Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(3,2) i
C=\left(-2,-\frac{5}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Proste o równaniach
\sqrt{3}x-y+\frac{2}{5}=0 i
-2y+5=0 :
Odpowiedzi:
A. są równoległe
B. są prostopadłe
C. przecinają się pod kątem 60^{\circ}
D. przecinają się pod kątem 45^{\circ}
Zadanie 3. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Proste o równaniach
k:y=6m^2x-m-4 oraz
l:y=36mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Proste o równaniach
y=\frac{3}{a}x+1 oraz
y=(2a-2)x-4 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10218 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(5,6) jest środkiem okręgu, a do tego okręgu
należy punkt o współrzędnych
(2,2) . Okrąg ten opisany jest
równaniem
(x-a)^2+(y-b)^2=r^2 , gdzie
r > 0 .
Podaj liczby a , b i
r .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(4,3) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
2x-(2m-7)y+2m+1=0 przecina prostą
(2m-7)x+y-m+\frac{5}{2}=0 w punkcie
P=(0, y_0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla
której proste mx+(3-m)y+m^2=0 oraz
(m+1)x+3my+6=0 są równoległe. Oblicz
100\cdot m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Okrąg
o:x^2+y^2+ax+by+c=0 ma środek
w punkcie
S=(0,0) i przechodzi przez
punkt
A=(6,6) .
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» W prostokącie
ABCD dane są:
C=(4,3) ,
\overrightarrow{AB}=[4,4] oraz prosta
y=x-7 , do której należy wierzchołek
A tego prostokąta. Wyznacz równanie
przekątnej
AC:y=cx+d .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż