Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(-3,-1) i
F=(-2,4) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(1,2) , do którego
należy punkt o współrzędnych
A=(4,4) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty
A=(-3,-1) i
B=(-2,4)
są wierzchołkami trójąta równobocznego.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-1,7) jest punkt
C=(-2,6) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty o współrzędnych
K=(4,6) oraz
L=(3,7)
są środkami dwóch sąsiednich boków kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(4,6) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x+3 i
x-y=-6 .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Środek odcinka o końcach
(4,1) i
(6,1) należy do prostej o równaniu
y+ax=5+3a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta o równaniu
y=\frac{1}{2}x+\frac{1}{2} przecina
pod kątem prostym w punkcie
K=(5,3) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykres funkcji liniowej określonej wzorem
f(x)=4x+3 jest prostą
prostopadłą do prostej o równaniu
y=mx+n .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{7}}{8}x-3 oraz
g(x)=\frac{7}{8\sqrt{7}}x-\frac{1}{2} :
Odpowiedzi:
A. są prostopadłe
B. pokrywają się
C. przecinają się, ale nie są prostopadłe
D. są równoległe i nie pokrywają się
Zadanie 12. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m-3)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Do prostej o równaniu
5x+\frac{4}{3}y+1=0 równoległa
jest prosta określona wzorem
y=......\cdot x+b .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Proste o równaniach
y=\frac{3}{a}x+7 oraz
y=(4a+2)x-1 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x+5 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż