Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(-16,8) oraz B=(14,10) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę całkowitą)
y_S= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prostą k o równaniu y=-5x+2 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Prosta równoległa do prostej o równaniu y=3x+\frac{1}{4} i zawiera punkt P=\left(3\sqrt{2},3+\sqrt{2}\right) i określona jest ma równaniem y=ax+b.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 3.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10105 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Do prostej k należą punkty punkty o współrzędnych A=\left(\frac{1}{4},\frac{1}{3}\right) i B=\left(3,4\right).

Wyznacz współczynnik kierunkowy prostej prostopadłej do prostej k.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10216 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nierówność 16x^2+24x+y^2-4y-87\leqslant 0 opisuje:
Odpowiedzi:
A. całą płaszczyznę B. dwie przecinające się proste
C. punkt D. zbiór pusty
E. koło F. okrąg
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(-5,3).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(-5,16) i B=\left(-3,8\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja liniowa f(x)=2x-11. Wyznacz wzór funkcji liniowej g(x)=ax+b, której wykres jest równoległy do wykresu funkcji f i do której należy punkt M=(3,-25).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dany jest okrąg o równaniu o:x^2+y^2+2x+2y-2=0.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_s,y_s)tego okręgu.

Podaj x_s+y_s.

Odpowiedź:
x_s+y_s= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Punkty A=(3,0) i B=(0,12) należą do wykresu funkcji liniowej f(x)=(3m-2k)x+2k+m

Podaj k+m.

Odpowiedź:
k+m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Napisz równanie proporcjonalności prostej, której wykres jest równoległy do wykresu funkcji f.

Podaj współczynnik tej proporcjonalności.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Wyznacz miejsce zerowe funkcji g(x)=f(2x+1)-3.
Odpowiedź:
g(x)=0\iff x=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm