Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(3,6) , do którego
należy punkt o współrzędnych
A=(-4,-2) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty o współrzędnych
A=(-4,3) i
B=(4,11) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=x+11
B. y=-x+7
C. y=-x+11
D. y=x+7
Zadanie 3. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta o równaniu
y=\frac{1}{3}x+9 przecina
pod kątem prostym w punkcie
K=(-3,8) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Prosta o równaniu
y=\frac{8}{m+2}x+4 jest prostopadła
do prostej o równaniu
y=-\frac{3}{2}x+3 .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych
A=(-8,7) . Punkt
P=(-4,7)
jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o
równaniu
(x-a)^2+(y-b)^2=r^2 , gdzie.
r > 0 .
Podaj liczby a , b i
r .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-4,9) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Prosta o równaniu
ax+y+c=0 przechodzi przez punkty
A=\left(3,13) i
B=\left(1,3\right) .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Proste o równaniach
-x+2y-4=0 i
y=\frac{m+4}{2}x+5 przecinają się pod kątem prostym.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20382 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dany jest okrąg
o:x^2+y^2+(4-2\sqrt{3}),x-12y+34-4\sqrt{3}=0 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz środek
S=(x_s,y_s) tego okręgu.
Podaj x_s+y_s .
Odpowiedź:
x_s+y_s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30263 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Wysokości trójkąta
ABC o wierzchołkach
A=(-7,5) i
B=(1,1)
przecinaja się w punkcie
O=(0,5) . Wyznacz
C=(x_C,y_C) .
Podaj x_C .
Odpowiedź:
x_C=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
y_C=
(wpisz liczbę całkowitą)
Rozwiąż