Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-6,-1) i B=(3,-2).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{3}{2} B. -\frac{3}{2}
C. \frac{3}{4} D. -\frac{3}{4}
Zadanie 2.  1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(18,-28) oraz B=(-4,14) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę całkowitą)
y_S= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt S=(4,-6) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{1}{2},3\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie S=(-3,6) jest punkt C=(-2,5).

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(6,-5), L=(11,-10) i M=(11,-2) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(5,-9).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+5 i x-y=9.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta o równaniu -16x+5y+40=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt P=\left(5\sqrt{2},3\right), a jej wykres jest prostą równoleglą do prostej o równaniu y=\sqrt{2}x-3.

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem y=4x-\sqrt{2} równoległy jest wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{7}{2}x+6 B. f(x)=\frac{9}{2}x-1-\frac{1}{2}x
C. f(x)=\frac{11}{2}x-2 D. f(x)=-4x+3
Zadanie 11.  1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste k:y=\frac{-8}{m-3}x+m-2 oraz l:y=2mx+\frac{1}{m+1} spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 «Proste określone równaniami y=mx+n i -\frac{5}{4}x+\frac{2}{3}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Proste o równaniach -3y+6mx+12=0 oraz y=6x-12 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu k:x+\frac{1}{7}y-2=0 ma współczynnik kierunkowy a.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=\frac{1}{8}x-1 i y=-8x-2 B. y=5}x-9 i y=-5x+9
C. y=\frac{1}{5}x-7 i y=5x-14 D. y=9}x-5 i y=9x+5


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm