Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(-4,7), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(-2,8) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(-6,5), do którego należy punkt o współrzędnych A=(5,4) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=\left(\sqrt{3},5\right) i B=\left(11\sqrt{3},5\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do okręgu o środku w punkcie S=(4,5) i promieniu długości \sqrt{145} należy punkt:
Odpowiedzi:
A. (-5,-6) B. (0,-2)
C. (-3,-1) D. (-5,-8)
E. (-4,-4) F. (-6,-5)
Zadanie 5.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(2,-6) jest środkiem okręgu, a odległość punktu A=(22,15) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(\frac{13}{2},-6\right) i B=\left(5,\frac{11}{2}\right). Przekątne tego kwadratu mogą się przecinać w punkcie:
Odpowiedzi:
A. \left(0,-\frac{4}{3}\right) B. \left(\frac{1}{3},-1\right)
C. \left(-\frac{1}{6},-\frac{5}{6}\right) D. \left(0,-1\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta, do której należą punkty A=(9,33) i B=(21,57) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m-8 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt P=\left(9\sqrt{2},5\right), a jej wykres jest prostą równoleglą do prostej o równaniu y=\sqrt{2}x-7.

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem y=6x-\sqrt{2} równoległy jest wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{13}{2}x+5-\frac{1}{2}x B. f(x)=\frac{11}{2}x-3
C. f(x)=\frac{15}{2}x+4 D. f(x)=-6x+5
Zadanie 11.  1 pkt ⋅ Numer: pp-10820 ⋅ Poprawnie: 186/354 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji liniowej h jest prostopadły do prostej określonej równaniem y=\frac{1}{4}x-11 i zawiera punkt P=\left(\frac{4}{3},4\right).

Wyznacz miejsce zerowe funkcji h.

Odpowiedź:
h(x)=0\iff x=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 «Proste określone równaniami y=mx+n i -\frac{5}{6}x+\frac{2}{3}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Do prostej o równaniu -8x+\frac{4}{3}y+1=0 równoległa jest prosta określona wzorem y=......\cdot x+b.

Podaj brakującą liczbę.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10837 ⋅ Poprawnie: 148/194 [76%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem y=-\frac{1}{5}x+7 prostopadły jest wykres funkcji określonej wzorem y=ax+\frac{1}{7}.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu k:2x+\frac{3}{2}y+5=0 ma współczynnik kierunkowy a.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm