Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10505 ⋅ Poprawnie: 178/231 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O na rysunku jest środkiem okręgu, przy czym \alpha=50^{\circ}:

Wyznacz miarę zaznaczonego na rysunku kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10530 ⋅ Poprawnie: 109/143 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest okrąg o środku w punkcie S, w którym a=72^{\circ}:

Oblicz sumę miar stopniowych kątów \beta i \gamma.

Odpowiedź:
\beta+\gamma= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11738 ⋅ Poprawnie: 34/52 [65%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{16}{3}. Stosunek długości promieni tych okręgów jest równy 5.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Jaką część okręgu o promieniu 7\pi stanowi jego łuk o długości 4\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20208 ⋅ Poprawnie: 87/169 [51%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 Punkt O jest środkiem okręgu. Oblicz miarę stopniową kąta \alpha zaznaczonego na rysunku.
Dane
\beta=41^{\circ}
\gamma=140^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20894 ⋅ Poprawnie: 85/174 [48%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Punkt O jest środkiem okręgu:

Oblicz długość promienia tego okręgu.

Dane
|AP|=9
|AB|=39
|OP|=31
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pp-30019 ⋅ Poprawnie: 14/42 [33%] Rozwiąż 
Podpunkt 7.1 (4 pkt)
 « Okręgi o_1 i o_2 o środkach odpowiednio A i B i promieniach odpowiednio r_1 i r_2 są styczne wewnętrznie. Z punktu A poprowadzono półproste styczne do okręgu o_2 w punktach M i N.

Oblicz pole czworokąta AMBN.

Dane
r_1=18
r_2=5
Odpowiedź:
P_{AMBN}= \cdot
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm