Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(1,-2) , do którego
należy punkt o współrzędnych
A=(4,5) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
S=(-4,2) jest środkiem okręgu, a
odległość punktu
A=(44,22) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Symetralną odcinka o końcach
A=(-4,5) i
B=\left(\frac{5}{2},5\right) jest prosta określona równaniem
x+by=c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Prosta o równaniu
y=\frac{1}{3}x-\frac{1}{3} przecina
pod kątem prostym w punkcie
K=(7,2) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x+5 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(3p^2+6p+4, 3-m) oraz
B=(p+2,2m-1) są symetryczne względem osi
Ox .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Punkty
A=(4,8) i
B=(5,9) należą do prostej
określonej równaniem
y=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(7,2) i
B=(-3,5) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dana jest funkcja liniowa
f(x)=2x-11 .
Wyznacz wzór funkcji liniowej
g(x)=ax+b ,
której wykres jest równoległy do wykresu funkcji
f
i do której należy punkt
M=(6,-19) .
Podaj współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Punkty
A=(21,0) i
B=(0,21)
należą do wykresu funkcji liniowej
f(x)=(3m-2k)x+2k+m
Podaj k+m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Napisz równanie proporcjonalności prostej, której wykres jest równoległy
do wykresu funkcji
f .
Podaj współczynnik tej proporcjonalności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Wyznacz miejsce zerowe funkcji
g(x)=f(2x+1)-3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż