Punkt A=(10,-5) jest środkiem okręgu o promieniu
2018. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt
P=\left(5\sqrt{2},-6\right), a jej wykres jest prostą równoleglą
do prostej o równaniu y=\sqrt{2}x-4.
Wyznacz współczynnik a.
Odpowiedź:
a=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
Wyznacz współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Punkt S=(4,8) jest środkiem okręgu, a do tego okręgu
należy punkt o współrzędnych (1,4). Okrąg ten opisany jest
równaniem (x-a)^2+(y-b)^2=r^2, gdzie
r > 0.
Podaj liczby a, b i
r.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
r
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
« Dana jest funkcja liniowa f(x)=2x-11.
Wyznacz wzór funkcji liniowej g(x)=ax+b,
której wykres jest równoległy do wykresu funkcji f
i do której należy punkt M=(-2,-23).
Podaj współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0