Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych oraz punkty
A=(-4,1) ,
B i
C są wierzchołkami trójkąta równoramiennego
o podstawie
AB , a punkt
D=(-2,2) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka
C .
Wówczas punkt
B ma współrzędne
B=(x_B, y_B) .
Wyznacz współrzędne x_B i y_B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Obwód
L rombu o sąsiednich wierzchołkach
A=(3,-8) i
B=(-1,7)
spełnia nierówność
m\leqslant L\lessdot m+1 , gdzie
m\in\mathbb{Z} .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Proste o równaniach
x-y+3=0 i
-7y+5=0 :
Odpowiedzi:
A. przecinają się pod kątem 30^{\circ}
B. przecinają się pod kątem 45^{\circ}
C. są prostopadłe
D. są równoległe
Zadanie 4. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Proste o równaniach
k:y=2m^2x-m-4 oraz
l:y=4mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Proste o równaniach
y=\frac{p}{2}x+6 i
y=14qx-1 są prostopadłe.
Oblicz iloczyn p\cdot q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(3,-8) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Punkty
A=(-6,2) i
B=(-5,3) należą do prostej
określonej równaniem
y=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(2,-7) i
B=(-1,6) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Proste o równaniach
2x-2y-7=0 i
y=\frac{m+4}{2}x-7 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Punkty
A=(4,0) i
B=(0,12)
należą do wykresu funkcji liniowej
f(x)=(3m-2k)x+2k+m
Podaj k+m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Napisz równanie proporcjonalności prostej, której wykres jest równoległy
do wykresu funkcji
f .
Podaj współczynnik tej proporcjonalności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Wyznacz miejsce zerowe funkcji
g(x)=f(2x+1)-3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż