« W kwadracie o wierzchołkach ABCD punkty
K=(0,-3) i L=(-3,1) są
środkami boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%]
(1 pkt)
Obrazami punktów o współrzędnych A=(12,-12) oraz B=(-14,-6)
w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio
A' i B'.
Środek odcinka A'B' ma współrzędne S=(x_S, y_S).
Podaj współrzędne x_S i y_S.
Odpowiedzi:
x_S
=
(wpisz liczbę całkowitą)
y_S
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-3,5) jest punkt
C=(-7,1).
Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w
ten kwadrat.
Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%]
Punkt A=(-9,9) jest środkiem okręgu o promieniu
2019. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 6.1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]