Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(-2,-1) i C=\left(-4,3\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(\frac{5}{2},-6\right) i B=\left(-6,\frac{13}{2}\right). Przekątne tego kwadratu mogą się przecinać w punkcie:
Odpowiedzi:
A. \left(-8,-\frac{13}{3}\right) B. \left(-\frac{49}{6},-\frac{23}{6}\right)
C. \left(-\frac{23}{3},-4\right) D. \left(-8,-4\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach x-y+1=0 i -7y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ} B. są równoległe
C. przecinają się pod kątem 30^{\circ} D. przecinają się pod kątem 60^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Prosta o równaniu y=\frac{1}{4}x-\frac{5}{4} przecina pod kątem prostym w punkcie K=(-3,-2) prostą określoną równaniem y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu k:x+\frac{1}{3}y-2=0 ma współczynnik kierunkowy a.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(3,-8).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Prosta o równaniu y=ax+b przechodzi przez punkt P=(5-2\sqrt{3},3 ) i jest nachylona do osi Ox pod kątem o mierze 60^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x+4 oraz m+x+2y-13=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dana jest prosta k o równaniu 9x+10y-10=0 oraz punkt P=(4,2). Wyznacz równanie prostej l równoległej do prostej k i przechodzącej przez punkt P. Zapisz równanie prostej l w postaci kierunkowej y=a_1x+b_1.

Podaj b_1.

Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt K=(3,7) jest środkiem odcinka PQ. Wyznacz równanie prostej k prostopadłej do odcinka PQ i przechodzącej przez punkt Q, wiedząc, że P=(-3,-5). Zapisz równanie prostej k w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm