Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(4,3) i B=(3,6).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{7}{2} B. -\frac{7}{2}
C. \frac{7}{4} D. -\frac{7}{4}
Zadanie 2.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=(-4,2) jest środkiem okręgu, a odległość punktu A=(44,22) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach x-y+\frac{4}{5}=0 i -6y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ} B. są prostopadłe
C. przecinają się pod kątem 30^{\circ} D. przecinają się pod kątem 60^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%] Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt P=\left(4\sqrt{7},4\right), a jej wykres jest prostą równoleglą do prostej o równaniu y=\sqrt{7}x-1.

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10837 ⋅ Poprawnie: 148/194 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji określonej wzorem y=\frac{1}{3}x+4 prostopadły jest wykres funkcji określonej wzorem y=ax+\frac{1}{4}.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(-1,6).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Punkty A=(4,6) i B=(5,7) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(-1,5) i B=(4,4).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(-7,-5), B=(-5,-10) i C=(0,4). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Punkty A=(4,0) i B=(0,20) należą do wykresu funkcji liniowej f(x)=(3m-2k)x+2k+m

Podaj k+m.

Odpowiedź:
k+m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Napisz równanie proporcjonalności prostej, której wykres jest równoległy do wykresu funkcji f.

Podaj współczynnik tej proporcjonalności.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Wyznacz miejsce zerowe funkcji g(x)=f(2x+1)-3.
Odpowiedź:
g(x)=0\iff x=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm