Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty o współrzędnych K=(10,8) oraz L=(6,3) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Symetralną odcinka o końcach A=(9,4) i B=\left(\frac{7}{2},4\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «Proste określone równaniami y=mx+n i \frac{4}{5}x+\frac{1}{3}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11536 ⋅ Poprawnie: 9/21 [42%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Punkty o współrzędnych A=(72,24) oraz B=(24,72) są wzajemnie symetryczne względem prostej określonej równaniem y=ax+b.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Punkty A=(5,7) i B=(6,8) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(8,6) i B=(5,2).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(-6,-5), B=(4,-9) i C=(-2,-9). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30190 ⋅ Poprawnie: 20/166 [12%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Punkt A=(7,5) jest wierzchołkiem trójkąta ABC, w którym \overrightarrow{AB}=[7,3] i \overrightarrow{BC}=[-6,1]. Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt C i zapisz je w postaci ax+y+c=0.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm