Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(2,3) i B=(6,5) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Środek odcinka o końcach (3,0) i (5,0) należy do prostej o równaniu y+ax=4+2a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach k:y=6m^2x-m-4 oraz l:y=36mx+m+4 spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach -3y-3mx+12=0 oraz y=6x-12 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(3,9) jest środkiem okręgu, a do tego okręgu należą punkty (0,12) i (0,6).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x+3)^2+(y-9)^2=18 B. (x+3)^2+(y-7)^2=18
C. (x-3)^2+(y-7)^2=18 D. (x-3)^2+(y-9)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(3+\sqrt{6},5+2\sqrt{2}) i jest nachylona do osi Ox pod kątem o mierze 150^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu \left(m+\frac{7}{2}\right)x+\left(m+\frac{15}{2}\right)y-5=0 przecina prostą o równaniu (2m+9)x-(2m+7)y-20=0 w punkcie P=(x_0,0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Proste o równaniach -2x-4y-7=0 i y=\frac{m+4}{2}x-2 przecinają się pod kątem prostym.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Okrąg o:x^2+y^2+ax+by+c=0 ma środek w punkcie S=(1,6) i przechodzi przez punkt A=(7,12).

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30052 ⋅ Poprawnie: 24/104 [23%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Punkty A=(5,0) i B=(0,5) należą do wykresu funkcji liniowej f(x)=(3m-2k)x+2k+m

Podaj k+m.

Odpowiedź:
k+m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Napisz równanie proporcjonalności prostej, której wykres jest równoległy do wykresu funkcji f.

Podaj współczynnik tej proporcjonalności.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Wyznacz miejsce zerowe funkcji g(x)=f(2x+1)-3.
Odpowiedź:
g(x)=0\iff x=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm