Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty o współrzędnych
A=\left(11,-2\right) i
B=\left(15,-2\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Symetralną odcinka o końcach
A=(8,-2) i
B=\left(-\frac{3}{2},-2\right) jest prosta określona równaniem
x+by=c .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykresy funkcji
y=(7-m)x-\frac{5}{3} i
y=4-(m+7)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. liczbą wymierną
B. liczbą nieparzystą
C. liczbą niewymierną
D. równe zero
Zadanie 4. 1 pkt ⋅ Numer: pr-10106 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Prosta przechodząca przez punkty
A=(1,-3) i
B=(3m-3,-3m) jest prostopadła do prostej
2x-3y+3=0 .
Wyznacz parametr m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10212 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz długość promienia okręgu określonego równaniem
(x+y+7)^2+2(x+5)(-1-y)-3=0 .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(-2+\sqrt{6},-5+2\sqrt{2}) i jest nachylona do osi
Ox pod kątem o mierze
150^{\circ} .
Podaj a .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
2x-(2m+21)y+2m+29=0 przecina prostą
(2m+21)x+y-m-\frac{23}{2}=0 w punkcie
P=(0, y_0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla
której proste mx+(3-m)y+m^2=0 oraz
(m+1)x+3my+6=0 są równoległe. Oblicz
100\cdot m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Okrąg
o:x^2+y^2+ax+by+c=0 ma środek
w punkcie
S=(-4,-4) i przechodzi przez
punkt
A=(2,2) .
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
K=(-4,4) jest środkiem odcinka
PQ . Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q , wiedząc, że
P=(-10,-8) .
Zapisz równanie prostej
k w postaci kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż