Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt
C=(-2m,y_C) jest środkiem odcinka o końcach
A=(-1,-1) i
B=(-6,-3) .
Zatem liczba m jest równa:
Odpowiedzi:
A. -\frac{7}{4}
B. -\frac{7}{2}
C. \frac{7}{2}
D. \frac{7}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni trójkąta o wierzchołkach
K=(1,-5) ,
L=(6,-10) i
M=(6,-2)
jest równe
P .
Oblicz długość boku kwadratu o polu powierzchni
P .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta o równaniu
-14x-1y-7=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{5}}{6}x-3 oraz
g(x)=\frac{5}{6\sqrt{5}}x-\frac{1}{2} :
Odpowiedzi:
A. są równoległe i nie pokrywają się
B. pokrywają się
C. są prostopadłe
D. przecinają się, ale nie są prostopadłe
Zadanie 5. 1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:2x-\frac{2}{15}y+3=0
ma współczynnik kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-1,-8) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Punkty
A=(-6,0) i
B=(-5,1) należą do prostej
określonej równaniem
y=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x-5 oraz
m+x+2y-10=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Proste o równaniach
-x-2y-4=0 i
y=\frac{m+4}{2}x-7 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(5,-1) jest wierzchołkiem trójkąta
ABC , w którym dwie wysokości zawierają się w prostych
o równaniach
9x-6y+24=0 i
-11x-4y-24=0 . Wyznacz równanie
y=ax+b boku
BC tego
trójkąta.
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż