Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych oraz punkty
A=(4,8) ,
B i
C są wierzchołkami trójkąta równoramiennego
o podstawie
AB , a punkt
D=(6,9) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka
C .
Wówczas punkt
B ma współrzędne
B=(x_B, y_B) .
Wyznacz współrzędne x_B i y_B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
«« Punkty
A=(-2,-4) i
B=(46,16)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=3r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x-9 i
x-y=-3 .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(2,\frac{5}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=7}x-6 i y=7x+6
B. y=9}x-9 i y=-9x+9
C. y=\frac{1}{9}x-4 i y=9x-8
D. y=\frac{1}{3}x-6 i y=-3x-12
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-9,3) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(5,4) i jest nachylona do osi
Ox pod kątem o mierze
120^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x-20 oraz
m+x+2y-5=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dane są punkty o współrzędnych
A=(-3,3) ,
B=(-9,-8) i
C=(-9,-2) .
Prosta
k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB . Wyznacz równanie prostej
k .
Podaj m+n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest punkt
A=(-16,15) oraz prosta
k o równaniu
y=3x-1 ,
która jest symetralną odcinka
AB . Wyznacz punkt
B=(x_B,y_B) .
Podaj x_B .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż