Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(6,-2) jest punkt
C=(7,-1) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Środek odcinka o końcach
(0,-5) i
(2,-5) należy do prostej o równaniu
y+ax=-1-a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykresy funkcji
y=(7-m)x-\frac{5}{3} i
y=4-(m+7)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. liczbą nieparzystą
B. liczbą wymierną
C. równe zero
D. liczbą niewymierną
Zadanie 4. 1 pkt ⋅ Numer: pp-11536 ⋅ Poprawnie: 9/21 [42%]
Rozwiąż
Podpunkt 4.1 (0.5 pkt)
Punkty o współrzędnych
A=(42,14) oraz
B=(14,42)
są wzajemnie symetryczne względem prostej określonej równaniem
y=ax+b .
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 4.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych
A=(-6,-1) . Punkt
P=(-2,-1)
jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o
równaniu
(x-a)^2+(y-b)^2=r^2 , gdzie.
r > 0 .
Podaj liczby a , b i
r .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(-2,0) i
B=(-1,1) należą do prostej
określonej równaniem
y=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
2x-(2m+5)y+2m+13=0 przecina prostą
(2m+5)x+y-m-\frac{7}{2}=0 w punkcie
P=(0, y_0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla
której proste mx+(3-m)y+m^2=0 oraz
(m+1)x+3my+6=0 są równoległe. Oblicz
100\cdot m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20384 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Punkty
A=(5,10) ,
B=(12,3) i
C=(13,6)
należą do okręgu.
Podaj promień tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz środek
S=(x_S,y_S) tego okręgu.
Podaj x_S+y_S .
Odpowiedź:
x_S+y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30188 ⋅ Poprawnie: 25/78 [32%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
P=(5,9) jest środkiem boku
AB trójkąta
ABC , w którym:
A=(-2,3) i
\overrightarrow{BC}=[-8,4] .
Wyznacz równanie boku
AC tego trójkąta i zapisz go
w postaci kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż