Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(-1,7), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(1,8) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(6,-4) i B=(8,4) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/151 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt A=(10,-7) jest środkiem okręgu o promieniu 2024. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Prosta, do której należą punkty A=(40,-28) i B=(49,26) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 220/441 [49%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta o równaniu -8x+6y+24=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prostą równoległą do prostej o równaniu -2x+4y+2=0 jest prosta określona wzorem y=.....\cdot x+n.

Podaj brakującą liczbę.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «Proste określone równaniami y=mx+n i -\frac{1}{2}x+\frac{1}{2}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Wykresy funkcji określonych wzorami f(x)=\left(-m+\frac{11}{2}\right)x+5 i g(x)=\left(3m+19\right)x-2 są równoległe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm