Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« W kwadracie o wierzchołkach
ABCD punkty
K=(3,-6) i
L=(-6,4) są
środkami boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Przeciwległe wierzchołki prostokąta maja współrzędne
A=(3,-6) i
C=(-6,4) .
Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. 2\sqrt{181}\pi
B. \sqrt{362}\pi
C. \sqrt{181}\pi
D. \frac{3\sqrt{181}}{2}\pi
E. \frac{\sqrt{181}}{4}\pi
F. \frac{\sqrt{181}}{2}\pi
Zadanie 3. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
S=\left(\frac{13}{4},-6\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(-6,4) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do okręgu o środku w punkcie
S=(3,-5) i promieniu długości
8\sqrt{2} należy punkt:
Odpowiedzi:
A. (-8,1)
B. (-4,0)
C. (-6,7)
D. (-5,3)
E. (-8,4)
F. (-2,7)
Zadanie 5. 1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni trójkąta o wierzchołkach
K=(5,-5) ,
L=(10,-10) i
M=(10,-2)
jest równe
P .
Oblicz długość boku kwadratu o polu powierzchni
P .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(5,-9) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkty o współrzędnych
A=(0,-5) i
B=(8,3) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+7
B. y=-x-1
C. y=x+3
D. y=-x+3
Zadanie 8. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Proste o równaniach
\sqrt{3}x-y+1=0 i
-6y+5=0 :
Odpowiedzi:
A. przecinają się pod kątem 60^{\circ}
B. przecinają się pod kątem 30^{\circ}
C. przecinają się pod kątem 45^{\circ}
D. są prostopadłe
Zadanie 9. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(-5,\frac{1}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
-3x+y-1=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste
k:y=\frac{-8}{m-3}x+m-2 oraz
l:y=2mx+\frac{1}{m+1} spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
«Proste określone równaniami
y=mx+n i
-\frac{5}{2}x+\frac{3}{2}y+4=0
są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10833 ⋅ Poprawnie: 101/178 [56%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
y=(4-m)x-5 oraz
y=-\frac{1}{2}x+7 są prostopadłe.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Do prostej o równaniu
y=ax+b należy punkt
A=\left(\frac{1}{2}, -3\right) i prosta ta jest
prostopadła do prostej o równaniu
y=-4x-2 .
Wyznacz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x-8 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż