Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(-5,-3) i F=(1,-6) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%]
Punkt A=(-11,-7) jest środkiem okręgu o promieniu
2021. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
« Dane są punkty o współrzędnych A=(-4,-10),
B=(2,2) i C=(-2,2).
Prosta k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB. Wyznacz równanie prostej
k.
Podaj m+n.
Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pp-30192 ⋅ Poprawnie: 10/72 [13%]
« Wektor \overrightarrow{CD}=[-3,-3] wyznacza
bok prostokąta ABCD, w którym
C=(-3,2). Wiadomo ponadto, że
A\in k:y=\frac{1}{2}x+\frac{1}{2}.
Wyznacz równanie prostej AC:x+by+c=0.
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Wyznacz równanie prostej BD:x+by+c=0.
Podaj b+c.
Odpowiedź:
b+c=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat