Podgląd testu : lo2@sp-15-geom-analit-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(-6,-4) i
C=\left(4,\frac{3}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11227 ⋅ Poprawnie: 106/251 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(4,3) jest punkt
C=(9,-2) .
Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w
ten kwadrat.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Proste o równaniach
\frac{\sqrt{3}}{3}x-y+2=0 i
-6y+5=0 :
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ}
B. przecinają się pod kątem 30^{\circ}
C. są prostopadłe
D. są równoległe
Zadanie 4. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykresy funkcji
y=(5-m)x-\frac{5}{3} i
y=4-(m+5)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. liczbą nieparzystą
B. równe zero
C. liczbą niewymierną
D. liczbą wymierną
Zadanie 5. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(-6,\frac{5}{2}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-9,-6) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(-3+\sqrt{6},3+2\sqrt{2}) i jest nachylona do osi
Ox pod kątem o mierze
150^{\circ} .
Podaj a .
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(-8,-5) i
B=(5,4) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Proste o równaniach
-5x-4y-2=0 i
y=\frac{m+4}{2}x+4 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Punkty
A=(6,0) i
B=(0,24)
należą do wykresu funkcji liniowej
f(x)=(3m-2k)x+2k+m
Podaj k+m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Napisz równanie proporcjonalności prostej, której wykres jest równoległy
do wykresu funkcji
f .
Podaj współczynnik tej proporcjonalności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Wyznacz miejsce zerowe funkcji
g(x)=f(2x+1)-3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż