Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(-2,2) i
F=(-3,4) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
(1 pkt)
Obrazami punktów o współrzędnych
A=(-16,-28) oraz
B=(18,-30)
w symetrii środkowej względem punktu
O=(0,0) są punkty odpowiednio
A' i
B' .
Środek odcinka
A'B' ma współrzędne
S=(x_S, y_S) .
Podaj współrzędne x_S i y_S .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
S=(-2,2) jest środkiem odcinka
AC , gdzie
A=(x_A,y_A) i
C=\left(-\frac{3}{2},4\right) .
Podaj współrzędne x_A i y_A .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Punkty
A=(-3,-10) i
B=(21,-3)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=3r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
A=(-4,4) jest środkiem okręgu o promieniu
2019 . Okrąg ten przekształcono przez symetrię
względem osi
Oy i otrzymano okrąg o środku w
punkcie
A_1 .
Oblicz długość odcinka AA_1 .
Odpowiedź:
|AA_1|=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(-3,3) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prostą
k o równaniu
y=-3x+6 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m+7 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta o równaniu
y=\frac{1}{3}x-\frac{19}{3} przecina
pod kątem prostym w punkcie
K=(-5,-8) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykres funkcji liniowej określonej wzorem
f(x)=2x+3 jest prostą
prostopadłą do prostej o równaniu
y=mx+n .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste
k:y=\frac{2}{m-3}x+m-2 oraz
l:y=2mx+\frac{1}{m+1} spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m-1)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
-3y-2mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Do prostej o równaniu
y=ax+b należy punkt
A=\left(\frac{1}{2}, 1\right) i prosta ta jest
prostopadła do prostej o równaniu
y=-4x+2 .
Wyznacz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:-x-\frac{15}{2}y+4=0 ma współczynnik
kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż