Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(6,-1) i B=(-4,-3) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(\frac{1}{2},-6\right) i B=\left(3,\frac{3}{2}\right). Przekątne tego kwadratu mogą się przecinać w punkcie:
Odpowiedzi:
A. \left(-2,-\frac{4}{3}\right) B. \left(-\frac{5}{3},-1\right)
C. \left(-\frac{13}{6},-\frac{5}{6}\right) D. \left(-2,-1\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x-9 i x-y=-6.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10820 ⋅ Poprawnie: 186/354 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Wykres funkcji liniowej h jest prostopadły do prostej określonej równaniem y=\frac{1}{4}x-11 i zawiera punkt P=\left(2,3\right).

Wyznacz miejsce zerowe funkcji h.

Odpowiedź:
h(x)=0\iff x=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=\frac{1}{3}x-5 i y=-3x-10 B. y=3}x-8 i y=-3x+8
C. y=6}x-3 i y=6x+3 D. y=\frac{1}{8}x-7 i y=8x-14
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(6,4).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(2+\sqrt{6},-5+2\sqrt{2}) i jest nachylona do osi Ox pod kątem o mierze 150^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x-17 oraz m+x+2y-6=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(1,-4), B=(-7,10) i C=(-6,0). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Okrąg o środku S=(x_S,y_S) przechodzi przez punkty A=(4,1), B=(6,7) i C=(-4,13).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm