Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(-5,-2) i
F=(-4,1) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(-5,-2) i
C=\left(-4,\frac{1}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
S=\left(\frac{1}{4},-2\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(-4,5) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do okręgu o środku w punkcie
S=(5,3) i promieniu długości
2\sqrt{5} należy punkt:
Odpowiedzi:
A. (3,-1)
B. (1,-4)
C. (3,3)
D. (2,-2)
E. (2,-2)
F. (1,-1)
Zadanie 5. 1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni trójkąta o wierzchołkach
K=(-3,6) ,
L=(2,1) i
M=(2,9)
jest równe
P .
Oblicz długość boku kwadratu o polu powierzchni
P .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(-4,5) i
B=(-1,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prosta, do której należą punkty
A=(52,34) i
B=(38,-8)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m+12 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Do wykresu funkcji liniowej określonej wzorem
f(x)=ax+b należy punkt
P=\left(5\sqrt{11},3\right) , a jej wykres jest prostą równoleglą
do prostej o równaniu
y=-\sqrt{11}x-2 .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
y=-5x-\sqrt{12} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=-\frac{11}{2}x-1
B. f(x)=5x+3
C. f(x)=-\frac{9}{2}x-\frac{1}{2}x
D. f(x)=-\frac{7}{2}x-4
Zadanie 11. 1 pkt ⋅ Numer: pp-10820 ⋅ Poprawnie: 186/354 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wykres funkcji liniowej
h jest prostopadły do
prostej określonej równaniem
y=\frac{1}{4}x-11 i zawiera punkt
P=\left(\frac{8}{3},-3\right) .
Wyznacz miejsce zerowe funkcji h .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Wykresy funkcji
y=-4+(m-17)x i
y=(17-m)x+\frac{1}{2} są prostopadłe.
Zatem m jest:
Odpowiedzi:
A. liczbą nieparzystą
B. liczbą niewymierną
C. liczbą pierwszą
D. liczbą parzystą
Zadanie 13. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
-3y-5mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10837 ⋅ Poprawnie: 148/194 [76%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
y=-\frac{1}{4}x-2 prostopadły
jest wykres funkcji określonej wzorem
y=ax-\frac{1}{2} .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x+7 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż