Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(1,3) i B=(-5,-2).

Zatem liczba m jest równa:

Odpowiedzi:
A. 1 B. -2
C. 2 D. -1
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(2,1) i C=(3,-5). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{\sqrt{37}}{2}\pi B. \frac{\sqrt{37}}{4}\pi
C. \frac{3\sqrt{37}}{2}\pi D. 2\sqrt{37}\pi
E. \sqrt{37}\pi F. \sqrt{74}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=\left(7\sqrt{3},3\right) i B=\left(9\sqrt{3},3\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie S=(-9,-2) jest punkt C=(-4,-7).

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-4,3) jest środkiem okręgu, a odległość punktu A=(20,10) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(\frac{5}{2},1\right) i B=\left(3,-\frac{9}{2}\right). Przekątne tego kwadratu mogą się przecinać w punkcie:
Odpowiedzi:
A. \left(\frac{11}{2},-\frac{3}{2}\right) B. \left(\frac{35}{6},-\frac{3}{2}\right)
C. \left(\frac{16}{3},-\frac{4}{3}\right) D. \left(\frac{11}{2},-\frac{11}{6}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prostą k o równaniu y=4x-6 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta o równaniu 2x+2y-2=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Prosta prostopadła do prostej y=\frac{1}{2}x-1 i przechodzącą przez punkt P=\left(1,\frac{5}{2}\right) określona jest równaniem y=ax+b.

Podaj a i b.

Odpowiedzi:
a=
(wpisz liczbę całkowitą)

b=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykres funkcji liniowej określonej wzorem f(x)=x+3 jest prostą prostopadłą do prostej o równaniu y=mx+n.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wykresy funkcji liniowych f(x)=\frac{\sqrt{7}}{8}x-3 oraz g(x)=\frac{7}{8\sqrt{7}}x-\frac{1}{2}:
Odpowiedzi:
A. pokrywają się B. są prostopadłe
C. są równoległe i nie pokrywają się D. przecinają się, ale nie są prostopadłe
Zadanie 12.  1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wykresy funkcji y=(11-m)x-\frac{5}{3} i y=4-(m+11)x są prostopadłe.

Zatem m^2 jest:

Odpowiedzi:
A. liczbą wymierną B. liczbą niewymierną
C. równe zero D. liczbą nieparzystą
Zadanie 13.  1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Proste o równaniach -3y-mx+12=0 oraz y=6x-12 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Proste o równaniach y=-\frac{5}{a}x+8 oraz y=(-2a+2)x-4 są prostopadłe.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wykresy funkcji f(x)=2a+x i g(x)=-6x+1 przecinają oś Ox w dwóch różnych punktach.

Jaką liczbą nie może być a?

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm