Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(7,9).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Środek odcinka o końcach (6,3) i (8,3) należy do prostej o równaniu y+ax=7+5a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykresy funkcji y=-4+(m-11)x i y=(11-m)x+\frac{1}{2} są prostopadłe.

Zatem m jest:

Odpowiedzi:
A. liczbą niewymierną B. liczbą pierwszą
C. liczbą parzystą D. liczbą nieparzystą
Zadanie 4.  1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=9}x-3 i y=9x+3 B. y=6}x-2 i y=-6x+2
C. y=\frac{1}{6}x-5 i y=-6x-10 D. y=\frac{1}{9}x-9 i y=9x-18
Zadanie 5.  1 pkt ⋅ Numer: pr-10443 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nierówność 9x^2+24x+y^2-12y+52\leqslant 0 opisuje:
Odpowiedzi:
A. okrąg B. całą płaszczyznę
C. dwie przecinające się proste D. punkt
E. zbiór pusty F. koło
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x+1 oraz m+x+2y-12=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Proste o równaniach 3x-y-7=0 i y=\frac{m+4}{2}x+8 przecinają się pod kątem prostym.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20384 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkty A=(-3,10), B=(4,3) i C=(5,6) należą do okręgu.

Podaj promień tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz środek S=(x_S,y_S) tego okręgu.

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30305 ⋅ Poprawnie: 43/255 [16%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest punkt A=(-22,15) oraz prosta k o równaniu y=3x+17, która jest symetralną odcinka AB. Wyznacz punkt B=(x_B,y_B).

Podaj x_B.

Odpowiedź:
x_B=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj y_B.
Odpowiedź:
y_B=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm