« Punkt C=(-2m,y_C) jest środkiem odcinka o końcach
A=(3,-6) i B=(-5,-4).
Zatem liczba m jest równa:
Odpowiedzi:
A.-1
B.-\frac{1}{2}
C.1
D.\frac{1}{2}
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11511
Podpunkt 2.1 (1 pkt)
Punkty o współrzędnych A=\left(9,-6\right) i
B=\left(11,-6\right) są wierzchołkami trójkąta
równobocznego ABC.
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
r=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11221
Podpunkt 3.1 (1 pkt)
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem
B. trójkątem ostrokątnym
C. wycinkiem koła
D. trójkątem prostokątnym
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11234
Podpunkt 4.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami y=x-2 i
x-y=-4.
Odpowiedź:
d=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11235
Podpunkt 5.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami 2x+y=m+3 i
x-3y=6 należy do osi Ox.
Wyznacz wartość parametru m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 6.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10842
Podpunkt 6.1 (0.5 pkt)
Prosta równoległa do prostej o równaniu y=3x+\frac{1}{2} i
zawiera punkt P=\left(4\sqrt{2},-5+3\sqrt{2}\right)
i określona jest ma równaniem y=ax+b.
Wyznacz współczynnik a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 6.2 (0.5 pkt)
Wyznacz współczynnik b.
Odpowiedź:
b=+\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10841
Podpunkt 7.1 (1 pkt)
Proste o równaniach k:y=6m^2x-m-4 oraz
l:y=36mx+m+4 spełniają warunek
k\perp l.
Wyznacz m.
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10836
Podpunkt 8.1 (1 pkt)
Prostą prostopadłą do wykresu funkcji y=-7x-6 jest prosta określona równaniem
y=ax-\frac{1}{7}