Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(-1,6) i F=(-2,-5) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%]
» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-5,-8) jest punkt
C=(-6,-7).
Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w
ten kwadrat.
Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%]
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym
B. czworokątem
C. wycinkiem koła
D. trójkątem prostokątnym
Zadanie 7.1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt
P=\left(5\sqrt{7},-5\right), a jej wykres jest prostą równoleglą
do prostej o równaniu y=\sqrt{7}x-4.
Wyznacz współczynnik a.
Odpowiedź:
a=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Wyznacz współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 10.1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%]