Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Punkty
A=(-2,2) i
B=(4,10)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=5r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x-1 i
x-y=8 .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Prosta o równaniu
y=\frac{1}{4}x-\frac{17}{4} przecina
pod kątem prostym w punkcie
K=(5,-3) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(5,-\frac{7}{3}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10304 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz długość promienia okręgu o równaniu
x^2+y^2-6y-27=0 .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(-2,1) i jest nachylona do osi
Ox pod kątem o mierze
120^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta o równaniu
2x-(2m+21)y+2m+29=0 przecina prostą
(2m+21)x+y-m-\frac{23}{2}=0 w punkcie
P=(0, y_0) .
Podaj najmniejsze możliwe m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dane są punkty o współrzędnych
A=(9,-10) ,
B=(-3,-6) i
C=(4,1) .
Prosta
k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB . Wyznacz równanie prostej
k .
Podaj m+n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Punkty
A=(2,6) i
B=(-10,-10) należą do okręgu, którego środek
należy do prostej
y=x+2 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Środkiem tego okręgu jest punkt
S=(x_S,y_S) .
Podaj x_S+y_S .
Odpowiedź:
x_S+y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» W prostokącie
ABCD dane są:
C=(-3,6) ,
\overrightarrow{AB}=[4,4] oraz prosta
y=x+3 , do której należy wierzchołek
A tego prostokąta. Wyznacz równanie
przekątnej
AC:y=cx+d .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż