Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(2,-5) i B=(-3,4) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(1,4).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=(0,-4) i B=(8,4) są symetryczne względem prostej określonej równaniem:
Odpowiedzi:
A. y=x B. y=-x+4
C. y=-x+6 D. y=x+4
Zadanie 4.  1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste k:y=\frac{4}{m-3}x+m-2 oraz l:y=2mx+\frac{1}{m+1} spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do prostej o równaniu 4x+\frac{4}{3}y+1=0 równoległa jest prosta określona wzorem y=......\cdot x+b.

Podaj brakującą liczbę.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(1,4).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(6,2) i jest nachylona do osi Ox pod kątem o mierze 120^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(1,4) i B=(4,-6).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(-6,2), B=(-1,-10) i C=(0,8). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30188 ⋅ Poprawnie: 25/78 [32%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt P=(-3,5) jest środkiem boku AB trójkąta ABC, w którym: A=(-10,-1) i \overrightarrow{BC}=[-8,4]. Wyznacz równanie boku AC tego trójkąta i zapisz go w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm