Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
S=(-1,3) jest środkiem odcinka
AC , gdzie
A=(x_A,y_A) i
C=\left(-\frac{5}{2},5\right) .
Podaj współrzędne x_A i y_A .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11227 ⋅ Poprawnie: 106/251 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-4,-6) jest punkt
C=(-5,-7) .
Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w
ten kwadrat.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prostą
k o równaniu
y=-6x+7 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
-x+2y-3=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:x+\frac{1}{15}y=0
ma współczynnik kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-2,5) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(-5+\sqrt{6},-1+2\sqrt{2}) i jest nachylona do osi
Ox pod kątem o mierze
150^{\circ} .
Podaj a .
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x-5 oraz
m+x+2y-10=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dane są punkty o współrzędnych
A=(-8,-1) ,
B=(-10,3) i
C=(-6,4) .
Prosta
k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB . Wyznacz równanie prostej
k .
Podaj m+n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Punkty
A=(12,0) i
B=(0,12)
należą do wykresu funkcji liniowej
f(x)=(3m-2k)x+2k+m
Podaj k+m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Napisz równanie proporcjonalności prostej, której wykres jest równoległy
do wykresu funkcji
f .
Podaj współczynnik tej proporcjonalności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Wyznacz miejsce zerowe funkcji
g(x)=f(2x+1)-3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż