Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(-4,-2) , do którego
należy punkt o współrzędnych
A=(-2,-6) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni trójkąta o wierzchołkach
K=(-2,7) ,
L=(3,2) i
M=(3,10)
jest równe
P .
Oblicz długość boku kwadratu o polu powierzchni
P .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=(-5,3) i
B=(3,11) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+6
B. y=-x+4
C. y=x+12
D. y=x+6
Zadanie 4. 1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wykresy funkcji
y=-4+(m-17)x i
y=(17-m)x+\frac{1}{2} są prostopadłe.
Zatem m jest:
Odpowiedzi:
A. liczbą nieparzystą
B. liczbą pierwszą
C. liczbą niewymierną
D. liczbą parzystą
Zadanie 5. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Proste o równaniach
y=\frac{2}{a}x+3 oraz
y=(-6a-4)x-3 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-6,9) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(2+\sqrt{6},-5+2\sqrt{2}) i jest nachylona do osi
Ox pod kątem o mierze
150^{\circ} .
Podaj a .
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x-14 oraz
m+x+2y-7=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dane są punkty o współrzędnych
A=(-10,-4) ,
B=(-1,10) i
C=(7,4) .
Prosta
k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB . Wyznacz równanie prostej
k .
Podaj m+n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(4,3) jest wierzchołkiem trójkąta
ABC , w którym dwie wysokości zawierają się w prostych
o równaniach
9x-6y+57=0 i
-11x-4y-19=0 . Wyznacz równanie
y=ax+b boku
BC tego
trójkąta.
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż