Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-14-trygonom-2-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pr-10254 ⋅ Poprawnie: 5/6 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
» Kąt wypukły \alpha spełnia równanie 2\sqrt{6}\cos\alpha+3\sqrt{2}=0.

Podaj miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10425 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia \cos\left(\frac{1}{2}\pi+\frac{\pi}{6}\right)+\tan\left(\frac{5}{2}\pi-\frac{\pi}{4}\right).

Wynik zapisz w najprostszej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b,c,d\in\mathbb{Z}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pr-20446 ⋅ Poprawnie: 5/5 [100%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
« Punkt P=(x,y) należy do końcowego ramienia kąta skierowanego \alpha i do czwartej ćwiartki układu współrzędnych. Jego odległość od początku układu współrzędnych wynosi 25, zaś \tan\alpha=-\frac{7}{24}.

Oblicz sumę współrzędnych punktu P.

Odpowiedź:
x+y= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-21033 ⋅ Poprawnie: 2/5 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha jest kątem rozwartym oraz spełnia warunek \sin\alpha+\cos\alpha=-\frac{1}{5}.

Oblicz wartość wyrażenia \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Oblicz wartość \sin\alpha.
Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 4.3 (0.5 pkt)
 Oblicz wartość \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20280 ⋅ Poprawnie: 130/294 [44%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
» Dwa kąty ostre trójkąta prostokątnego mają miary \alpha i \beta.

Oblicz (\cos\beta+\sin^2\alpha+\sin^2\beta) \left(\frac{1}{\cos^2\alpha}-\frac{\tan\alpha}{\sin\beta}\right) .

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20293 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
Wiadomo, że \sin x-\cos x=\frac{1}{3}.

Oblicz \cos 4x.

Odpowiedź:
\cos4x=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm