Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(-5,-5) , do którego
należy punkt o współrzędnych
A=(-1,-2) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-6,-9) jest punkt
C=(8,5) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prostą
k o równaniu
y=-6x+1 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«Proste określone równaniami
y=mx+n i
2x+\frac{1}{4}y+4=0
są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=3}x-6 i y=3x+6
B. y=\frac{1}{4}x-1 i y=4x-2
C. y=\frac{1}{9}x-5 i y=-9x-10
D. y=9}x-8 i y=-9x+8
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-6,-8) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(-5-2\sqrt{3},10 ) i jest nachylona do osi
Ox pod kątem o mierze
60^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Prosta o równaniu
ax+y+c=0 przechodzi przez punkty
A=\left(3,10) i
B=\left(4,13\right) .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Dana jest funkcja liniowa
f(x)=2x-11 .
Wyznacz wzór funkcji liniowej
g(x)=ax+b ,
której wykres jest równoległy do wykresu funkcji
f
i do której należy punkt
M=(8,-12) .
Podaj współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
K=(-7,14) jest środkiem odcinka
PQ . Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q , wiedząc, że
P=(-13,2) .
Zapisz równanie prostej
k w postaci kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż