Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 387/618 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(5,-1) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty o współrzędnych
A=(0,-2) i
B=(8,6) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+6
B. y=-x+2
C. y=-x+4
D. y=x+6
Zadanie 3. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{7}}{10}x-3 oraz
g(x)=\frac{7}{10\sqrt{7}}x-\frac{1}{2} :
Odpowiedzi:
A. przecinają się, ale nie są prostopadłe
B. są prostopadłe
C. są równoległe i nie pokrywają się
D. pokrywają się
Zadanie 4. 1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do prostej o równaniu
y=ax+b należy punkt
A=\left(\frac{1}{2}, -1\right) i prosta ta jest
prostopadła do prostej o równaniu
y=-4x .
Wyznacz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10216 ⋅ Poprawnie: 14/35 [40%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Nierówność
25x^2-30x+y^2+2y-134\leqslant 0
opisuje:
Odpowiedzi:
A. zbiór pusty
B. punkt
C. okrąg
D. dwie przecinające się proste
E. koło
F. całą płaszczyznę
Zadanie 6. 2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(-1,9) i
B=(0,10) należą do prostej
określonej równaniem
y=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(4,-1) i
B=(8,6) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dana jest funkcja liniowa
f(x)=2x-11 .
Wyznacz wzór funkcji liniowej
g(x)=ax+b ,
której wykres jest równoległy do wykresu funkcji
f
i do której należy punkt
M=(-2,-30) .
Podaj współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 10/18 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Środki wszystkich okręgów o równaniu
x^2-(m-1)x+y^2+m-2=0 należą do prostej
k .
Jaki kąt tworzy prosta k z osią
Ox .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz tę wartość parametru
m , dla której okrąg ten
jest styczny do prostej
4-x=0 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30191 ⋅ Poprawnie: 9/52 [17%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(10,-3) jest wierzchołkiem trójkąta
ABC , w którym dwie wysokości zawierają się w prostych
o równaniach
9x-6y-33=0 i
-11x-4y+23=0 . Wyznacz równanie
y=ax+b boku
BC tego
trójkąta.
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż