« Z koła opisanego nierównością
x^2-4x+y^2-12y+15\leqslant 0
wycięto kąt środkowy tego koła o mierze 60^{\circ}.
Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
« Dane są punkty o współrzędnych A=(3,-5),
B=(10,2) i C=(5,7).
Prosta k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB. Wyznacz równanie prostej
k.
Podaj m+n.
Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pr-20379 ⋅ Poprawnie: 0/0
«« Punkt A=(4,6) jest wierzchołkiem trójkąta
ABC, w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1].
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat