«« Kąt wpisany w okrąg o promieniu \sqrt{3} ma miarę
10^{\circ}. Długość łuku, na którym oparty jest
ten kąt można zapisać w postaci a\cdot \sqrt{3}\cdot \pi.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10545
Podpunkt 2.1 (1 pkt)
Punkt O jest środkiem okręgu, a prosta
k styczną do tego okręgu w punkcie
A:
.
Wyznacz miarę stopniową kąta \alpha.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10559
Podpunkt 3.1 (1 pkt)
Pole koła opisanego na trójkącie równobocznym jest równe \frac{1}{3^{5}}\pi^3.
Bok tego trójkąta ma długość \frac{\pi^m}{3^n}, gdzie.
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
m
=
(wpisz liczbę całkowitą)
n
=
(wpisz liczbę całkowitą)
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11738
Podpunkt 4.1 (0.5 pkt)
Okręgi o_1(A, r_1) oraz o_2(B,r_2)
(r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{49}{6}.
Stosunek długości promieni tych okręgów jest równy 8.
Oblicz r_1.
Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11649
Podpunkt 5.1 (1 pkt)
W okręgu o promieniu 50 narysowano cięciwę,
która znajduje się w odległości 14
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20227
Podpunkt 6.1 (2 pkt)
» W okręgu o środku O poprowadzono cięciwę
AB nie przechodzącą przez środek okręgu.
Na cięciwie wybrano punkt C w taki sposób, że
AB nie jest prostopadłe do
CO:
Oblicz długość promienia tego okręgu.
Dane
|CO|=29 |AC|=8 |CB|=48
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20783
Podpunkt 7.1 (2 pkt)
Z punktu C leżącego poza okręgiem poprowadzono
sieczną okręgu zawierającą środek okręgu S oraz
taką sieczną przecinającą ten okrąg w punktach A
i B, że |SB|=|BC|.
Oblicz |\sphericalangle ASD|.
Dane
|\sphericalangle BCE|=13^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20715
Podpunkt 8.1 (2 pkt)
Podstawa trójkąta równoramiennego ma długość a, a jego
ramię długość c.
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Dane
a=28 c=50
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20721
Podpunkt 9.1 (2 pkt)
Punkt O jest środkiem okręgu:
Oblicz r+R.
Dane
|AC|=14 |AB|=48
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20231
Podpunkt 10.1 (2 pkt)
Dane są dwa okręgi o środkach w punktach P
i R, styczne zewnętrznie w punkcie
C.
Prosta AB jest styczna do obu okręgów odpowiednio
w punktach A i B oraz
|\sphericalangle ABC|=\beta:
Oblicz miarę kąta \alpha. Wynik zapisz w stopniach
bez jednostki.
Dane
\beta=64^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-30011
Podpunkt 11.1 (2 pkt)
» Okręgi na rysunku są styczne do siebie i boków trójkąta równobocznego
o polu powierzchni P, a promień
r ma długość x\sqrt{y},
gdzie x,y\in\mathbb{N} i
y jest liczbą pierwszą:
Wyznacz x.
Dane
P=108+72\sqrt{3}=232.70765814495917
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Wyznacz y.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat