Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10485  
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu opisanego na trojkącie równoramiennym, a prosta jest styczną do tego okręgu:

Wiedząc, że \alpha=144^{\circ}, wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10517  
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=127^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10559  
Podpunkt 3.1 (1 pkt)
 Pole koła opisanego na trójkącie równobocznym jest równe \frac{1}{3^{9}}\pi^3. Bok tego trójkąta ma długość \frac{\pi^m}{3^n}, gdzie. m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10563  
Podpunkt 4.1 (1 pkt)
 Okręgi o takich samych promieniach mają środki w punktach M=(0, -7) i N=(56, -40) i są wzajemnie styczne zewnętrznie.

Wyznacz długość promienia tych okręgów.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11739  
Podpunkt 5.1 (1 pkt)
 Jaką część okręgu o promieniu 5 stanowi jego łuk o długości 6\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20203  
Podpunkt 6.1 (2 pkt)
 Brązowy czworokąt na rysunku jest prostokątem:

Oblicz miarę stopniową kąta \alpha.

Dane
\beta=62^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21000  
Podpunkt 7.1 (1 pkt)
 Podstawa trójkąta równoramiennego ostrokątnego ma długość 16, a środek okręgu opisanego na tym trójkącie znajduje się w odległości \frac{68}{15} od ramion trójkąta.

Oblicz długość ramion tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21011  
Podpunkt 8.1 (0.5 pkt)
 W trójkąt prostokątny o przyprostokątnych długości 9 i 40 wpisano okrąg.

Wyznacz długości odcinków, na jakie dwusieczna kąta prostego podzieliła przeciwprostokątną tego trójkąta.

Odpowiedź:
d_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
d_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Wyznacz długości odcinków, na jakie punkt styczności okręgu z przeciwprostokątną podzielił tę przeciwprostokątną.
Odpowiedzi:
d_{min}= (wpisz liczbę całkowitą)
d_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20231  
Podpunkt 9.1 (2 pkt)
 Dane są dwa okręgi o środkach w punktach P i R, styczne zewnętrznie w punkcie C. Prosta AB jest styczna do obu okręgów odpowiednio w punktach A i B oraz |\sphericalangle ABC|=\beta:

Oblicz miarę kąta \alpha. Wynik zapisz w stopniach bez jednostki.

Dane
\beta=72^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30013  
Podpunkt 10.1 (4 pkt)
 » Prosta k jest styczną do dwóch rozłącznych zewnętrznie okręgów o promieniach r_1 i r_2 i poprowadzona jest w taki sposób, że środki okręgów znajdują sie po różnych stronach prostej k.

Wiedząc, że odległość między środkami okręgów wynosi d oblicz odległość pomiędzy punktami styczności.

Dane
r_1=11
r_2=13
d=36
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


Masz pytania? Napisz: k42195@poczta.fm