Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty o współrzędnych A=\left(4,2\right) i B=\left(14,2\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta, do której należą punkty A=(-25,-3) i B=(5,27) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «Proste określone równaniami y=mx+n i -\frac{2}{5}x+\frac{4}{3}y+4=0 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do prostej o równaniu -3x+\frac{4}{3}y+1=0 równoległa jest prosta określona wzorem y=......\cdot x+b.

Podaj brakującą liczbę.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10213 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Koło opisane nierównością x^2+8x+y^2+4y-5\leqslant 0 ma pole powierzchni równe p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(-2,5) i B=(-1,6) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu \left(m-\frac{11}{2}\right)x+\left(m-\frac{3}{2}\right)y-5=0 przecina prostą o równaniu (2m-9)x-(2m-11)y-20=0 w punkcie P=(x_0,0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja liniowa f(x)=2x-11. Wyznacz wzór funkcji liniowej g(x)=ax+b, której wykres jest równoległy do wykresu funkcji f i do której należy punkt M=(-4,-24).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Środki wszystkich okręgów o równaniu x^2-(m-2)x+y^2+m-3=0 należą do prostej k.

Jaki kąt tworzy prosta k z osią Ox.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz tę wartość parametru m, dla której okrąg ten jest styczny do prostej 4-x=0.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB jest podstawą trójkąta równoramiennego ABC, w którym: \overrightarrow{AB}=[-4,-6], C=(-8,4) i \overrightarrow{CD}=[-6,4], gdzie D jest spodkiem wysokości opuszczonej z wierzchołka C tego trójkąta. Wyznacz równanie boku BC:x+b_1y+c_1=0.

Podaj b_1.

Odpowiedź:
b_1= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj c_1.
Odpowiedź:
c_1= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Wyznacz równanie boku AB:x+b_2y+c_2=0.

Podaj b_2.

Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
 Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm