Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-5,4) i F=(1,-6) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(2,-4), do którego należy punkt o współrzędnych A=(3,4) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty A=(-5,4) i B=(1,-6) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do okręgu o środku w punkcie S=(-4,3) i promieniu długości \sqrt{89} należy punkt:
Odpowiedzi:
A. (3,-9) B. (1,-5)
C. (5,-1) D. (-2,-3)
E. (2,-4) F. (4,-7)
Zadanie 5.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 118/180 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(1,-8) jest środkiem okręgu, a odległość punktu A=(21,13) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(-\frac{9}{2},4\right) i B=\left(1,-\frac{11}{2}\right). Przekątne tego kwadratu mogą się przecinać w punkcie:
Odpowiedzi:
A. \left(\frac{10}{3},2\right) B. \left(\frac{17}{6},\frac{13}{6}\right)
C. \left(3,\frac{5}{3}\right) D. \left(3,2\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta, do której należą punkty A=(-49,-3) i B=(-59,-23) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 222/443 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta o równaniu 10x-6y+30=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt P=\left(8\sqrt{3},6\right), a jej wykres jest prostą równoleglą do prostej o równaniu y=-\sqrt{3}x-1.

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11413 ⋅ Poprawnie: 830/1099 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Proste o równaniach y=(2m-20)x+12 oraz y=(m+16)x-3 są równoległe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste k:y=\frac{5}{m-3}x+m-2 oraz l:y=2mx+\frac{1}{m+1} spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Prosta o równaniu y=\frac{5}{m+2}x+4 jest prostopadła do prostej o równaniu y=-\frac{3}{2}x+3.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Do prostej k należą punkty o współrzędnych (0,0) oraz \left(2,\frac{5}{2}\right) oraz k\perp l.

Wyznacz współczynnik kierunkowy prostej l.

Odpowiedź:
a_l=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Do prostej o równaniu y=ax+b należy punkt A=\left(\frac{1}{2}, 2\right) i prosta ta jest prostopadła do prostej o równaniu y=-4x+3.

Wyznacz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=\frac{1}{7}x-1 i y=7x-2 B. y=6}x-5 i y=-6x+5
C. y=9}x-9 i y=9x+9 D. y=\frac{1}{3}x-7 i y=-3x-14


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm