Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych oraz punkty
A=(5,-4) ,
B i
C są wierzchołkami trójkąta równoramiennego
o podstawie
AB , a punkt
D=(7,-3) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka
C .
Wówczas punkt
B ma współrzędne
B=(x_B, y_B) .
Wyznacz współrzędne x_B i y_B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Przeciwległe wierzchołki prostokąta maja współrzędne
A=(1,3) i
C=(-6,6) .
Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{3\sqrt{58}}{2}\pi
B. \sqrt{58}\pi
C. 2\sqrt{58}\pi
D. 2\sqrt{29}\pi
E. \frac{\sqrt{58}}{4}\pi
F. \frac{\sqrt{58}}{2}\pi
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(9\sqrt{3},-6\right) i
B=\left(19\sqrt{3},-6\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Punkty
A=(-8,-10) i
B=(-4,-7)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=5r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Odcinek
AB jest średnicą okręgu oraz
A=(a+2,8) i
B=(-7,b+1) .
Punkt
C=(1,5) jest środkiem tego okręgu.
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(1,5) i
B=(3,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkty o współrzędnych
A=(-1,1) i
B=(7,9) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+6
B. y=x+6
C. y=-x+8
D. y=x+8
Zadanie 8. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Prosta o równaniu
8x+1y-4=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Do wykresu funkcji liniowej określonej wzorem
f(x)=ax+b należy punkt
P=\left(4\sqrt{2},-2\right) , a jej wykres jest prostą równoleglą
do prostej o równaniu
y=\sqrt{2}x-5 .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
y=x-\sqrt{10} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{1}{2}x-3
B. f(x)=-x+6
C. f(x)=\frac{3}{2}x-6-\frac{1}{2}x
D. f(x)=\frac{5}{2}x-4
Zadanie 11. 1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste
k:y=\frac{4}{m-3}x+m-2 oraz
l:y=2mx+\frac{1}{m+1} spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m-3)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10833 ⋅ Poprawnie: 101/178 [56%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
y=(8-m)x-5 oraz
y=-\frac{1}{2}x+6 są prostopadłe.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-10837 ⋅ Poprawnie: 148/194 [76%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
y=\frac{1}{4}x-8 prostopadły
jest wykres funkcji określonej wzorem
y=ax-\frac{1}{8} .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x+4 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż