Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(1,2) , do którego
należy punkt o współrzędnych
A=(-5,-6) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Obwód
L rombu o sąsiednich wierzchołkach
A=(3,1) i
B=(2,-7)
spełnia nierówność
m\leqslant L\lessdot m+1 , gdzie
m\in\mathbb{Z} .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x+2 i
x-y=7 .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m-1)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:x-\frac{2}{11}y-6=0
ma współczynnik kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(3,1) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(4,0) i jest nachylona do osi
Ox pod kątem o mierze
120^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(3,1) i
B=(2,-6) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dana jest prosta
k o równaniu
-x-3y+7=0 oraz punkt
P=(10,1) . Wyznacz równanie prostej
l równoległej do prostej
k
i przechodzącej przez punkt
P . Zapisz równanie
prostej
l w postaci kierunkowej
y=a_1x+b_1 .
Podaj b_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Okrąg o środku
S=(x_S,y_S) przechodzi przez
punkty
A=(3,0) ,
B=(5,6) i
C=(-5,12) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż