Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt
C=(-2m,y_C) jest środkiem odcinka o końcach
A=(-2,2) i
B=(0,-2) .
Zatem liczba m jest równa:
Odpowiedzi:
A. \frac{1}{2}
B. 1
C. -\frac{1}{2}
D. -1
Zadanie 2. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(-2,-5) , do którego
należy punkt o współrzędnych
A=(3,4) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
S=(-2,-2) jest środkiem odcinka
AC , gdzie
A=(x_A,y_A) i
C=\left(-\frac{5}{2},3\right) .
Podaj współrzędne x_A i y_A .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do okręgu o środku w punkcie
S=(-2,-1) i promieniu długości
2\sqrt{5} należy punkt:
Odpowiedzi:
A. (-5,6)
B. (-6,6)
C. (-6,-1)
D. (-4,3)
E. (-8,0)
F. (-1,2)
Zadanie 5. 1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
A=(-11,8) jest środkiem okręgu o promieniu
2023 . Okrąg ten przekształcono przez symetrię
względem osi
Oy i otrzymano okrąg o środku w
punkcie
A_1 .
Oblicz długość odcinka AA_1 .
Odpowiedź:
|AA_1|=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(-4,-2) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Symetralną odcinka o końcach
A=(-7,4) i
B=\left(\frac{5}{2},4\right) jest prosta określona równaniem
x+by=c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Środek odcinka o końcach
(-1,-5) i
(1,-5) należy do prostej o równaniu
y+ax=-1-2a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(-1,\frac{1}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
y=2x-\sqrt{7} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{3}{2}x+3
B. f(x)=\frac{5}{2}x-2-\frac{1}{2}x
C. f(x)=-2x-2
D. f(x)=\frac{7}{2}x-5
Zadanie 11. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{5}}{8}x-3 oraz
g(x)=\frac{5}{8\sqrt{5}}x-\frac{1}{2} :
Odpowiedzi:
A. przecinają się, ale nie są prostopadłe
B. są prostopadłe
C. są równoległe i nie pokrywają się
D. pokrywają się
Zadanie 12. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykresy funkcji
y=(7-m)x-\frac{5}{3} i
y=4-(m+7)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. liczbą wymierną
B. liczbą niewymierną
C. równe zero
D. liczbą nieparzystą
Zadanie 13. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(-3,-\frac{13}{2}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Proste o równaniach
y=-\frac{5}{a}x+4 oraz
y=(3a+4)x-1 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:-x-\frac{9}{2}y+3=0 ma współczynnik
kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż