» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%]
Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(\frac{11}{2},5\right) i
B=\left(4,-\frac{3}{2}\right). Przekątne tego kwadratu mogą się przecinać
w punkcie:
Odpowiedzi:
A.\left(8,1\right)
B.\left(\frac{47}{6},\frac{7}{6}\right)
C.\left(\frac{25}{3},1\right)
D.\left(8,\frac{2}{3}\right)
Zadanie 3.1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
« Dana jest funkcja liniowa f(x)=2x-11.
Wyznacz wzór funkcji liniowej g(x)=ax+b,
której wykres jest równoległy do wykresu funkcji f
i do której należy punkt M=(8,-27).
Podaj współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%]
» Punkt K=(2,12) jest środkiem odcinka
PQ. Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q, wiedząc, że
P=(-4,0).
Zapisz równanie prostej k w postaci kierunkowej
y=ax+b.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat