Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Punkty A=(-3,-2) i B=(13,10) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=4r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresy funkcji y=(9-m)x-\frac{5}{3} i y=4-(m+9)x są prostopadłe.

Zatem m^2 jest:

Odpowiedzi:
A. liczbą nieparzystą B. liczbą niewymierną
C. liczbą wymierną D. równe zero
Zadanie 4.  1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Do prostej k należą punkty o współrzędnych (0,0) oraz \left(4,\frac{7}{4}\right) oraz k\perp l.

Wyznacz współczynnik kierunkowy prostej l.

Odpowiedź:
a_l=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10216 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nierówność 25x^2-20x+y^2-2y-31\leqslant 0 opisuje:
Odpowiedzi:
A. okrąg B. punkt
C. dwie przecinające się proste D. całą płaszczyznę
E. koło F. zbiór pusty
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(-5,5) i B=(-4,6) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu 2x-(2m-3)y+2m+5=0 przecina prostą (2m-3)x+y-m+\frac{1}{2}=0 w punkcie P=(0, y_0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20314 ⋅ Poprawnie: 203/424 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja liniowa f(x)=2x-11. Wyznacz wzór funkcji liniowej g(x)=ax+b, której wykres jest równoległy do wykresu funkcji f i do której należy punkt M=(1,-28).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Okrąg o:x^2+y^2+ax+by+c=0 ma środek w punkcie S=(-6,3) i przechodzi przez punkt A=(0,9).

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30188 ⋅ Poprawnie: 25/78 [32%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt P=(-3,6) jest środkiem boku AB trójkąta ABC, w którym: A=(-10,0) i \overrightarrow{BC}=[-8,4]. Wyznacz równanie boku AC tego trójkąta i zapisz go w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm