Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-5,9) jest punkt
C=(2,2) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x+3 i
x-y=-7 .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji liniowej określonej wzorem
f(x)=5x+3 jest prostą
prostopadłą do prostej o równaniu
y=mx+n .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(6,\frac{7}{3}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10204 ⋅ Poprawnie: 4/3 [133%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(1,-2) jest środkiem okręgu, do którego
należy punkt
P=(7,-2) . Okrąg ten ma równanie
x^2+y^2+ax+by+c=0 .
Podaj wartości parametrów a , b i
c .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(3p^2+6p+4, 3-m) oraz
B=(p+2,2m-1) są symetryczne względem osi
Ox .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x+4 oraz
m+x+2y-13=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Proste o równaniach
3x-2y-1=0 i
y=\frac{m+4}{2}x+8 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20382 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dany jest okrąg
o:x^2+y^2+(-8-2\sqrt{3}),x+0y+10+8\sqrt{3}=0 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz środek
S=(x_s,y_s) tego okręgu.
Podaj x_s+y_s .
Odpowiedź:
x_s+y_s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30187 ⋅ Poprawnie: 17/65 [26%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkty
K=(-1,0) oraz
L
są środkami boków odpowiednio
AC i
BC trójkata
ABC .
Wiadomo, że
\overrightarrow{AK}=[1,6] oraz
\overrightarrow{KL}=[8,4] . Wyznacz równanie
boku
AB tego trójkąta i zapisz go w postaci
kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż