Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(6,2) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu 4x+6y-12=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Prostą równoległą do prostej o równaniu x+4y+4=0 jest prosta określona wzorem y=.....\cdot x+n.

Podaj brakującą liczbę.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10105 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Do prostej k należą punkty punkty o współrzędnych A=\left(-\frac{1}{2},-\frac{1}{3}\right) i B=\left(-1,-3\right).

Wyznacz współczynnik kierunkowy prostej prostopadłej do prostej k.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych A=(-1,2). Punkt P=(3,2) jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie. r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta o równaniu y=ax+b przechodzi przez punkt P=(1-2\sqrt{3},10 ) i jest nachylona do osi Ox pod kątem o mierze 60^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu 2x-(2m-15)y+2m-7=0 przecina prostą (2m-15)x+y-m+\frac{13}{2}=0 w punkcie P=(0, y_0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest prosta k o równaniu -2x-9y-10=0 oraz punkt P=(-4,2). Wyznacz równanie prostej l równoległej do prostej k i przechodzącej przez punkt P. Zapisz równanie prostej l w postaci kierunkowej y=a_1x+b_1.

Podaj b_1.

Odpowiedź:
b_1=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Okrąg o:x^2+y^2+ax+by+c=0 ma środek w punkcie S=(-1,6) i przechodzi przez punkt A=(5,12).

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30262 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB jest podstawą trójkąta równoramiennego ABC, w którym: \overrightarrow{AB}=[-4,-6], C=(-5,7) i \overrightarrow{CD}=[-6,4], gdzie D jest spodkiem wysokości opuszczonej z wierzchołka C tego trójkąta. Wyznacz równanie boku BC:x+b_1y+c_1=0.

Podaj b_1.

Odpowiedź:
b_1= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj c_1.
Odpowiedź:
c_1= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Wyznacz równanie boku AB:x+b_2y+c_2=0.

Podaj b_2.

Odpowiedź:
b_2=
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
 Podaj c_2.
Odpowiedź:
c_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm