋅ Numer: pp-20205 ⋅ Poprawnie: 11/22 [50%]
» W okrąg wpisano trójkąt ABC,
w którym |\sphericalangle A|=28^{\circ} oraz
|\sphericalangle B|=48^{\circ}. Poprowadzono styczną
do okręgu w punkcie C, która przecięła przedłużenie
boku AB w punkcie D.
Oblicz miary kątów trójkąta BDC.
Podaj miarę stopniową najmniejszego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pp-20229 ⋅ Poprawnie: 135/246 [54%]
» Do dwóch stycznych zewnętrznie okręgów o promieniach
r_1 i r_2
i środkach odpowiednio O_1 i
O_2, poprowadzono styczną, która przecięłą
prostą przechodzącą przez środki tych okręgów w punkcie
A:
Oblicz długość odcinka O_1A.
Dane
r_1=33 r_2=15
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.4 pkt ⋅ Numer: pp-30019 ⋅ Poprawnie: 14/42 [33%]
« Okręgi o_1 i o_2
o środkach odpowiednio A i
B i promieniach odpowiednio
r_1 i r_2 są styczne
wewnętrznie. Z punktu A poprowadzono półproste
styczne do okręgu o_2 w punktach
M i N.
Oblicz pole czworokąta AMBN.
Dane
r_1=20 r_2=8
Odpowiedź:
P_{AMBN}=\cdot√
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat