Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkty o współrzędnych
A=(-7,-1) i
C=(-2,11) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c} , gdzie
a,b,c\in\mathbb{N} .
Podaj liczby a , b i c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(-1,-4) , do którego
należy punkt o współrzędnych
A=(4,-6) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty
A=(2,-1) i
B=(-4,4)
są wierzchołkami trójąta równobocznego.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11227 ⋅ Poprawnie: 106/251 [42%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-9,-1) jest punkt
C=(-5,-5) .
Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w
ten kwadrat.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(-6,2) jest środkiem okręgu, a
odległość punktu
A=(24,18) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(-8,3) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prosta, do której należą punkty
A=(-32,-10) i
B=(-47,-55)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m-6 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Prosta równoległa do prostej o równaniu
y=3x+\frac{1}{2} i
zawiera punkt
P=\left(6\sqrt{2},2+2\sqrt{2}\right)
i określona jest ma równaniem
y=ax+b .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11413 ⋅ Poprawnie: 830/1099 [75%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste o równaniach
y=(2m-20)x+12 oraz
y=(m+16)x-3 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste
k:y=\frac{-7}{m-3}x+m-2 oraz
l:y=2mx+\frac{1}{m+1} spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m+4)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(-6,\frac{7}{2}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
«« Wykresy funkcji określonych wzorami
f(x)=\left(-m+\frac{11}{2}\right)x+5 i
g(x)=\left(3m+19\right)x-2 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=7}x-6 i y=-7x+6
B. y=\frac{1}{3}x-7 i y=3x-14
C. y=3}x-4 i y=3x+4
D. y=\frac{1}{9}x-5 i y=-9x-10
Rozwiąż