Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym
B. czworokątem
C. trójkątem prostokątnym
D. wycinkiem koła
Zadanie 3.1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
« Dane są punkty o współrzędnych A=(-1,3),
B=(-6,1) i C=(-8,-1).
Prosta k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB. Wyznacz równanie prostej
k.
Podaj m+n.
Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pp-30190 ⋅ Poprawnie: 20/166 [12%]
«« Punkt A=(-3,-3) jest wierzchołkiem trójkąta
ABC, w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1].
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat