Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt
C=(-2m,y_C) jest środkiem odcinka o końcach
A=(1,3) i
B=(-5,-2) .
Zatem liczba m jest równa:
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Przeciwległe wierzchołki prostokąta maja współrzędne
A=(2,1) i
C=(3,-5) .
Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{\sqrt{37}}{2}\pi
B. \frac{\sqrt{37}}{4}\pi
C. \frac{3\sqrt{37}}{2}\pi
D. 2\sqrt{37}\pi
E. \sqrt{37}\pi
F. \sqrt{74}\pi
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(7\sqrt{3},3\right) i
B=\left(9\sqrt{3},3\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-9,-2) jest punkt
C=(-4,-7) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(-4,3) jest środkiem okręgu, a
odległość punktu
A=(20,10) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dane są współrzędne dwóch kolejnych wierzchołków kwadratu
A=\left(\frac{5}{2},1\right) i
B=\left(3,-\frac{9}{2}\right) . Przekątne tego kwadratu mogą się przecinać
w punkcie:
Odpowiedzi:
A. \left(\frac{11}{2},-\frac{3}{2}\right)
B. \left(\frac{35}{6},-\frac{3}{2}\right)
C. \left(\frac{16}{3},-\frac{4}{3}\right)
D. \left(\frac{11}{2},-\frac{11}{6}\right)
Zadanie 7. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prostą
k o równaniu
y=4x-6 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Prosta o równaniu
2x+2y-2=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(1,\frac{5}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykres funkcji liniowej określonej wzorem
f(x)=x+3 jest prostą
prostopadłą do prostej o równaniu
y=mx+n .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{7}}{8}x-3 oraz
g(x)=\frac{7}{8\sqrt{7}}x-\frac{1}{2} :
Odpowiedzi:
A. pokrywają się
B. są prostopadłe
C. są równoległe i nie pokrywają się
D. przecinają się, ale nie są prostopadłe
Zadanie 12. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykresy funkcji
y=(11-m)x-\frac{5}{3} i
y=4-(m+11)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. liczbą wymierną
B. liczbą niewymierną
C. równe zero
D. liczbą nieparzystą
Zadanie 13. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
-3y-mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Proste o równaniach
y=-\frac{5}{a}x+8 oraz
y=(-2a+2)x-4 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x+1 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż