Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(0,-5) i B=(-4,1).

Zatem liczba m jest równa:

Odpowiedzi:
A. -2 B. -1
C. 1 D. 2
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(1,-4) i C=(-2,-3). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{3\sqrt{10}}{2}\pi B. \frac{\sqrt{10}}{4}\pi
C. \frac{\sqrt{10}}{2}\pi D. \sqrt{10}\pi
E. 2\sqrt{5}\pi F. 2\sqrt{10}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=\left(6,-5\right) i B=\left(8,-5\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11227 ⋅ Poprawnie: 106/251 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie S=(6,-7) jest punkt C=(-5,4). Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w ten kwadrat.
Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-4,-5) jest środkiem okręgu, a odległość punktu A=(12,7) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(\frac{3}{2},-4\right) i B=\left(-2,-\frac{5}{2}\right). Przekątne tego kwadratu mogą się przecinać w punkcie:
Odpowiedzi:
A. \left(-1,-5\right) B. \left(-\frac{2}{3},-5\right)
C. \left(-\frac{7}{6},-\frac{29}{6}\right) D. \left(-1,-\frac{16}{3}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Symetralną odcinka o końcach A=(-6,-4) i B=\left(\frac{1}{2},-4\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta o równaniu -10x-7y-35=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt P=\left(6\sqrt{5},3\right), a jej wykres jest prostą równoleglą do prostej o równaniu y=-\sqrt{5}x-6.

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykres funkcji liniowej określonej wzorem f(x)=-5x+3 jest prostą prostopadłą do prostej o równaniu y=mx+n.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wykresy funkcji liniowych f(x)=\frac{\sqrt{3}}{5}x-3 oraz g(x)=\frac{3}{5\sqrt{3}}x-\frac{1}{2}:
Odpowiedzi:
A. przecinają się, ale nie są prostopadłe B. są prostopadłe
C. pokrywają się D. są równoległe i nie pokrywają się
Zadanie 12.  1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Prosta o równaniu y=\frac{-7}{m+2}x+4 jest prostopadła do prostej o równaniu y=-\frac{3}{2}x+3.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Proste o równaniach -3y+5mx+12=0 oraz y=6x-12 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 «« Wykresy funkcji określonych wzorami f(x)=\left(-m-\frac{11}{2}\right)x+5 i g(x)=\left(3m-14\right)x-2 są równoległe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wykresy funkcji f(x)=2a+x i g(x)=-6x-7 przecinają oś Ox w dwóch różnych punktach.

Jaką liczbą nie może być a?

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm