Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Przeciwległe wierzchołki prostokąta maja współrzędne
A=(-1,2) i
C=(3,4) .
Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{\sqrt{5}}{2}\pi
B. 2\sqrt{10}\pi
C. 4\sqrt{5}\pi
D. \sqrt{5}\pi
E. 3\sqrt{5}\pi
F. 2\sqrt{5}\pi
Zadanie 2. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
S=(-2,-1) jest środkiem okręgu, a
odległość punktu
A=(4,7) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Środek odcinka o końcach
(-2,-2) i
(0,-2) należy do prostej o równaniu
y+ax=2-3a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{7}}{8}x-3 oraz
g(x)=\frac{7}{8\sqrt{7}}x-\frac{1}{2} :
Odpowiedzi:
A. pokrywają się
B. są prostopadłe
C. są równoległe i nie pokrywają się
D. przecinają się, ale nie są prostopadłe
Zadanie 5. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Proste o równaniach
-3y-mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(3p^2+6p+4, 3-m) oraz
B=(p+2,2m-1) są symetryczne względem osi
Ox .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(1-2\sqrt{3},1 ) i jest nachylona do osi
Ox pod kątem o mierze
60^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(-4,1) i
B=(-6,-4) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dana jest prosta
k o równaniu
-x+7y+4=0 oraz punkt
P=(1,1) . Wyznacz równanie prostej
l równoległej do prostej
k
i przechodzącej przez punkt
P . Zapisz równanie
prostej
l w postaci kierunkowej
y=a_1x+b_1 .
Podaj b_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
K=(-1,5) jest środkiem odcinka
PQ . Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q , wiedząc, że
P=(-7,-7) .
Zapisz równanie prostej
k w postaci kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż