Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(1,4) , do którego
należy punkt o współrzędnych
A=(4,-6) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni trójkąta o wierzchołkach
K=(4,2) ,
L=(9,-3) i
M=(9,5)
jest równe
P .
Oblicz długość boku kwadratu o polu powierzchni
P .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=(-4,0) i
B=(4,8) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=x+4
B. y=-x+8
C. y=-x+4
D. y=-x+6
Zadanie 4. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykresy funkcji
y=(11-m)x-\frac{5}{3} i
y=4-(m+11)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. równe zero
B. liczbą niewymierną
C. liczbą nieparzystą
D. liczbą wymierną
Zadanie 5. 1 pkt ⋅ Numer: pp-10837 ⋅ Poprawnie: 148/194 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Do wykresu funkcji określonej wzorem
y=\frac{1}{4}x+5 prostopadły
jest wykres funkcji określonej wzorem
y=ax+\frac{1}{5} .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(3p^2+6p+4, 3-m) oraz
B=(p+2,2m-1) są symetryczne względem osi
Ox .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(1-2\sqrt{3},8 ) i jest nachylona do osi
Ox pod kątem o mierze
60^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(3,2) i
B=(5,5) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dana jest prosta
k o równaniu
-2x-6y-6=0 oraz punkt
P=(9,2) . Wyznacz równanie prostej
l równoległej do prostej
k
i przechodzącej przez punkt
P . Zapisz równanie
prostej
l w postaci kierunkowej
y=a_1x+b_1 .
Podaj b_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30190 ⋅ Poprawnie: 20/166 [12%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(4,2) jest wierzchołkiem trójkąta
ABC , w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1] .
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0 .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż