Podgląd testu : lo2@sp-15-geom-analit-1-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(6,2) i
B=(-5,-1)
są wierzchołkami trójąta równobocznego.
Oblicz wysokość tego trójkąta.
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta o równaniu
8x+7y-28=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«Proste określone równaniami
y=mx+n i
-\frac{1}{3}x+\frac{3}{5}y+4=0
są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Proste o równaniach
y=\frac{p}{2}x+8 i
y=8qx-7 są prostopadłe.
Oblicz iloczyn p\cdot q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty o współrzędnych
A=(10,3) ,
B=(15,3) ,
C=(18,7) i
D=(13,7) są
wierzchołkami rombu.
Okrąg wpisany w ten romb ma równanie:
Odpowiedzi:
A. (x-6)^2+(y-1)^2=2
B. (x-14)^2+(y-5)^2=4
C. (x-14)^2+(y-5)^2=2
D. (x-6)^2+(y-1)^2=4
Zadanie 6. 2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(2-2\sqrt{3},9 ) i jest nachylona do osi
Ox pod kątem o mierze
60^{\circ} .
Podaj a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dla jakich wartości parametru
m punkt przecięcia
prostych
y=-3m+2x+13 oraz
m+x+2y-16=0 należy do prostej o równaniu
3x-2y-11=0 ?
Podaj najmniejsze możliwe m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20455 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Liczba m jest największą możliwą wartością, dla
której proste mx+(3-m)y+m^2=0 oraz
(m+1)x+3my+6=0 są równoległe. Oblicz
100\cdot m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Punkty
A=(9,8) i
B=(-3,-8) należą do okręgu, którego środek
należy do prostej
y=x-3 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Środkiem tego okręgu jest punkt
S=(x_S,y_S) .
Podaj x_S+y_S .
Odpowiedź:
x_S+y_S=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
K=(0,13) jest środkiem odcinka
PQ . Wyznacz równanie prostej
k prostopadłej do odcinka
PQ i przechodzącej przez punkt
Q , wiedząc, że
P=(-6,1) .
Zapisz równanie prostej
k w postaci kierunkowej
y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż