Podgląd testu : lo2@sp-15-geom-analit-1-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« W kwadracie o wierzchołkach
ABCD punkty
K=(2,-6) i
L=(-1,1) są
środkami boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(2,-6) i
C=\left(-1,\frac{1}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(\sqrt{3},-1\right) i
B=\left(9\sqrt{3},-1\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Obwód
L rombu o sąsiednich wierzchołkach
A=(3,-8) i
B=(-1,2)
spełnia nierówność
m\leqslant L\lessdot m+1 , gdzie
m\in\mathbb{Z} .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(-3,-1) jest środkiem okręgu, a
odległość punktu
A=(5,14) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(2,5) i
B=(-6,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Symetralną odcinka o końcach
A=(-6,6) i
B=\left(-\frac{3}{2},6\right) jest prosta określona równaniem
x+by=c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m-1 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Prosta równoległa do prostej o równaniu
y=3x+\frac{1}{2} i
zawiera punkt
P=\left(5\sqrt{2},-5+5\sqrt{2}\right)
i określona jest ma równaniem
y=ax+b .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
-3x+y-3=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{7}}{10}x-3 oraz
g(x)=\frac{7}{10\sqrt{7}}x-\frac{1}{2} :
Odpowiedzi:
A. są prostopadłe
B. pokrywają się
C. są równoległe i nie pokrywają się
D. przecinają się, ale nie są prostopadłe
Zadanie 12. 1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Prosta o równaniu
y=\frac{-8}{m+2}x+4 jest prostopadła
do prostej o równaniu
y=-\frac{3}{2}x+3 .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Do prostej o równaniu
-8x+\frac{4}{3}y+1=0 równoległa
jest prosta określona wzorem
y=......\cdot x+b .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
«« Wykresy funkcji określonych wzorami
f(x)=\left(-m+\frac{5}{2}\right)x+5 i
g(x)=\left(3m+10\right)x-2 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11523 ⋅ Poprawnie: 492/764 [64%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
(1 pkt)
Jedna z przekątnych rombu zawiera się w prostej o równaniu
y=\frac{5}{2}x+7 .
Druga przekątna tego rombu zawarta jest w prostej o równaniu y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż