Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkty o współrzędnych
A=(5,12) i
C=(11,4) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c} , gdzie
a,b,c\in\mathbb{N} .
Podaj liczby a , b i c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Punkty
A=(2,-1) ,
B=(3,2) ,
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i
D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(8\sqrt{3},5\right) i
B=\left(14\sqrt{3},5\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(6,5) jest punkt
C=(-2,-3) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Odcinek
AB jest średnicą okręgu oraz
A=(a+2,8) i
B=(-7,b+1) .
Punkt
C=(2,3) jest środkiem tego okręgu.
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Punkty
A=(2,3) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(7,2)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Symetralną odcinka o końcach
A=(2,5) i
B=\left(\frac{3}{2},5\right) jest prosta określona równaniem
x+by=c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Środek odcinka o końcach
(2,-1) i
(4,-1) należy do prostej o równaniu
y+ax=3+a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(2,\frac{5}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-11413 ⋅ Poprawnie: 830/1099 [75%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste o równaniach
y=(m-20)x+12 oraz
y=(3m+16)x-3 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10820 ⋅ Poprawnie: 186/354 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wykres funkcji liniowej
h jest prostopadły do
prostej określonej równaniem
y=\frac{1}{4}x-11 i zawiera punkt
P=\left(\frac{7}{3},3\right) .
Wyznacz miejsce zerowe funkcji h .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m-2)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
-3y-2mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
«« Wykresy funkcji określonych wzorami
f(x)=\left(-m+\frac{1}{2}\right)x+5 i
g(x)=\left(3m+4\right)x-2 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11536 ⋅ Poprawnie: 9/21 [42%]
Rozwiąż
Podpunkt 15.1 (0.5 pkt)
Punkty o współrzędnych
A=(48,16) oraz
B=(16,48)
są wzajemnie symetryczne względem prostej określonej równaniem
y=ax+b .
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 15.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż