Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-2,-6) i F=(-6,-3) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt S=\left(-\frac{7}{4},-6\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(-6,-3).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-9,-5) i B=(2,6) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkty o współrzędnych K=(-10,-6) oraz L=(2,7) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. wycinkiem koła B. trójkątem ostrokątnym
C. czworokątem D. trójkątem prostokątnym
Zadanie 7.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prostą k o równaniu y=-3x+7 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Proste o równaniach \frac{\sqrt{3}}{3}x-y+2=0 i -6y+5=0:
Odpowiedzi:
A. są równoległe B. przecinają się pod kątem 30^{\circ}
C. przecinają się pod kątem 60^{\circ} D. przecinają się pod kątem 45^{\circ}
Zadanie 9.  1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Prosta równoległa do prostej o równaniu y=3x+\frac{1}{5} i zawiera punkt P=\left(2\sqrt{2},1-3\sqrt{2}\right) i określona jest ma równaniem y=ax+b.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11413 ⋅ Poprawnie: 830/1099 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Proste o równaniach y=(-2m-20)x+12 oraz y=(m+16)x-3 są równoległe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10820 ⋅ Poprawnie: 186/354 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji liniowej h jest prostopadły do prostej określonej równaniem y=\frac{1}{4}x-11 i zawiera punkt P=\left(\frac{5}{3},1\right).

Wyznacz miejsce zerowe funkcji h.

Odpowiedź:
h(x)=0\iff x=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Proste określone równaniami y=-\frac{3}{5}x-2 i (3m+3)x+2y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Proste o równaniach -3y+4mx+12=0 oraz y=6x-12 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 «« Wykresy funkcji określonych wzorami f(x)=\left(-m-\frac{17}{2}\right)x+5 i g(x)=\left(3m-23\right)x-2 są równoległe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=\frac{1}{3}x-3 i y=-3x-6 B. y=\frac{1}{7}x-8 i y=7x-16
C. y=5}x-1 i y=-5x+1 D. y=3}x-3 i y=3x+3


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm