Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
S=\left(\frac{17}{4},-4\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(-6,2) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta o równaniu
-4x-2y-4=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta o równaniu
y=\frac{1}{4}x-\frac{25}{4} przecina
pod kątem prostym w punkcie
K=(5,-5) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:-x+\frac{1}{9}y+4=0
ma współczynnik kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10213 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Koło opisane nierównością
x^2+4x+y^2+4y-8\leqslant 0
ma pole powierzchni równe
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(-9,3) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Prosta o równaniu
ax+y+c=0 przechodzi przez punkty
A=\left(-4,14) i
B=\left(-1,5\right) .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dane są punkty o współrzędnych
A=(-3,1) ,
B=(7,-7) i
C=(3,1) .
Prosta
k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB . Wyznacz równanie prostej
k .
Podaj m+n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okrąg
o_2 jest symetryczny do okręgu
o_1:x^2+y^2-10x-2y+1=0 względem punktu
P=(-4,2) . Wyznacz środek
S=(x_S,y_S) okręgu
o_2 .
Podaj x_S .
Odpowiedź:
x_S=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30259 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Punkty
A=(-6,2) ,
B=(2,-6) i
C=(6,0)
są wierzchołkami trójkata.
Wyznacz długość środkowej AD tego trójkąta.
Odpowiedź:
|AD|=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Wyznacz równanie
y=ax+b prostej
AD .
Podaj b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Wyznacz współrzędne
(x_s,y_s) środka ciężkości
trójkąta
ABC
Podaj x_s .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż