Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-4,5) i B=(-5,0).

Zatem liczba m jest równa:

Odpowiedzi:
A. -\frac{9}{2} B. \frac{9}{2}
C. -\frac{9}{4} D. \frac{9}{4}
Zadanie 2.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(-2,6), do którego należy punkt o współrzędnych A=(-4,1) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty A=(-2,-4) i B=(5,-5) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11227 ⋅ Poprawnie: 106/251 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie S=(5,-5) jest punkt C=(-2,2). Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w ten kwadrat.
Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(0,-3), L=(5,-8) i M=(5,0) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-2,5) i B=(-4,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty o współrzędnych A=(-3,-4) i B=(5,4) są symetryczne względem prostej określonej równaniem:
Odpowiedzi:
A. y=-x+3 B. y=-x+1
C. y=-x+9 D. y=x+1
Zadanie 8.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Środek odcinka o końcach (-1,-7) i (1,-7) należy do prostej o równaniu y+ax=-3-2a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Prosta o równaniu y=\frac{1}{4}x-\frac{1}{2} przecina pod kątem prostym w punkcie K=(6,1) prostą określoną równaniem y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem y=5x-\sqrt{3} równoległy jest wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{9}{2}x+5 B. f(x)=\frac{13}{2}x
C. f(x)=-5x-4 D. f(x)=\frac{11}{2}x-\frac{1}{2}x
Zadanie 11.  1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste k:y=\frac{-6}{m-3}x+m-2 oraz l:y=2mx+\frac{1}{m+1} spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykresy funkcji y=(5-m)x-\frac{5}{3} i y=4-(m+5)x są prostopadłe.

Zatem m^2 jest:

Odpowiedzi:
A. równe zero B. liczbą niewymierną
C. liczbą wymierną D. liczbą nieparzystą
Zadanie 13.  1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Proste o równaniach y=\frac{p}{2}x+5 i y=12qx-4 są prostopadłe.

Oblicz iloczyn p\cdot q.

Odpowiedź:
p\cdot q=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Proste o równaniach y=-\frac{2}{a}x+1 oraz y=(-4a+5)x-5 są prostopadłe.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11523 ⋅ Poprawnie: 492/764 [64%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 (1 pkt) Jedna z przekątnych rombu zawiera się w prostej o równaniu y=-\frac{1}{3}x+2.

Druga przekątna tego rombu zawarta jest w prostej o równaniu y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm