Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych oraz punkty
A=(4,-1) ,
B i
C są wierzchołkami trójkąta równoramiennego
o podstawie
AB , a punkt
D=(6,0) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka
C .
Wówczas punkt
B ma współrzędne
B=(x_B, y_B) .
Wyznacz współrzędne x_B i y_B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Punkty
A=(2,-1) ,
B=(3,2) ,
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i
D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
S=\left(\frac{13}{4},6\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(2,-5) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Obwód
L rombu o sąsiednich wierzchołkach
A=(4,8) i
B=(3,-7)
spełnia nierówność
m\leqslant L\lessdot m+1 , gdzie
m\in\mathbb{Z} .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Odcinek
AB jest średnicą okręgu oraz
A=(a+2,8) i
B=(-7,b+1) .
Punkt
C=(5,4) jest środkiem tego okręgu.
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Punkty
A=(4,8) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(3,-7)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prostą
k o równaniu
y=2x-6 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Środek odcinka o końcach
(4,-1) i
(6,-1) należy do prostej o równaniu
y+ax=3+3a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(2,\frac{1}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-11413 ⋅ Poprawnie: 830/1099 [75%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste o równaniach
y=(2m-20)x+12 oraz
y=(-2m+16)x-3 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{10}}{7}x-3 oraz
g(x)=\frac{10}{7\sqrt{10}}x-\frac{1}{2} :
Odpowiedzi:
A. są równoległe i nie pokrywają się
B. pokrywają się
C. są prostopadłe
D. przecinają się, ale nie są prostopadłe
Zadanie 12. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykresy funkcji
y=(11-m)x-\frac{5}{3} i
y=4-(m+11)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. liczbą niewymierną
B. liczbą wymierną
C. równe zero
D. liczbą nieparzystą
Zadanie 13. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Proste o równaniach
-3y-2mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10837 ⋅ Poprawnie: 148/194 [76%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
y=\frac{1}{4}x-4 prostopadły
jest wykres funkcji określonej wzorem
y=ax-\frac{1}{4} .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10840 ⋅ Poprawnie: 50/95 [52%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:x-\frac{15}{2}y=0 ma współczynnik
kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż