Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
(1 pkt)
Obrazami punktów o współrzędnych
A=(-20,-16) oraz
B=(22,20)
w symetrii środkowej względem punktu
O=(0,0) są punkty odpowiednio
A' i
B' .
Środek odcinka
A'B' ma współrzędne
S=(x_S, y_S) .
Podaj współrzędne x_S i y_S .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta, do której należą punkty
A=(-45,-5) i
B=(-59,-33)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%]
Rozwiąż
Podpunkt 3.1 (0.5 pkt)
Prosta równoległa do prostej o równaniu
y=3x+\frac{1}{3} i
zawiera punkt
P=\left(5\sqrt{2},3-4\sqrt{2}\right)
i określona jest ma równaniem
y=ax+b .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 3.2 (0.5 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(2,\frac{13}{4}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Okrąg o równaniu
(x-a)^2+(y-b)^2=r^2 , gdzie
r > 0 , jest styczny do osi układu w punktach
o współrzędnych
(8,0) i
(0,-8) .
Podaj wartości parametrów a , b i
r .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(-4-2\sqrt{3},8 ) i jest nachylona do osi
Ox pod kątem o mierze
60^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wyznacz rzedną punktu wspólnego osi
Oy i symetralnej
odcinka o końcach
A=(2,-7) i
B=(5,-3) .
Podaj tę rzędną.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla
której proste mx+(3-m)y+m^2=0 oraz
(m+1)x+3my+6=0 są równoległe. Oblicz
100\cdot m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Punkty
A=(3,7) i
B=(-9,-9) należą do okręgu, którego środek
należy do prostej
y=x+2 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Środkiem tego okręgu jest punkt
S=(x_S,y_S) .
Podaj x_S+y_S .
Odpowiedź:
x_S+y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Okrąg o środku
S=(x_S,y_S) przechodzi przez
punkty
A=(2,-5) ,
B=(4,1) i
C=(-6,7) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż