Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt
C=(-2m,y_C) jest środkiem odcinka o końcach
A=(-4,5) i
B=(-5,0) .
Zatem liczba m jest równa:
Odpowiedzi:
A. -\frac{9}{2}
B. \frac{9}{2}
C. -\frac{9}{4}
D. \frac{9}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(-2,6) , do którego
należy punkt o współrzędnych
A=(-4,1) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty
A=(-2,-4) i
B=(5,-5)
są wierzchołkami trójąta równobocznego.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11227 ⋅ Poprawnie: 106/251 [42%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(5,-5) jest punkt
C=(-2,2) .
Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w
ten kwadrat.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni trójkąta o wierzchołkach
K=(0,-3) ,
L=(5,-8) i
M=(5,0)
jest równe
P .
Oblicz długość boku kwadratu o polu powierzchni
P .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(-2,5) i
B=(-4,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkty o współrzędnych
A=(-3,-4) i
B=(5,4) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+3
B. y=-x+1
C. y=-x+9
D. y=x+1
Zadanie 8. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Środek odcinka o końcach
(-1,-7) i
(1,-7) należy do prostej o równaniu
y+ax=-3-2a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta o równaniu
y=\frac{1}{4}x-\frac{1}{2} przecina
pod kątem prostym w punkcie
K=(6,1) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
y=5x-\sqrt{3} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{9}{2}x+5
B. f(x)=\frac{13}{2}x
C. f(x)=-5x-4
D. f(x)=\frac{11}{2}x-\frac{1}{2}x
Zadanie 11. 1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste
k:y=\frac{-6}{m-3}x+m-2 oraz
l:y=2mx+\frac{1}{m+1} spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykresy funkcji
y=(5-m)x-\frac{5}{3} i
y=4-(m+5)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. równe zero
B. liczbą niewymierną
C. liczbą wymierną
D. liczbą nieparzystą
Zadanie 13. 1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
y=\frac{p}{2}x+5 i
y=12qx-4 są prostopadłe.
Oblicz iloczyn p\cdot q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Proste o równaniach
y=-\frac{2}{a}x+1 oraz
y=(-4a+5)x-5 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11523 ⋅ Poprawnie: 492/764 [64%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
(1 pkt)
Jedna z przekątnych rombu zawiera się w prostej o równaniu
y=-\frac{1}{3}x+2 .
Druga przekątna tego rombu zawarta jest w prostej o równaniu y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż