Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(-5,1) i
C=\left(6,-\frac{3}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
«« Punkty
A=(-7,1) i
B=(5,36)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=5r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta, do której należą punkty
A=(19,53) i
B=(-37,-3)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{7}}{10}x-3 oraz
g(x)=\frac{7}{10\sqrt{7}}x-\frac{1}{2} :
Odpowiedzi:
A. pokrywają się
B. są równoległe i nie pokrywają się
C. przecinają się, ale nie są prostopadłe
D. są prostopadłe
Zadanie 5. 1 pkt ⋅ Numer: pp-11536 ⋅ Poprawnie: 9/21 [42%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Punkty o współrzędnych
A=(18,6) oraz
B=(6,18)
są wzajemnie symetryczne względem prostej określonej równaniem
y=ax+b .
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-8,2) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(1-2\sqrt{3},10 ) i jest nachylona do osi
Ox pod kątem o mierze
60^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(-7,2) i
B=(7,-4) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dane są punkty o współrzędnych
A=(-2,5) ,
B=(-9,8) i
C=(5,6) .
Prosta
k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB . Wyznacz równanie prostej
k .
Podaj m+n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30190 ⋅ Poprawnie: 20/166 [12%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(-2,2) jest wierzchołkiem trójkąta
ABC , w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1] .
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0 .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż