Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=\left(\frac{17}{4},-4\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(-6,2).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu -4x-2y-4=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu y=\frac{1}{4}x-\frac{25}{4} przecina pod kątem prostym w punkcie K=(5,-5) prostą określoną równaniem y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu k:-x+\frac{1}{9}y+4=0 ma współczynnik kierunkowy a.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10213 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Koło opisane nierównością x^2+4x+y^2+4y-8\leqslant 0 ma pole powierzchni równe p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(-9,3).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(-4,14) i B=\left(-1,5\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(-3,1), B=(7,-7) i C=(3,1). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okrąg o_2 jest symetryczny do okręgu o_1:x^2+y^2-10x-2y+1=0 względem punktu P=(-4,2). Wyznacz środek S=(x_S,y_S) okręgu o_2.

Podaj x_S.

Odpowiedź:
x_S= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30259 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Punkty A=(-6,2), B=(2,-6) i C=(6,0) są wierzchołkami trójkata.

Wyznacz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Wyznacz równanie y=ax+b prostej AD.

Podaj b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Wyznacz współrzędne (x_s,y_s) środka ciężkości trójkąta ABC

Podaj x_s.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
y_s=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm