Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(6,-1) i
F=(1,6) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(6,-1) i
C=\left(1,3\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(5\sqrt{3},1\right) i
B=\left(15\sqrt{3},1\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-3,5) jest punkt
C=(-6,8) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Odcinek
AB jest średnicą okręgu oraz
A=(a+2,8) i
B=(-7,b+1) .
Punkt
C=(9,-2) jest środkiem tego okręgu.
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Punkty
A=(9,-2) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(2,9)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prosta, do której należą punkty
A=(47,-24) i
B=(41,42)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Środek odcinka o końcach
(2,3) i
(4,3) należy do prostej o równaniu
y+ax=7+a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(-1,\frac{3}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
-2x-y-3=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
k:y=4m^2x-m-4 oraz
l:y=16mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykresy funkcji
y=(7-m)x-\frac{5}{3} i
y=4-(m+7)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. liczbą wymierną
B. liczbą nieparzystą
C. równe zero
D. liczbą niewymierną
Zadanie 13. 1 pkt ⋅ Numer: pp-10833 ⋅ Poprawnie: 101/178 [56%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
y=(8-m)x-5 oraz
y=\frac{1}{3}x+\frac{17}{2} są prostopadłe.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Proste o równaniach
y=\frac{3}{a}x+1 oraz
y=(-3a+3)x-5 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:2x+\frac{11}{2}y+6=0 ma współczynnik
kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż