Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(3,-6) i L=(-6,4) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(3,-6) i C=(-6,4). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. 2\sqrt{181}\pi B. \sqrt{362}\pi
C. \sqrt{181}\pi D. \frac{3\sqrt{181}}{2}\pi
E. \frac{\sqrt{181}}{4}\pi F. \frac{\sqrt{181}}{2}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt S=\left(\frac{13}{4},-6\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(-6,4).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do okręgu o środku w punkcie S=(3,-5) i promieniu długości 8\sqrt{2} należy punkt:
Odpowiedzi:
A. (-8,1) B. (-4,0)
C. (-6,7) D. (-5,3)
E. (-8,4) F. (-2,7)
Zadanie 5.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(5,-5), L=(10,-10) i M=(10,-2) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(5,-9).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty o współrzędnych A=(0,-5) i B=(8,3) są symetryczne względem prostej określonej równaniem:
Odpowiedzi:
A. y=-x+7 B. y=-x-1
C. y=x+3 D. y=-x+3
Zadanie 8.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Proste o równaniach \sqrt{3}x-y+1=0 i -6y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 60^{\circ} B. przecinają się pod kątem 30^{\circ}
C. przecinają się pod kątem 45^{\circ} D. są prostopadłe
Zadanie 9.  1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Prosta prostopadła do prostej y=\frac{1}{2}x-1 i przechodzącą przez punkt P=\left(-5,\frac{1}{2}\right) określona jest równaniem y=ax+b.

Podaj a i b.

Odpowiedzi:
a=
(wpisz liczbę całkowitą)

b=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Prostą równoległą do prostej o równaniu -3x+y-1=0 jest prosta określona wzorem y=.....\cdot x+n.

Podaj brakującą liczbę.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste k:y=\frac{-8}{m-3}x+m-2 oraz l:y=2mx+\frac{1}{m+1} spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 «Proste określone równaniami y=mx+n i -\frac{5}{2}x+\frac{3}{2}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10833 ⋅ Poprawnie: 101/178 [56%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Proste o równaniach y=(4-m)x-5 oraz y=-\frac{1}{2}x+7 są prostopadłe.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Do prostej o równaniu y=ax+b należy punkt A=\left(\frac{1}{2}, -3\right) i prosta ta jest prostopadła do prostej o równaniu y=-4x-2.

Wyznacz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wykresy funkcji f(x)=2a+x i g(x)=-6x-8 przecinają oś Ox w dwóch różnych punktach.

Jaką liczbą nie może być a?

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm