Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(6,6) i
B=(1,4)
są wierzchołkami trójąta równobocznego.
Oblicz wysokość tego trójkąta.
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(2,6) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m-9 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Proste o równaniach
k:y=7m^2x-m-4 oraz
l:y=49mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10836 ⋅ Poprawnie: 93/138 [67%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Prostą prostopadłą do wykresu funkcji
y=8x+8 jest prosta określona równaniem
y=ax+\frac{1}{8}
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(2,6) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(8,0) i jest nachylona do osi
Ox pod kątem o mierze
120^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x+16 oraz
m+x+2y-17=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Proste o równaniach
3x+3y-3=0 i
y=\frac{m+4}{2}x+5 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30190 ⋅ Poprawnie: 20/166 [12%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(3,4) jest wierzchołkiem trójkąta
ABC , w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1] .
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0 .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż