Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
S=(-6,-7) jest środkiem okręgu, a
odległość punktu
A=(42,13) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty o współrzędnych
A=(-6,0) i
B=(2,8) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+10
B. y=x+10
C. y=-x+2
D. y=-x+8
Zadanie 3. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
-4x+y-4=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Wykresy funkcji określonych wzorami
f(x)=\left(-m-\frac{7}{2}\right)x+5 i
g(x)=\left(3m-8\right)x-2 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10202 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Prosta określona wzorem
y=m jest styczną do
okręgu o równaniu
(x-1)^2+(y+6)^2=100
Podaj najmniejszą i największą możliwą wartość parametru m .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(4,-6) i jest nachylona do osi
Ox pod kątem o mierze
120^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Prosta o równaniu
ax+y+c=0 przechodzi przez punkty
A=\left(4,3) i
B=\left(1,-3\right) .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20312 ⋅ Poprawnie: 48/262 [18%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dana jest prosta
k o równaniu
x+9y-2=0 oraz punkt
P=(9,2) . Wyznacz równanie prostej
l równoległej do prostej
k
i przechodzącej przez punkt
P . Zapisz równanie
prostej
l w postaci kierunkowej
y=a_1x+b_1 .
Podaj b_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Okrąg
o:x^2+y^2+ax+by+c=0 ma środek
w punkcie
S=(-1,-4) i przechodzi przez
punkt
A=(5,2) .
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30190 ⋅ Poprawnie: 20/166 [12%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
A=(-3,2) jest wierzchołkiem trójkąta
ABC , w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1] .
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0 .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż