Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10488  
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu o średnicy AB, w którym \alpha=110^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10518  
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu, kąt \alpha ma miarę 272^{\circ} a prosta jest styczna do tego okręgu:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10554  
Podpunkt 3.1 (1 pkt)
 Na kwadracie opisano koło o promieniu długości 17\sqrt{6}.

Oblicz długość promienia koła wpisanego w ten kwadrat.

Odpowiedź:
r= \cdot
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10564  
Podpunkt 4.1 (1 pkt)
 Dwa okręgi mają promienie o długości \frac{4}{3} i \frac{3}{2}. Mniejszy z okręgów przechodzi przez środek większego.

Oblicz odległość między środkami tych okręgów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11649  
Podpunkt 5.1 (1 pkt)
 W okręgu o promieniu 61 narysowano cięciwę, która znajduje się w odległości 60 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20228  
Podpunkt 6.1 (2 pkt)
 W okręgu o środku O poprowadzono cięciwę AB. Przez punkt P będący środkiem cięciwy AB poprowadzono sieczną MN okręgu, prostopadłą do cięciwy AB:

Oblicz długość cięciwy AB.

Dane
|MP|=32
|NP|=50
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20209  
Podpunkt 7.1 (2 pkt)
 « Na trójkącie równoramiennym ABC, w którym |AC|=|BC| i kąt między ramionami trójkąta ma miarę \alpha, opisano okrąg o środku w punkcie S. Półprosta BS^{\to} przecina bok AC trójkąta w punkcie K.

Wyznacz miarę stopniową kąta AKB.

Dane
\alpha=50^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20717  
Podpunkt 8.1 (2 pkt)
 « Długość promienia okręgu opisanego na trójkącie równobocznym jest o d większa od długości promienia okręgu wpisanego w ten trójkąt.

Oblicz pole powierzchni tego trójkąta.

Dane
d=11\sqrt{6}=26.94438717061496
Odpowiedź:
P_{\triangle}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20220  
Podpunkt 9.1 (2 pkt)
Czworokąt na rysunku jest kwadratem:

Oblicz |CO|:|AB|.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30019  
Podpunkt 10.1 (4 pkt)
 « Okręgi o_1 i o_2 o środkach odpowiednio A i B i promieniach odpowiednio r_1 i r_2 są styczne wewnętrznie. Z punktu A poprowadzono półproste styczne do okręgu o_2 w punktach M i N.

Oblicz pole czworokąta AMBN.

Dane
r_1=20
r_2=6
Odpowiedź:
P_{AMBN}= \cdot
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm