Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(-6,1) i L=(-2,6) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-6,1) i C=\left(-2,3\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty A=(-6,1) i B=(-2,6) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Punkty A=(-2,-10) i B=(8,14) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=4r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(-4,2), L=(1,-3) i M=(1,5) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(-\frac{11}{2},1\right) i B=\left(-2,\frac{13}{2}\right). Przekątne tego kwadratu mogą się przecinać w punkcie:
Odpowiedzi:
A. \left(-\frac{20}{3},\frac{17}{3}\right) B. \left(-\frac{13}{2},\frac{11}{2}\right)
C. \left(-\frac{37}{6},\frac{11}{2}\right) D. \left(-\frac{13}{2},\frac{31}{6}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Symetralną odcinka o końcach A=(8,-5) i B=\left(\frac{7}{2},-5\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta o równaniu 4x-8y+16=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt P=\left(3\sqrt{7},4\right), a jej wykres jest prostą równoleglą do prostej o równaniu y=-\sqrt{7}x-4.

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Prostą równoległą do prostej o równaniu x-2y+4=0 jest prosta określona wzorem y=.....\cdot x+n.

Podaj brakującą liczbę.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wykresy funkcji liniowych f(x)=\frac{\sqrt{7}}{4}x-3 oraz g(x)=\frac{7}{4\sqrt{7}}x-\frac{1}{2}:
Odpowiedzi:
A. są prostopadłe B. są równoległe i nie pokrywają się
C. przecinają się, ale nie są prostopadłe D. pokrywają się
Zadanie 12.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 «Proste określone równaniami y=mx+n i \frac{1}{3}x+\frac{5}{4}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10833 ⋅ Poprawnie: 101/178 [56%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Proste o równaniach y=(-8-m)x-5 oraz y=-\frac{1}{4}x+\frac{17}{2} są prostopadłe.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Proste o równaniach y=-\frac{6}{a}x+5 oraz y=(2a-6)x-2 są prostopadłe.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11536 ⋅ Poprawnie: 9/21 [42%] Rozwiąż 
Podpunkt 15.1 (0.5 pkt)
 Punkty o współrzędnych A=(18,6) oraz B=(6,18) są wzajemnie symetryczne względem prostej określonej równaniem y=ax+b.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 15.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm