Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkty o współrzędnych
A=(4,9) i
C=(-11,-11) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c} , gdzie
a,b,c\in\mathbb{N} .
Podaj liczby a , b i c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Przeciwległe wierzchołki prostokąta maja współrzędne
A=(-1,4) i
C=(4,-2) .
Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \sqrt{61}\pi
B. 2\sqrt{61}\pi
C. \frac{\sqrt{61}}{2}\pi
D. \sqrt{122}\pi
E. \frac{3\sqrt{61}}{2}\pi
F. \frac{\sqrt{61}}{4}\pi
Zadanie 3. 1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty
A=(-1,4) i
B=(4,-2)
są wierzchołkami trójąta równobocznego.
Oblicz wysokość tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do okręgu o środku w punkcie
S=(-1,3) i promieniu długości
4\sqrt{2} należy punkt:
Odpowiedzi:
A. (1,0)
B. (6,-4)
C. (1,-4)
D. (7,3)
E. (-1,3)
F. (3,-1)
Zadanie 5. 1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
A=(-4,-5) jest środkiem okręgu o promieniu
2018 . Okrąg ten przekształcono przez symetrię
względem osi
Oy i otrzymano okrąg o środku w
punkcie
A_1 .
Oblicz długość odcinka AA_1 .
Odpowiedź:
|AA_1|=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(-1,5) i
B=(4,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x-1 i
x-y=-6 .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Prosta o równaniu
10x-1y+5=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Do wykresu funkcji liniowej określonej wzorem
f(x)=ax+b należy punkt
P=\left(2\sqrt{3},5\right) , a jej wykres jest prostą równoleglą
do prostej o równaniu
y=-\sqrt{3}x-5 .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
y=-x-\sqrt{11} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=-\frac{1}{2}x+4-\frac{1}{2}x
B. f(x)=-\frac{3}{2}x-5
C. f(x)=x-2
D. f(x)=\frac{1}{2}x-2
Zadanie 11. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
k:y=6m^2x-m-4 oraz
l:y=36mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Prosta o równaniu
y=\frac{5}{m+2}x+4 jest prostopadła
do prostej o równaniu
y=-\frac{3}{2}x+3 .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(1,\frac{7}{4}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:-2x+\frac{1}{15}y+1=0
ma współczynnik kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11536 ⋅ Poprawnie: 9/21 [42%]
Rozwiąż
Podpunkt 15.1 (0.5 pkt)
Punkty o współrzędnych
A=(42,14) oraz
B=(14,42)
są wzajemnie symetryczne względem prostej określonej równaniem
y=ax+b .
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 15.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż