« W kwadracie o wierzchołkach ABCD punkty
K=(6,0) i L=(3,-2) są
środkami boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%]
« Dana jest prosta k o równaniu
2x-5y+8=0 oraz punkt
P=(7,1). Wyznacz równanie prostej
l równoległej do prostej k
i przechodzącej przez punkt P. Zapisz równanie
prostej l w postaci kierunkowej
y=a_1x+b_1.
Podaj b_1.
Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pp-30192 ⋅ Poprawnie: 10/72 [13%]
« Wektor \overrightarrow{CD}=[-3,-3] wyznacza
bok prostokąta ABCD, w którym
C=(7,3). Wiadomo ponadto, że
A\in k:y=\frac{1}{2}x-\frac{7}{2}.
Wyznacz równanie prostej AC:x+by+c=0.
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Wyznacz równanie prostej BD:x+by+c=0.
Podaj b+c.
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat